Comparative Analysis of Enzyme Production Patterns of Lignocellulose Degradation of Two White Rot Fungi: Obba rivulosa and Gelatoporia subvermispora
Abstract
:1. Introduction
2. Materials and Methods
2.1. Fungal Strains and Cultivation Conditions
2.2. Protein Extraction and LC-MS/MS Identification
2.3. FTIR Analysis of Spruce Wood
3. Results and Discussion
3.1. Temporal Protein Profiles of O. rivulosa and G. subvermispora during Cultivation on Spruce
3.2. Early Production of MnPs Suggests Their Important Role during the Beginning of Wood Decay
3.3. O. rivulosa and G. subvermispora Showed Constant Production of Cellulolytic Enzymes
3.4. Early Production of Hemicellulases Coincided with Lignin Modifying Enzymes
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Mäkelä, M.R.; Hildén, K.S.; de Vries, R.P. Degradation and modification of plant biomass by fungi. In Fungal Genomics. The Mycota; Nowrousian, M., Ed.; Springer: Berlin/Heidelberg, Germany, 2014; pp. 175–208. [Google Scholar]
- Lundell, T.; Mäkelä, M.R.; de Vries, R.P.; Hildén, K.S. Genomics, life-styles and future prospects of wood-decaying and litter-decomposing Basidiomycota. In Advances in Botanical Research; Martin, F., Ed.; Elsevier: Amsterdam, The Netherlands, 2014; Volume 70, pp. 329–370. [Google Scholar]
- Hatakka, A.; Hammel, K.E. Fungal biodegradation of lignocelluloses. In Industrial Applications, The Mycota; Hofrichter, M., Ed.; Springer: Berlin Heidelberg, Germany, 2011; pp. 319–340. [Google Scholar]
- Lombard, V.; Golaconda Ramulu, H.; Drula, E.; Coutinho, P.M.; Henrissat, B. The carbohydrate-active enzymes database (CAZy) in 2013. Nucleic Acids Res. 2014, 42, D490–D495. [Google Scholar] [CrossRef] [PubMed]
- Korripally, P.; Hunt, C.G.; Houtman, C.J.; Jones, D.C.; Kitin, P.J.; Cullen, D.; Hammel, K.E. Regulation of gene expression during the onset of ligninolytic oxidation by Phanerochaete chrysosporium on spruce wood. Appl. Environ. Microbiol. 2015, 81, 7802–7812. [Google Scholar] [CrossRef] [PubMed]
- Akhtar, M.; Blanchette, R.A.; Kirk, T.K. Fungal delignification and biomechanical pulping of wood. In Biotechnology in the Pulp and Paper Industry; Eriksson, K.-E., Ed.; Springer: Berlin, Germany, 1997; pp. 159–195. [Google Scholar]
- Gupta, R.; Mehta, G.; Khasa, Y.P.; Kuhad, R.C. Fungal delignification of lignocellulosic biomass improves the saccharification of cellulosics. Biodegradation 2011, 22, 797–804. [Google Scholar] [CrossRef] [PubMed]
- Hakala, T.K.; Maijala, P.; Konn, J.; Hatakka, A. Evaluation of novel wood-rotting polypores and corticioid fungi for the decay and biopulping of Norway spruce (Picea abies) wood. Enz. Microb. Technol. 2004, 34, 255–263. [Google Scholar] [CrossRef]
- Adaskaveg, J.E.; Gilbertson, R.L.; Dunlap, M.R. Effects of incubation time and temperature on in vitro selective delignification of silver leaf oak by Ganoderma colossum. Appl. Environ. Microbiol. 1995, 61, 138–144. [Google Scholar] [CrossRef]
- Blanchette, R.A. Degradation of lignocellulose complex in wood. Can. J. Bot. 1995, 73, S999–S1010. [Google Scholar] [CrossRef]
- Fernandez-Fueyo, E.; Ruiz-Dueñas, F.J.; Ferreira, P.; Floudas, D.; Hibbett, D.S.; Canessa, P.; Larrondo, L.F.; James, T.Y.; Seelenfreund, D.; Lobos, S.; et al. Comparative genomics of Ceriporiopsis subvermispora and Phanerochaete chrysosporium provide insight into selective ligninolysis. Proc. Natl. Acad. Sci. USA 2012, 109, 5458–5463. [Google Scholar] [CrossRef]
