Relevance of A Disintegrin and Metalloproteinase Domain-Containing (ADAM)9 Protein Expression to Bladder Cancer Malignancy
Abstract
:1. Introduction
2. Materials and Methods
2.1. Cells
2.2. Cell Culture
2.3. ADAM9 Knockdown
2.4. Cell Proliferation Assays
2.5. Cell-Cycle Assays
2.6. Wound-Healing Assays
2.7. RT-qPCR
2.8. TCGA Analysis
2.9. GEO Study
2.10. Statistical Analysis
3. Results
3.1. ADAM9 Knockdown
3.2. Proliferation Assay
3.3. Cell-Cycle Assay
3.4. Wound-Healing Assay
3.5. RT-qPCR
3.6. TCGA Analysis
3.7. GEO Study
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Oughton, J.B.; Poad, H.; Twiddy, M.; Collinson, M.; Hiley, V.; Gordon, K.; Johnson, M.; Jain, S.; Noon, A.P.; Chahal, R.; et al. Radical cystectomy (bladder removal) against intravesical BCG immunotherapy for high-risk non-muscle invasive bladder cancer (BRAVO): A protocol for a randomised controlled feasibility study. BMJ Open 2017, 7, e017913. [Google Scholar] [CrossRef]
- Vu, T.; Datta, P.K. Regulation of EMT in Colorectal Cancer: A Culprit in Metastasis. Cancers 2017, 9, 171. [Google Scholar] [CrossRef] [Green Version]
- Abell, A.N.; Johnson, G.L. Implications of Mesenchymal Cells in Cancer Stem Cell Populations: Relevance to EMT. Curr. Pathobiol. Rep. 2014, 2, 21–26. [Google Scholar] [CrossRef] [Green Version]
- Baumgart, E.; Cohen, M.S.; Silva Neto, B.; Jacobs, M.A.; Wotkowicz, C.; Rieger-Christ, K.M.; Biolo, A.; Zeheb, R.; Loda, M.; Libertino, J.A.; et al. Identification and prognostic significance of an epithelial-mesenchymal transition expression profile in human bladder tumors. Clin. Cancer Res. 2007, 13, 1685–1694. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Migita, T.; Ueda, A.; Ohishi, T.; Hatano, M.; Seimiya, H.; Horiguchi, S.I.; Koga, F.; Shibasaki, F. Epithelial-mesenchymal transition promotes SOX2 and NANOG expression in bladder cancer. Lab. Investig. 2017, 97, 567–576. [Google Scholar] [CrossRef] [Green Version]
- Ohishi, T.; Koga, F.; Migita, T. Bladder Cancer Stem-Like Cells: Their Origin and Therapeutic Perspectives. Int. J. Mol. Sci. 2015, 17, 43. [Google Scholar] [CrossRef] [Green Version]
- Yeh, C.H.; Peng, H.C.; Huang, T.F. Accutin, a new disintegrin, inhibits angiogenesis in vitro and in vivo by acting as integrin alphavbeta3 antagonist and inducing apoptosis. Blood 1998, 92, 3268–3276. [Google Scholar] [CrossRef]
- Takeya, H. The structure and function of disintegrins. Jpn. J. Thromb. Hemost. 2000, 11, 211–217. [Google Scholar]
- Kim, J.M.; Jeung, H.C.; Rha, S.Y.; Yu, E.J.; Kim, T.S.; Shin, Y.K.; Zhang, X.; Park, K.H.; Park, S.W.; Chung, H.C.; et al. The effect of disintegrin-metalloproteinase ADAM9 in gastric cancer progression. Mol. Cancer Ther. 2014, 13, 3074–3085. [Google Scholar] [CrossRef] [Green Version]
