Regulation of Protein Transport Pathways by the Cytosolic Hsp90s
Abstract
:1. Introduction
2. Hsp90 and General Principles of Protein Transport
3. Hsp90 Input with Mitochondria and Chloroplast Protein Import
4. Hsp90 and Unconventional Protein Secretion
5. Influence of Hsp90 in Endocytic Vesicle Transport
6. Modulation of Exocytic Intracellular Transport by Hsp90
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Lindquist, S.; Craig, E.A. The Heat-Shock Proteins. Annu. Rev. Genet. 1988, 22, 631–677. [Google Scholar] [CrossRef] [PubMed]
- Tissiéres, A.; Mitchell, H.K.; Tracy, U.M. Protein Synthesis in Salivary Glands of Drosophila Melanogaster: Relation to Chromosome Puffs. J. Mol. Biol. 1974, 84, 389–398. [Google Scholar] [CrossRef]
- Large, A.T.; Goldberg, M.D.; Lund, P.A. Chaperones and Protein Folding in the Archaea. Biochem. Soc. Trans. 2009, 37, 46–51. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Johnson, J.L. Evolution and Function of Diverse Hsp90 Homologs and Cochaperone Proteins. Biochim. Biophys. Acta BBA Mol. Cell Res. 2012, 1823, 607–613. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, B.; Zhong, D.; Monteiro, A. Comparative Genomics and Evolution of the HSP90 Family of Genes across All Kingdoms of Organisms. BMC Genom. 2006, 7, 156. [Google Scholar] [CrossRef] [Green Version]
- Eletto, D.; Dersh, D.; Argon, Y. GRP94 in ER Quality Control and Stress Responses. Semin. Cell Dev. Biol. 2010, 21, 479–485. [Google Scholar] [CrossRef] [Green Version]
- Altieri, D.C.; Stein, G.S.; Lian, J.B.; Languino, L.R. TRAP-1, the Mitochondrial Hsp90. Biochim. Biophys. Acta BBA Mol. Cell Res. 2012, 1823, 767–773. [Google Scholar] [CrossRef] [Green Version]
- Jiang, T.; Mu, B.; Zhao, R. Plastid Chaperone HSP90C Guides Precursor Proteins to the SEC Translocase for Thylakoid Transport. J. Exp. Bot. 2020, 71, 7073–7087. [Google Scholar] [CrossRef]
- Dougherty, J.J.; Puri, R.K.; Toft, D.O. Polypeptide Components of Two 8 S Forms of Chicken Oviduct Progesterone Receptor. J. Biol. Chem. 1984, 259, 8004–8009. [Google Scholar] [CrossRef]
- Brugge, J.S.; Erikson, E.; Erikson, R.L. The Specific Interaction of the Rous Sarcoma Virus Transforming Protein, Pp60src, with Two Cellular Proteins. Cell 1981, 25, 363–372. [Google Scholar] [CrossRef]
- Franzosa, E.A.; Albanèse, V.; Frydman, J.; Xia, Y.; McClellan, A.J. Heterozygous Yeast Deletion Collection Screens Reveal Essential Targets of Hsp90. PLoS ONE 2011, 6, e28211. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Millson, S.H.; Truman, A.W.; King, V.; Prodromou, C.; Pearl, L.H.; Piper, P.W. A Two-Hybrid Screen of the Yeast Proteome for Hsp90 Interactors Uncovers a Novel Hsp90 Chaperone Requirement in the Activity of a Stress-Activated Mitogen-Activated Protein Kinase, Slt2p (Mpk1p). Eukaryot. Cell 2005, 4, 849–860. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- McClellan, A.J.; Xia, Y.; Deutschbauer, A.M.; Davis, R.W.; Gerstein, M.; Frydman, J. Diverse Cellular Functions of the Hsp90 Molecular Chaperone Uncovered Using Systems Approaches. Cell 2007, 131, 121–135. [Google Scholar] [CrossRef] [Green Version]
- Gerges, N.Z. Independent Functions of Hsp90 in Neurotransmitter Release and in the Continuous Synaptic Cycling of AMPA Receptors. J. Neurosci. 2004, 24, 4758–4766. [Google Scholar] [CrossRef] [PubMed]