- Binder, M.; Justo, A.; Riley, R.; Salamov, A.; Lopez-Giraldez, F.; Sjokvist, E.; Copeland, A.; Foster, B.; Sun, H.; Larsson, E.; et al. Phylogenetic and phylogenomic overview of the Polyporales. Mycologia 2013, 105, 1350–1373. [Google Scholar] [CrossRef]
- Justo, A.; Miettinen, O.; Floudas, D.; Ortiz-Santana, B.; Sjokvist, E.; Lindner, D.; Nakasone, K.; Niemelä, T.; Larsson, K.H.; Ryvarden, L.; et al. A revised family-level classification of the Polyporales (Basidiomycota). Fungal Biol. 2017, 121, 798–824. [Google Scholar] [CrossRef]
- Miettinen, O.; Riley, R.; Barry, K.; Cullen, D.; de Vries, R.P.; Hainaut, M.; Hatakka, A.; Henrissat, B.; Hilden, K.; Kuo, R.; et al. Draft genome sequence of the white-rot fungus Obba rivulosa 3A-2. Genome Announc. 2016, 4, e00976-16. [Google Scholar] [CrossRef]
- Sun, Y.F.; Lebreton, A.; Xing, J.H.; Fang, Y.X.; Si, J.; Morin, E.; Miyauchi, S.; Drula, E.; Ahrendt, S.; Cobaugh, K.; et al. Phylogenomics and comparative genomics highlight specific genetic features in Ganoderma species. J. Fungi 2022, 8, 311. [Google Scholar] [CrossRef]
- Altenhoff, A.M.; Glover, N.M.; Dessimoz, C. Inferring orthology and paralogy. Methods Mol. Biol. 2019, 1910, 149–175. [Google Scholar] [CrossRef]
- Benoit, I.; Culleton, H.; Zhou, M.; DiFalco, M.; Aguilar-Osorio, G.; Battaglia, E.; Bouzid, O.; Brouwer, C.; El-Bushari, H.B.O.; Coutinho, P.M.; et al. Closely related fungi employ diverse enzymatic strategies to degrade plant biomass. Biotechnol. Biofuels 2015, 8, 107. [Google Scholar] [CrossRef]
- Fernandez-Fueyo, E.; Ruiz-Dueñas, F.J.; Miki, Y.; Martinez, M.J.; Hammel, K.E.; Martinez, A.T. Lignin-degrading peroxidases from genome of selective ligninolytic fungus Ceriporiopsis subvermispora. J. Biol. Chem. 2012, 287, 16903–16916. [Google Scholar] [CrossRef]
- Hatakka, A.I.; Uusi-Rauva, A.K. Degradation of 14C-labelled poplar wood lignin by selected white-rot fungi. Eur. J. Appl. Microbiol. Biotechnol. 1983, 17, 235–242. [Google Scholar] [CrossRef]
- Mäkelä, M.; Galkin, S.; Hatakka, A.; Lundell, T. Production of organic acids and oxalate decarboxylase in lignin-degrading white rot fungi. Enzym. Microb. Technol. 2002, 30, 542–549. [Google Scholar] [CrossRef]
- Rytioja, J.; Hilden, K.; Di Falco, M.; Zhou, M.; Aguilar-Pontes, M.V.; Sietio, O.M.; Tsang, A.; de Vries, R.P.; Mäkelä, M.R. The molecular response of the white-rot fungus Dichomitus squalens to wood and non-woody biomass as examined by transcriptome and exoproteome analyses. Environ. Microbiol. 2017, 19, 1237–1250. [Google Scholar] [CrossRef]
- Mahajan, C.; Basotra, N.; Singh, S.; Di Falco, M.; Tsang, A.; Chadha, B.S. Malbranchea cinnamomea: A thermophilic fungal source of catalytically efficient lignocellulolytic glycosyl hydrolases and metal dependent enzymes. Bioresour. Technol. 2016, 200, 55–63. [Google Scholar] [CrossRef]
- Budak, S.O.; Zhou, M.; Brouwer, C.; Wiebenga, A.; Benoit, I.; Di Falco, M.; Tsang, A.; de Vries, R.P. A genomic survey of proteases in Aspergilli. BMC Genom. 2014, 15, 523. [Google Scholar] [CrossRef]