- Oria, V.O.; Lopatta, P.; Schmitz, T.; Preca, B.T.; Nyström, A.; Conrad, C.; Bartsch, J.W.; Kulemann, B.; Hoeppner, J.; Maurer, J.; et al. ADAM9 contributes to vascular invasion in pancreatic ductal adenocarcinoma. Mol. Oncol. 2019, 13, 456–479. [Google Scholar] [CrossRef]
- Jia, A.Y.; Castillo-Martin, M.; Bonal, D.M.; Sánchez-Carbayo, M.; Silva, J.M.; Cordon-Cardo, C. MicroRNA-126 inhibits invasion in bladder cancer via regulation of ADAM9. Br. J. Cancer 2014, 110, 2945–2954. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fu, W.; Wu, X.; Yang, Z.; Mi, H. The effect of miR-124-3p on cell proliferation and apoptosis in bladder cancer by targeting EDNRB. Arch. Med. Sci. 2019, 15, 1154–1162. [Google Scholar] [CrossRef]
- Xiayu, R.; Xuelin, H.; Zhicheng, Z.; Xin, L. An improvement of the 2−ΔΔCT method for quantitative real-time polymer-ase chain reaction data analysis. Biostat. Bioinform. Biomath. 2013, 3, 71–85. [Google Scholar]
- Liu, R.; Wang, F.; Guo, Y.; Yang, J.; Chen, S.; Gao, X.; Wang, X. MicroRNA-425 promotes the development of lung adenocarcinoma via targeting A disintegrin and metalloproteinases 9 (ADAM9). Onco Targets Ther. 2018, 11, 4065–4073. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gerdes, J.; Lemke, H.; Baisch, H.; Wacker, H.H.; Schwab, U.; Stein, H. Cell cycle analysis of a cell proliferation-associated human nuclear antigen defined by the monoclonal antibody Ki-67. J. Immunol. 1984, 133, 1710–1715. [Google Scholar] [PubMed]
- Bai, Y.; Mao, Q.Q.; Qin, J.; Zheng, X.Y.; Wang, Y.B.; Yang, K.; Shen, H.F.; Xie, L.P. Resveratrol induces apoptosis and cell cycle arrest of human T24 bladder cancer cells in vitro and inhibits tumor growth in vivo. Cancer Sci. 2010, 101, 488–493. [Google Scholar] [CrossRef]
- Hamada, S.; Satoh, K.; Fujibuchi, W.; Hirota, M.; Kanno, A.; Unno, J.; Masamune, A.; Kikuta, K.; Kume, K.; Shimosegawa, T. MiR-126 acts as a tumor suppressor in pancreatic cancer cells via the regulation of ADAM9. Mol. Cancer Res. 2012, 10, 3–10. [Google Scholar] [CrossRef] [Green Version]
- Miao, H.; Burnett, E.; Kinch, M.; Simon, E.; Wang, B. Activation of EphA2 kinase suppresses integrin function and causes focal-adhesion-kinase dephosphorylation. Nat. Cell Biol. 2000, 2, 62–69. [Google Scholar] [CrossRef]
- Mygind, K.J.; Schwarz, J.; Sahgal, P.; Ivaska, J.; Kveiborg, M. Loss of ADAM9 expression impairs β1 integrin endocytosis, focal adhesion formation and cancer cell migration. J. Cell Sci. 2018, 131, jcs205393. [Google Scholar] [CrossRef] [Green Version]
- Wang, C.Z.; Yuan, P.; Li, Y. MiR-126 regulated breast cancer cell invasion by targeting ADAM9. Int. J. Clin. Exp. Pathol. 2015, 8, 6547–6553. [Google Scholar] [PubMed]
- Loh, C.Y.; Chai, J.Y.; Tang, T.F.; Wong, W.F.; Sethi, G.; Shanmugam, M.K.; Chong, P.P.; Looi, C.Y. The E-Cadherin and N-Cadherin Switch in Epithelial-to-Mesenchymal Transition: Signaling, Therapeutic Implications, and Challenges. Cells 2019, 8, 1118. [Google Scholar] [CrossRef] [Green Version]