- Tran, M.T.; Okusha, Y.; Feng, Y.; Sogawa, C.; Eguchi, T.; Kadowaki, T.; Sakai, E.; Tsukuba, T.; Okamoto, K. A Novel Role of HSP90 in Regulating Osteoclastogenesis by Abrogating Rab11b-Driven Transport. Biochim. Biophys. Acta BBA Mol. Cell Res. 2021, 1868, 119096. [Google Scholar] [CrossRef]
- Montanari, P.; Bozza, G.; Capecchi, B.; Caproni, E.; Barrile, R.; Norais, N.; Capitani, M.; Sallese, M.; Cecchini, P.; Ciucchi, L.; et al. Human Heat Shock Protein (Hsp) 90 Interferes with Neisseria Meningitidis Adhesin A (NadA)-mediated Adhesion and Invasion. Cell. Microbiol. 2012, 14, 368–385. [Google Scholar] [CrossRef]
- Zhang, M.; Kenny, S.J.; Ge, L.; Xu, K.; Schekman, R. Translocation of Interleukin-1β into a Vesicle Intermediate in Autophagy-Mediated Secretion. Elife 2015, 4, e11205. [Google Scholar] [CrossRef]
- Tsaytler, P.A.; Krijgsveld, J.; Goerdayal, S.S.; Rüdiger, S.; Egmond, M.R. Novel Hsp90 Partners Discovered Using Complementary Proteomic Approaches. Cell Stress Chaperones 2009, 14, 629. [Google Scholar] [CrossRef] [Green Version]
- Zhao, R.; Davey, M.; Hsu, Y.-C.; Kaplanek, P.; Tong, A.; Parsons, A.B.; Krogan, N.; Cagney, G.; Mai, D.; Greenblatt, J.; et al. Navigating the Chaperone Network: An Integrative Map of Physical and Genetic Interactions Mediated by the Hsp90 Chaperone. Cell 2005, 120, 715–727. [Google Scholar] [CrossRef] [Green Version]
- Safran, M.; Rosen, N.; Twik, M.; BarShir, R.; Stein, T.I.; Dahary, D.; Fishilevich, S.; Lancet, D. The GeneCards Suite. In Practical Guide to Life Science Databases; Springer: Singapore, 2022; pp. 27–56. [Google Scholar] [CrossRef]
- Shannon, P.; Markiel, A.; Ozier, O.; Baliga, N.S.; Wang, J.T.; Ramage, D.; Amin, N.; Schwikowski, B.; Ideker, T. Cytoscape: A Software Environment for Integrated Models of Biomolecular Interaction Networks. Genome Res. 2003, 13, 2498–2504. [Google Scholar] [CrossRef]
- Tokarev, A.A.; Alfonso, A.; Segev, N. Overview of Intracellular Compartments and Trafficking Pathways. In Trafficking Inside Cells, Pathways, Mechanisms and Regulation; Springer: New York, NY, USA, 2009; pp. 3–14. [Google Scholar] [CrossRef]
- Kumari, S.; MG, S.; Mayor, S. Endocytosis Unplugged: Multiple Ways to Enter the Cell. Cell Res. 2010, 20, 256–275. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Scott, C.C.; Vacca, F.; Gruenberg, J. Endosome Maturation, Transport and Functions. Semin. Cell Dev. Biol. 2014, 31, 2–10. [Google Scholar] [CrossRef] [PubMed]
- Sorkin, A.; von Zastrow, M. Endocytosis and Signalling: Intertwining Molecular Networks. Nat. Rev. Mol. Cell Biol. 2009, 10, 609–622. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Elkin, S.R.; Lakoduk, A.M.; Schmid, S.L. Endocytic Pathways and Endosomal Trafficking: A Primer. Wien. Med. Wochenschr. 2016, 166, 196–204. [Google Scholar] [CrossRef] [Green Version]
- Naslavsky, N.; Caplan, S. The Enigmatic Endosome—Sorting the Ins and Outs of Endocytic Trafficking. J. Cell Sci. 2018, 131, jcs216499. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Plutner, H.; Cox, A.D.; Pind, S.; Khosravi-Far, R.; Bourne, J.R.; Schwaninger, R.; Der, C.J.; Balch, W.E. Rab1b Regulates Vesicular Transport between the Endoplasmic Reticulum and Successive Golgi Compartments. J. Cell Biol. 1991, 115, 31–43. [Google Scholar] [CrossRef] [Green Version]