- Lê, S.; Josse, J.; Husson, F. FactoMineR: An R package for multivariate analysis. J. Stat. Softw. 2008, 25, 1–18. [Google Scholar] [CrossRef]
- Li, L.; Stoeckert, C.J., Jr.; Roos, D.S. OrthoMCL: Identification of ortholog groups for eukaryotic genomes. Genome Res. 2003, 13, 2178–2189. [Google Scholar] [CrossRef]
- Gorzsás, A.; Sundberg, B. Chemical fingerprinting of Arabidopsis using Fourier Transform Infrared (FT-IR) spectroscopic approaches. Methods Mol. Biol. 2014, 1062, 317–352. [Google Scholar] [CrossRef]
- Felten, J.; Hall, H.; Jaumot, J.; Tauler, R.; de Juan, A.; Gorzsás, A. Addendum: Vibrational spectroscopic image analysis of biological material using multivariate curve resolution–alternating least squares (MCR-ALS). Nat. Protoc. 2019, 14, 3032. [Google Scholar] [CrossRef]
- Kuuskeri, J.; Häkkinen, M.; Laine, P.; Smolander, O.P.; Tamene, F.; Miettinen, S.; Nousiainen, P.; Kemell, M.; Auvinen, P.; Lundell, T. Time-scale dynamics of proteome and transcriptome of the white-rot fungus Phlebia radiata: Growth on spruce wood and decay effect on lignocellulose. Biotechnol. Biofuels 2016, 9, 192. [Google Scholar] [CrossRef]
- Hage, H.; Miyauchi, S.; Virágh, M.; Drula, E.; Min, B.; Chaduli, D.; Navarro, D.; Favel, A.; Norest, M.; Lesage-Meessen, L.; et al. Gene family expansions and transcriptome signatures uncover fungal adaptations to wood decay. Environ. Microbiol. 2021, 23, 5716–5732. [Google Scholar] [CrossRef]
- Peng, M.; Aguilar-Pontes, M.V.; Hainaut, M.; Henrissat, B.; Hilden, K.; Mäkelä, M.R.; de Vries, R.P. Comparative analysis of basidiomycete transcriptomes reveals a core set of expressed genes encoding plant biomass degrading enzymes. Fungal Genet. Biol. 2018, 112, 40–46. [Google Scholar] [CrossRef]
- Marinovic, M.; Aguilar-Pontes, M.V.; Zhou, M.; Miettinen, O.; de Vries, R.P.; Mäkelä, M.R.; Hilden, K. Temporal transcriptome analysis of the white-rot fungus Obba rivulosa shows expression of a constitutive set of plant cell wall degradation targeted genes during growth on solid spruce wood. Fungal Genet. Biol. 2018, 112, 47–54. [Google Scholar] [CrossRef]
- Hori, C.; Gaskell, J.; Igarashi, K.; Kersten, P.; Mozuch, M.; Samejima, M.; Cullen, D. Temporal alterations in the secretome of the selective ligninolytic fungus Ceriporiopsis subvermispora during growth on aspen wood reveal this organism’s strategy for degrading lignocellulose. Appl. Environ. Microbiol. 2014, 80, 2062–2070. [Google Scholar] [CrossRef]
- Fackler, K.; Gradinger, C.; Schmutzer, M.; Tavzes, C.; Burgert, I.; Schwanninger, M.; Hinterstoisser, B.; Watanabe, T.; Messner, K. Biotechnological wood modification with selective white-rot fungi and its molecular mechanisms. Food Technol. Biotechnol. 2007, 45, 269–276. [Google Scholar]
- Pânzariu, A.E.; Măluţan, T.; Mangalagiu, I. The hydrolysis of cellulosic materials in ionic liquids. BioResources 2014, 9, 282–292. [Google Scholar] [CrossRef]
- Van Kuijk, S.J.A.; Sonnenberg, A.S.M.; Baars, J.J.P.; Hendriks, W.H.; del Río, J.C.; Rencoret, J.; Gutiérrez, A.; de Ruijter, N.C.A.; Cone, J.W. Chemical changes and increased degradability of wheat straw and oak wood chips treated with the white rot fungi Ceriporiopsis subvermispora and Lentinula edodes. Biomass Bioenergy 2017, 105, 381–391. [Google Scholar] [CrossRef]