- Usman, S.; Waseem, N.H.; Nguyen, T.K.N.; Mohsin, S.; Jamal, A.; Teh, M.T.; Waseem, A. Vimentin Is at the Heart of Epithelial Mesenchymal Transition (EMT) Mediated Metastasis. Cancers 2021, 13, 4985. [Google Scholar] [CrossRef]
- van Kampen, J.G.M.; van Hooij, O.; Jansen, C.F.; Smit, F.P.; van Noort, P.I.; Schultz, I.; Schaapveld, R.Q.J.; Schalken, J.A.; Verhaegh, G.W. miRNA-520f Reverses Epithelial-to-Mesenchymal Transition by Targeting ADAM9 and TGFBR2. Cancer Res. 2017, 77, 2008–2017. [Google Scholar] [CrossRef] [Green Version]
- Hua, Y.; Liang, C.; Miao, C.; Wang, S.; Su, S.; Shao, P.; Liu, B.; Bao, M.; Zhu, J.; Xu, A.; et al. MicroRNA-126 inhibits proliferation and metastasis in prostate cancer via regulation of ADAM9. Oncol. Lett. 2018, 15, 9051–9060. [Google Scholar] [CrossRef]
- Sher, Y.P.; Wang, L.J.; Chuang, L.L.; Tsai, M.H.; Kuo, T.T.; Huang, C.C.; Chuang, E.Y.; Lai, L.C. ADAM9 up-regulates N-cadherin via miR-218 suppression in lung adenocarcinoma cells. PLoS ONE 2014, 9, e94065. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Arai, J.; Goto, K.; Stephanou, A.; Tanoue, Y.; Ito, S.; Muroyama, R.; Matsubara, Y.; Nakagawa, R.; Morimoto, S.; Kaise, Y.; et al. Predominance of regorafenib over sorafenib: Restoration of membrane-bound MICA in hepatocellular carcinoma cells. J. Gastroenterol. Hepatol. 2018, 33, 1075–1081. [Google Scholar] [CrossRef]
- Kohga, K.; Takehara, T.; Tatsumi, T.; Ishida, H.; Miyagi, T.; Hosui, A.; Hayashi, N. Sorafenib inhibits the shedding of major histocompatibility complex class I-related chain A on hepatocellular carcinoma cells by down-regulating a disintegrin and metalloproteinase 9. Hepatology 2010, 51, 1264–1273. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Yan, L.; Jiao, W.; Ren, J.; Xing, N.; Zhang, Y.; Zang, Y.; Wang, J.; Xu, Z. The clinical and biological significance of MICA in clear cell renal cell carcinoma patients. Tumour Biol. 2016, 37, 2153–2159. [Google Scholar] [CrossRef] [PubMed]
- Lin, C.Y.; Chen, H.J.; Huang, C.C.; Lai, L.C.; Lu, T.P.; Tseng, G.C.; Kuo, T.T.; Kuok, Q.Y.; Hsu, J.L.; Sung, S.Y.; et al. ADAM9 promotes lung cancer metastases to brain by a plasminogen activator-based pathway. Cancer Res. 2014, 74, 5229–5243. [Google Scholar] [CrossRef] [Green Version]
- Jacob, J.O.; Khalid, A.J.; Tiancheng, X.; Susan, H.; Xin, L.; Matthew, B.; Benjamin, M.; Cristine, C.M.; Tariq, U.A.; Fabrice, L.; et al. ADAM10 and ADAM17 cleave PD-L1 to mediate PD-(L)1 inhibitor resistance. Oncoimmunology 2020, 9, e1744980. [Google Scholar] [CrossRef] [Green Version]