- Allan, B.B.; Moyer, B.D.; Balch, W.E. Rab1 Recruitment of P115 into a Cis-SNARE Complex: Programming Budding COPII Vesicles for Fusion. Science 2000, 289, 444–448. [Google Scholar] [CrossRef]
- Gurkan, C.; Lapp, H.; Alory, C.; Su, A.I.; Hogenesch, J.B.; Balch, W.E. Large-Scale Profiling of Rab GTPase Trafficking Networks: The Membrome. Mol. Biol. Cell 2005, 16, 3847–3864. [Google Scholar] [CrossRef] [Green Version]
- Lotz, G.P.; Brychzy, A.; Heinz, S.; Obermann, W.M.J. A Novel HSP90 Chaperone Complex Regulates Intracellular Vesicle Transport. J. Cell Sci. 2008, 121, 717–723. [Google Scholar] [CrossRef] [Green Version]
- Wu, Y.; Ding, Y.; Zheng, X.; Liao, K. The Molecular Chaperone Hsp90 Maintains Golgi Organization and Vesicular Trafficking by Regulating Microtubule Stability. J. Mol. Cell Biol. 2019, 12, 448–461. [Google Scholar] [CrossRef]
- Ghosh, S.; Shinogle, H.E.; Garg, G.; Vielhauer, G.A.; Holzbeierlein, J.M.; Dobrowsky, R.T.; Blagg, B.S.J. Hsp90 C-Terminal Inhibitors Exhibit Antimigratory Activity by Disrupting the Hsp90α/Aha1 Complex in PC3-MM2 Cells. ACS Chem. Biol. 2015, 10, 577–590. [Google Scholar] [CrossRef] [PubMed]
- Sakisaka, T.; Meerlo, T.; Matteson, J.; Plutner, H.; Balch, W.E. Rab-αGDI Activity Is Regulated by a Hsp90 Chaperone Complex. EMBO J. 2002, 21, 6125–6135. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, R.H.C.; Wislet-Gendebien, S.; Samuel, F.; Visanji, N.P.; Zhang, G.; Marsilio, D.; Langman, T.; Fraser, P.E.; Tandon, A. α-Synuclein Membrane Association Is Regulated by the Rab3a Recycling Machinery and Presynaptic Activity. J. Biol. Chem. 2013, 288, 7438–7449. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bozza, G.; Capitani, M.; Montanari, P.; Benucci, B.; Biancucci, M.; Nardi-Dei, V.; Caproni, E.; Barrile, R.; Picciani, B.; Savino, S.; et al. Role of ARF6, Rab11 and External Hsp90 in the Trafficking and Recycling of Recombinant-Soluble Neisseria Meningitidis Adhesin A (RNadA) in Human Epithelial Cells. PLoS ONE 2014, 9, e110047. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cortese, K.; Howes, M.T.; Lundmark, R.; Tagliatti, E.; Bagnato, P.; Petrelli, A.; Bono, M.; McMahon, H.T.; Parton, R.G.; Tacchetti, C. The HSP90 Inhibitor Geldanamycin Perturbs Endosomal Structure and Drives Recycling ErbB2 and Transferrin to Modified MVBs/Lysosomal Compartments. Mol. Biol. Cell 2013, 24, 129–144. [Google Scholar] [CrossRef]
- Lauwers, E.; Wang, Y.-C.; Gallardo, R.; der Kant, R.V.; Michiels, E.; Swerts, J.; Baatsen, P.; Zaiter, S.S.; McAlpine, S.R.; Gounko, N.V.; et al. Hsp90 Mediates Membrane Deformation and Exosome Release. Mol. Cell 2018, 71, 689–702.e9. [Google Scholar] [CrossRef] [Green Version]
- Barlowe, C.K.; Miller, E.A. Secretory Protein Biogenesis and Traffic in the Early Secretory Pathway. Genetics 2013, 193, 383–410. [Google Scholar] [CrossRef] [Green Version]
- Schwarz, D.S.; Blower, M.D. The Endoplasmic Reticulum: Structure, Function and Response to Cellular Signaling. Cell. Mol. Life Sci. 2016, 73, 79–94. [Google Scholar] [CrossRef] [Green Version]