- Hakala, T.K.; Hilden, K.; Maijala, P.; Olsson, C.; Hatakka, A. Differential regulation of manganese peroxidases and characterization of two variable MnP encoding genes in the white-rot fungus Physisporinus rivulosus. Appl. Microbiol. Biotechnol. 2006, 73, 839–849. [Google Scholar] [CrossRef] [PubMed]
- Hakala, T.K.; Lundell, T.; Galkin, S.; Maijala, P.; Kalkkinen, N.; Hatakka, A. Manganese peroxidases, laccases and oxalic acid from the selective white-rot fungus Physisporinus rivulosus grown on spruce wood chips. Enzym. Microb. Technol. 2005, 36, 461–468. [Google Scholar] [CrossRef]
- Aguiar, A.; de Souza-Cruz, P.B.; Ferraz, A. Oxalic acid, Fe3+-reduction activity and oxidative enzymes detected in culture extracts recovered from Pinus taeda wood chips biotreated by Ceriporiopsis subvermispora. Enzym. Microb. Technol. 2006, 38, 873–878. [Google Scholar] [CrossRef]
- Vicentim, M.P.; Ferraz, A. Enzyme production and chemical alterations of Eucalyptus grandis wood during biodegradation by Ceriporiopsis subvermispora in cultures supplemented with Mn2+, corn steep liquor and glucose. Enzym. Microb. Technol. 2007, 40, 645–652. [Google Scholar] [CrossRef]
- Kontro, J.; Maltari, R.; Mikkilä, J.; Kähkönen, M.; Mäkelä, M.R.; Hildén, K.; Nousiainen, P.; Sipilä, J. Applicability of recombinant laccases from the white-rot fungus Obba rivulosa for mediator-promoted oxidation of biorefinery lignin at low pH. Front. Bioeng. Biotechnol. 2020, 8, 604497. [Google Scholar] [CrossRef]
- Moilanen, U.; Kellock, M.; Várnai, A.; Andberg, M.; Viikari, L. Mechanisms of laccase-mediator treatments improving the enzymatic hydrolysis of pre-treated spruce. Biotechnol. Biofuels 2014, 7, 177. [Google Scholar] [CrossRef]
- Munk, L.; Sitarz, A.K.; Kalyani, D.C.; Mikkelsen, J.D.; Meyer, A.S. Can laccases catalyze bond cleavage in lignin? Biotechnol. Adv. 2015, 33, 13–24. [Google Scholar] [CrossRef]
- Mäkelä, M.R.; Hildén, K.S.; Kuuskeri, J. Fungal lignin-modifying peroxidases and H2O2-producing enzymes. In Encyclopedia of Mycology; Zaragoza, Ó., Casadevall, A., Eds.; Elsevier: Amsterdam, The Netherlands, 2021; pp. 247–259. [Google Scholar]
- Bissaro, B.; Rohr, A.K.; Muller, G.; Chylenski, P.; Skaugen, M.; Forsberg, Z.; Horn, S.J.; Vaaje-Kolstad, G.; Eijsink, V.G.H. Oxidative cleavage of polysaccharides by monocopper enzymes depends on H2O2. Nat. Chem. Biol. 2017, 13, 1123–1128. [Google Scholar] [CrossRef]
- Zhu, N.; Liu, J.; Yang, J.; Lin, Y.; Yang, Y.; Ji, L.; Li, M.; Yuan, H. Comparative analysis of the secretomes of Schizophyllum commune and other wood-decay basidiomycetes during solid-state fermentation reveals its unique lignocellulose-degrading enzyme system. Biotechnol. Biofuels 2016, 9, 42. [Google Scholar] [CrossRef]
- Ferraz, A.; Córdova, A.M.; Machuca, A. Wood biodegradation and enzyme production by Ceriporiopsis subvermispora during solid-state fermentation of Eucalyptus grandis. Enzym. Microb. Technol. 2003, 32, 59–65. [Google Scholar] [CrossRef]
- Langston, J.A.; Shaghasi, T.; Abbate, E.; Xu, F.; Vlasenko, E.; Sweeney, M.D. Oxidoreductive cellulose depolymerization by the enzymes cellobiose dehydrogenase and glycoside hydrolase 61. Appl. Environ. Microbiol. 2011, 77, 7007–7015. [Google Scholar] [CrossRef]