- Yang, J.; Antin, P.; Berx, G.; Blanpain, C.; Brabletz, T.; Bronner, M.; Campbell, K.; Cano, A.; Casanova, J.; Christofori, G.; et al. Guidelines and definitions for research on epithelial-mesenchymal transition. Nat. Rev. Mol. Cell Biol. 2020, 21, 341–352. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Gene | Sequences (5′-3′) | |
---|---|---|
ADAM9 | Forward | CTTGCTGCGAAGGAAGTACCTG |
Reverse | CACTCACTGGTTTTTCCTCGGC | |
Vimentin | Forward | GAGAACTTTGCCGTTGAAGC |
Reverse | GCTTCCTGTAGGTGGCAATCT | |
E-cadherin | Forward | ACGTCGTAATCACCACACTGA |
Reverse | TTCGCTCACTGCTACGTGTAGAA | |
N-cadherin | Forward | ACAGTGGCCACCTACAAAGG |
Reverse | CCGAGATGGGGTTGATAATG | |
β-actin | Forward | ATTGCCGACAGGATGCAGAAG |
Reverse | GCTAATCCACATCTGCTGGAA |
Gene | Cell | CT | ΔCT | ΔΔCT | 2–ΔΔCt |
---|---|---|---|---|---|
ADAM9 | C1 | 27.77 | −7.733 | 0 | 1 |
K | 32.84 | −2.712 | 5.021 | 0.03078 | |
C2 | 26.27 | 5.417 | 0 | 1 | |
T | 28.98 | 8.347 | 2.93 | 0.1312 | |
Vimentin | C1 | 23.6 | −11.90 | 0 | 1 |
K | 28.4 | -7.152 | 4.751 | 0.03712 | |
C2 | 23.03 | 2.183 | 0 | 1 | |
T | 23.38 | 2.753 | 0.57 | 0.6736 | |
E-cadherin | C1 | 26.27 | −9.227 | 0 | 1 |
K | 25.17 | −10.38 | −1.158 | 2.232 | |
C2 | 26.63 | 5.777 | 0 | 1 | |
T | 25.07 | 4.44 | 1.337 | 2.526 | |
N-cadherin | C1 | 30.61 | −4.890 | 0 | 1 |
K | 30.08 | −5.472 | −0.5817 | 1.497 | |
C2 | 26.35 | 5.5 | 0 | 0 | |
T | 27.91 | 7.283 | 1.783 | 0.2905 | |
β-actin | C1 | 35.5 | 0 | ||
K | 35.56 | 0 | |||
C2 | 20.85 | 0 | |||
T | 20.63 | 0 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Moriwaki, M.; Le, T.T.-H.; Sung, S.-Y.; Jotatsu, Y.; Yang, Y.; Hirata, Y.; Ishii, A.; Chiang, Y.-T.; Chen, K.-C.; Shigemura, K.; et al. Relevance of A Disintegrin and Metalloproteinase Domain-Containing (ADAM)9 Protein Expression to Bladder Cancer Malignancy. Biomolecules 2022, 12, 791. https://doi.org/10.3390/biom12060791
Moriwaki M, Le TT-H, Sung S-Y, Jotatsu Y, Yang Y, Hirata Y, Ishii A, Chiang Y-T, Chen K-C, Shigemura K, et al. Relevance of A Disintegrin and Metalloproteinase Domain-Containing (ADAM)9 Protein Expression to Bladder Cancer Malignancy. Biomolecules. 2022; 12(6):791. https://doi.org/10.3390/biom12060791
Chicago/Turabian StyleMoriwaki, Michika, Trang Thi-Huynh Le, Shian-Ying Sung, Yura Jotatsu, Youngmin Yang, Yuto Hirata, Aya Ishii, Yi-Te Chiang, Kuan-Chou Chen, Katsumi Shigemura, and et al. 2022. "Relevance of A Disintegrin and Metalloproteinase Domain-Containing (ADAM)9 Protein Expression to Bladder Cancer Malignancy" Biomolecules 12, no. 6: 791. https://doi.org/10.3390/biom12060791
APA StyleMoriwaki, M., Le, T. T. -H., Sung, S. -Y., Jotatsu, Y., Yang, Y., Hirata, Y., Ishii, A., Chiang, Y. -T., Chen, K. -C., Shigemura, K., & Fujisawa, M. (2022). Relevance of A Disintegrin and Metalloproteinase Domain-Containing (ADAM)9 Protein Expression to Bladder Cancer Malignancy. Biomolecules, 12(6), 791. https://doi.org/10.3390/biom12060791