- Mogre, S.S.; Brown, A.I.; Koslover, E.F. Getting around the Cell: Physical Transport in the Intracellular World. Phys. Biol. 2020, 17, 061003. [Google Scholar] [CrossRef]
- Schleiff, E.; Becker, T. Common Ground for Protein Translocation: Access Control for Mitochondria and Chloroplasts. Nat. Rev. Mol. Cell Biol. 2011, 12, 48–59. [Google Scholar] [CrossRef]
- Young, J.C.; Hoogenraad, N.J.; Hartl, F.U. Molecular Chaperones Hsp90 and Hsp70 Deliver Preproteins to the Mitochondrial Import Receptor Tom70. Cell 2003, 112, 41–50. [Google Scholar] [CrossRef] [Green Version]
- Qbadou, S.; Becker, T.; Mirus, O.; Tews, I.; Soll, J.; Schleiff, E. The Molecular Chaperone Hsp90 Delivers Precursor Proteins to the Chloroplast Import Receptor Toc64. EMBO J. 2006, 25, 1836–1847. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fan, A.C.Y.; Bhangoo, M.K.; Young, J.C. Hsp90 Functions in the Targeting and Outer Membrane Translocation Steps of Tom70-Mediated Mitochondrial Import*. J. Biol. Chem. 2006, 281, 33313–33324. [Google Scholar] [CrossRef] [Green Version]
- Wu, Y.; Sha, B. Crystal Structure of Yeast Mitochondrial Outer Membrane Translocon Member Tom70p. Nat. Struct. Mol. Biol. 2006, 13, 589–593. [Google Scholar] [CrossRef] [PubMed]
- Schlegel, T.; Mirus, O.; von Haeseler, A.; Schleiff, E. The Tetratricopeptide Repeats of Receptors Involved in Protein Translocation across Membranes. Mol. Biol. Evol. 2007, 24, 2763–2774. [Google Scholar] [CrossRef]
- Inoue, H.; Li, M.; Schnell, D.J. An Essential Role for Chloroplast Heat Shock Protein 90 (Hsp90C) in Protein Import into Chloroplasts. Proc. Natl. Acad. Sci. USA 2013, 110, 3173–3178. [Google Scholar] [CrossRef] [Green Version]
- Jiang, T.; Oh, E.S.; Bonea, D.; Zhao, R. HSP90C Interacts with PsbO1 and Facilitates Its Thylakoid Distribution from Chloroplast Stroma in Arabidopsis. PLoS ONE 2017, 12, e0190168. [Google Scholar] [CrossRef] [Green Version]
- Flores-Pérez, Ú.; Jarvis, P. Molecular Chaperone Involvement in Chloroplast Protein Import. Biochim. Biophys. Acta BBA Mol. Cell Res. 2013, 1833, 332–340. [Google Scholar] [CrossRef] [Green Version]
- Zhang, M.; Liu, L.; Lin, X.; Wang, Y.; Li, Y.; Guo, Q.; Li, S.; Sun, Y.; Tao, X.; Zhang, D.; et al. A Translocation Pathway for Vesicle-Mediated Unconventional Protein Secretion. Cell 2020, 181, 637–652.e15. [Google Scholar] [CrossRef]
- Wong, D.S.; Jay, D.G. Chapter Six Emerging Roles of Extracellular Hsp90 in Cancer. Adv. Cancer Res. 2016, 129, 141–163. [Google Scholar] [CrossRef]
- Seclì, L.; Fusella, F.; Avalle, L.; Brancaccio, M. The Dark-Side of the Outside: How Extracellular Heat Shock Proteins Promote Cancer. Cell. Mol. Life Sci. 2021, 78, 4069–4083. [Google Scholar] [CrossRef] [PubMed]
- Rothman, J.E. Mechanisms of Intracellular Protein Transport. Nature 1994, 372, 55–63. [Google Scholar] [CrossRef] [PubMed]
- Palade, G. Intracellular Aspects of the Process of Protein Synthesis. Science 1975, 189, 347–358. [Google Scholar] [CrossRef] [PubMed]
- Balmer, E.A.; Faso, C. The Road Less Traveled? Unconventional Protein Secretion at Parasite–Host Interfaces. Front. Cell Dev. Biol. 2021, 9, 662711. [Google Scholar] [CrossRef] [PubMed]
- Kaushik, S.; Cuervo, A.M. The Coming of Age of Chaperone-Mediated Autophagy. Nat. Rev. Mol. Cell Biol. 2018, 19, 365–381. [Google Scholar] [CrossRef]