- Tan, T.C.; Kracher, D.; Gandini, R.; Sygmund, C.; Kittl, R.; Haltrich, D.; Hallberg, B.M.; Ludwig, R.; Divne, C. Structural basis for cellobiose dehydrogenase action during oxidative cellulose degradation. Nat. Commun. 2015, 6, 7542. [Google Scholar] [CrossRef]
- Patyshakuliyeva, A.; Post, H.; Zhou, M.; Jurak, E.; Heck, A.J.; Hilden, K.S.; Kabel, M.A.; Mäkelä, M.R.; Altelaar, M.A.; de Vries, R.P. Uncovering the abilities of Agaricus bisporus to degrade plant biomass throughout its life cycle. Environ. Microbiol. 2015, 17, 3098–3109. [Google Scholar] [CrossRef]
- Vogel, C.; Marcotte, E.M. Insights into the regulation of protein abundance from proteomic and transcriptomic analyses. Nat. Rev. Genet. 2012, 13, 227–232. [Google Scholar] [CrossRef]
- Daly, P.; Lopez, S.C.; Peng, M.; Lancefield, C.S.; Purvine, S.O.; Kim, Y.M.; Zink, E.M.; Dohnalkova, A.; Singan, V.R.; Lipzen, A.; et al. Dichomitus squalens partially tailors its molecular responses to the composition of solid wood. Environ. Microbiol. 2018, 20, 4141–4156. [Google Scholar] [CrossRef]
- Scheller, H.V.; Ulvskov, P. Hemicelluloses. Annu. Rev. Plant Biol. 2010, 61, 263–289. [Google Scholar] [CrossRef]
- Rytioja, J.; Hilden, K.; Yuzon, J.; Hatakka, A.; de Vries, R.P.; Mäkelä, M.R. Plant-polysaccharide-degrading enzymes from Basidiomycetes. Microbiol. Mol. Biol. Rev. 2014, 78, 614–649. [Google Scholar] [CrossRef]
- Blanchette, R.A. Delignification by wood-decay fungi. Annu. Rev. Phytopathol. 1991, 29, 381–398. [Google Scholar] [CrossRef]
- Casado Lopez, S.; Peng, M.; Issak, T.Y.; Daly, P.; de Vries, R.P.; Mäkelä, M.R. Induction of genes encoding plant cell wall-degrading carbohydrate-active enzymes by lignocellulose-derived monosaccharides and cellobiose in the white-rot fungus Dichomitus squalens. Appl. Environ. Microbiol. 2018, 84, e00403-18. [Google Scholar] [CrossRef]
- Casado Lopez, S.; Theelen, B.; Manserra, S.; Issak, T.Y.; Rytioja, J.; Mäkelä, M.R.; de Vries, R.P. Functional diversity in Dichomitus squalens monokaryons. IMA Fungus 2017, 8, 17–25. [Google Scholar] [CrossRef]
- Liu, T.; Li, H.; Ding, Y.; Qi, Y.; Gao, Y.; Song, A.; Shen, J.; Qiu, L. Genome-wide gene expression patterns in dikaryon of the basidiomycete fungus Pleurotus ostreatus. Braz. J. Microbiol. 2017, 48, 380–390. [Google Scholar] [CrossRef]
Protein Abundance (IP Values) | ||||||
---|---|---|---|---|---|---|
Time Point (Weeks) | ||||||
Protein ID | CAZy | Enzyme | Substrate/ Function | 2 | 4 | 8 |
790443 | AA3_3 | AOX | H2O2-supply | 408 | 132 | 144 |
641261 | CBM1-GH5_7 | MAN | galacto(gluco) mannan | 214 | 68 | 70 |
838746 | CBM1-GH10 | XLN | xylan | 166 | 26 | 14 |
724015 | CE16 | HAE | diverse | 110 | 50 | 32 |
731121 | GH7-CBM1 | CBHI | cellulose | 83 | 29 | 11 |
891614 | AA2 | MnP * | lignin | 59 | -- | 5 |
833133 | AA9-CBM1 | LPMO | diverse | 50 | 22 | 27 |
821398 | AA9 | LPMO | diverse | 46 | 15 | -- |
812963 | GH131 | EGL | cellulose | 43 | 16 | 15 |
851185 | CBM1-GH10 | XLN | xylan | 43 | -- | -- |
789567 | GH35 | LAC | diverse | 37 | 29 | 52 |
476379 | CBM1-GH6 | CBHII | cellulose | 37 | 6 | -- |
719765 | GH5_7 | MAN | galacto(gluco) mannan | 36 | 17 | 19 |
885712 | AA3_2 | GOX | H2O2-supply | 30 | 10 | 10 |
788967 | CBM1-GH5_5 | EGL | cellulose | 28 | 13 | 24 |
849432 | GH27 | AGL | galacto(gluco) mannan | 26 | 18 | 19 |
753990 | GH2 | MND | galacto(gluco) mannan | 25 | 18 | 30 |
749512 | CBM1-CE16 | HAE | diverse | 22 | -- | -- |
819531 | GH5_22 | BXL | xylan | 21 | 32 | 48 |
813927 | GH2 | MND | galacto(gluco) mannan | 21 | 14 | 29 |
664751 | AA8-AA3_1 | CDH | cellulose | 21 | 6 | 7 |
816606 | CE16 | HAE | diverse | 17 | -- | -- |
762191 | CE15 | GE | xylan | 16 | 13 | 12 |
784936 | GH3 | BGL | cellulose | 15 | 13 | 13 |
627233 | GH3 | BGL | cellulose | 15 | 10 | 22 |
Protein Abundance (IP Values) | ||||||
---|---|---|---|---|---|---|
Time Point (Weeks) | ||||||
Protein_ID | CAZy | Enzyme | Substrate/ Function | 2 | 4 | 8 |
80773 | AA3_3 | AOX | H2O2-supply | 739 | 163 | 266 |
105539 | AA2 | MnP | lignin | 263 | 242 | 1218 |
59733 | CBM1-GH10 | XLN | xylan | 176 | 60 | 19 |
49863 | AA2 | MnP | lignin | 133 | 40 | 12 |
94795 | CBM1-GH5_7 | MAN | galacto(gluco) mannan | 110 | 61 | 9 |
46564 | AA9 | LPMO | diverse | 92 | 59 | 31 |
136606 | GH7-CBM1 | CBHI | cellulose | 85 | 68 | 5 |
115721 | GH5_22 | BXL | xylan | 77 | 40 | 36 |
66688 | AA9-CBM1 | LPMO | diverse | 73 | 72 | 8 |
50686 | AA2 | MnP | lignin | 56 | 146 | 16 |
80500 | GH2 | MND | galacto(gluco) mannan | 46 | 21 | 18 |
97858 | CBM1-GH10 | XLN | xylan | 43 | 16 | -- |
84557 | AA3_2 | AAO | H2O2-supply | 42 | 38 | 47 |
84792 | AA8-AA3_1 | CDH | cellulose | 39 | 26 | 12 |
162360 | GH51 | ABF | diverse | 34 | 15 | 9 |
94398 | AA2 | MnP | lignin | 26 | 4 | -- |
116159 | AA3_2 | AAO | H2O2-supply | 25 | 6 | -- |
118322 | CE15 | GE | xylan | 24 | 18 | 39 |
147790 | GH5_7 | MAN | galacto(gluco) mannan | 23 | 15 | 14 |
118801 | AA1_1 | LCC | lignin | 23 | -- | -- |
85281 | GH27 | AGL | galacto(gluco) mannan | 22 | 13 | 16 |
117120 | GH3 | BGL | cellulose | 22 | 10 | 8 |
117436 | AA2 | MnP | lignin | 21 | 23 | 36 |
67561 | CBM1-GH10 | XLN | xylan | 20 | 5 | -- |
79557 | CBM1-GH5_5 | EGL | cellulose | 18 | 16 | 6 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Marinovíc, M.; Di Falco, M.; Aguilar Pontes, M.V.; Gorzsás, A.; Tsang, A.; de Vries, R.P.; Mäkelä, M.R.; Hildén, K. Comparative Analysis of Enzyme Production Patterns of Lignocellulose Degradation of Two White Rot Fungi: Obba rivulosa and Gelatoporia subvermispora. Biomolecules 2022, 12, 1017. https://doi.org/10.3390/biom12081017
Marinovíc M, Di Falco M, Aguilar Pontes MV, Gorzsás A, Tsang A, de Vries RP, Mäkelä MR, Hildén K. Comparative Analysis of Enzyme Production Patterns of Lignocellulose Degradation of Two White Rot Fungi: Obba rivulosa and Gelatoporia subvermispora. Biomolecules. 2022; 12(8):1017. https://doi.org/10.3390/biom12081017
Chicago/Turabian StyleMarinovíc, Mila, Marcos Di Falco, Maria Victoria Aguilar Pontes, András Gorzsás, Adrian Tsang, Ronald P. de Vries, Miia R. Mäkelä, and Kristiina Hildén. 2022. "Comparative Analysis of Enzyme Production Patterns of Lignocellulose Degradation of Two White Rot Fungi: Obba rivulosa and Gelatoporia subvermispora" Biomolecules 12, no. 8: 1017. https://doi.org/10.3390/biom12081017
APA StyleMarinovíc, M., Di Falco, M., Aguilar Pontes, M. V., Gorzsás, A., Tsang, A., de Vries, R. P., Mäkelä, M. R., & Hildén, K. (2022). Comparative Analysis of Enzyme Production Patterns of Lignocellulose Degradation of Two White Rot Fungi: Obba rivulosa and Gelatoporia subvermispora. Biomolecules, 12(8), 1017. https://doi.org/10.3390/biom12081017