- Agarraberes, F.A.; Dice, J.F. A Molecular Chaperone Complex at the Lysosomal Membrane Is Required for Protein Translocation. J. Cell Sci. 2001, 114, 2491–2499. [Google Scholar] [CrossRef]
- Bandyopadhyay, U.; Kaushik, S.; Varticovski, L.; Cuervo, A.M. The Chaperone-Mediated Autophagy Receptor Organizes in Dynamic Protein Complexes at the Lysosomal Membrane. Mol. Cell. Biol. 2008, 28, 5747–5763. [Google Scholar] [CrossRef] [Green Version]
- Santos, T.G.; Martins, V.R.; Hajj, G.N.M. Unconventional Secretion of Heat Shock Proteins in Cancer. Int. J. Mol. Sci. 2017, 18, 946. [Google Scholar] [CrossRef] [Green Version]
- Eustace, B.K.; Sakurai, T.; Stewart, J.K.; Yimlamai, D.; Unger, C.; Zehetmeier, C.; Lain, B.; Torella, C.; Henning, S.W.; Beste, G.; et al. Functional Proteomic Screens Reveal an Essential Extracellular Role for Hsp90α in Cancer Cell Invasiveness. Nat. Cell Biol. 2004, 6, 507–514. [Google Scholar] [CrossRef]
- Li, W.; Li, Y.; Guan, S.; Fan, J.; Cheng, C.; Bright, A.M.; Chinn, C.; Chen, M.; Woodley, D.T. Extracellular Heat Shock Protein-90α: Linking Hypoxia to Skin Cell Motility and Wound Healing. EMBO J. 2007, 26, 1221–1233. [Google Scholar] [CrossRef]
- Tsutsumi, S.; Scroggins, B.; Koga, F.; Lee, M.-J.; Trepel, J.; Felts, S.; Carreras, C.; Neckers, L. A Small Molecule Cell-Impermeant Hsp90 Antagonist Inhibits Tumor Cell Motility and Invasion. Oncogene 2008, 27, 2478–2487. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hightower, L.E.; Guidon, P.T. Selective Release from Cultured Mammalian Cells of Heat-shock (Stress) Proteins That Resemble Glia-axon Transfer Proteins. J. Cell. Physiol. 1989, 138, 257–266. [Google Scholar] [CrossRef] [PubMed]
- Liao, D.-F.; Jin, Z.-G.; Baas, A.S.; Daum, G.; Gygi, S.P.; Aebersold, R.; Berk, B.C. Purification and Identification of Secreted Oxidative Stress-Induced Factors from Vascular Smooth Muscle Cells. J. Biol. Chem. 2000, 275, 189–196. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Clayton, A.; Turkes, A.; Navabi, H.; Mason, M.D.; Tabi, Z. Induction of Heat Shock Proteins in B-Cell Exosomes. J. Cell Sci. 2005, 118, 3631–3638. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Woodley, D.T.; Fan, J.; Cheng, C.-F.; Li, Y.; Chen, M.; Bu, G.; Li, W. Participation of the Lipoprotein Receptor LRP1 in Hypoxia-HSP90α Autocrine Signaling to Promote Keratinocyte Migration. J. Cell Sci. 2009, 122, 1495–1498. [Google Scholar] [CrossRef] [Green Version]
- Hung, C.-Y.; Tsai, M.-C.; Wu, Y.-P.; Wang, R.Y.L. Identification of Heat-Shock Protein 90 Beta in Japanese Encephalitis Virus-Induced Secretion Proteins. J. Gen. Virol. 2011, 92, 2803–2809. [Google Scholar] [CrossRef]
- Cheng, C.-F.; Sahu, D.; Tsen, F.; Zhao, Z.; Fan, J.; Kim, R.; Wang, X.; O’Brien, K.; Li, Y.; Kuang, Y.; et al. A Fragment of Secreted Hsp90α Carries Properties That Enable It to Accelerate Effectively Both Acute and Diabetic Wound Healing in Mice. J. Clin. Investig. 2011, 121, 4348–4361. [Google Scholar] [CrossRef] [Green Version]
- Tsutsumi, S.; Neckers, L. Extracellular Heat Shock Protein 90: A Role for a Molecular Chaperone in Cell Motility and Cancer Metastasis. Cancer Sci. 2007, 98, 1536–1539. [Google Scholar] [CrossRef]
- Chakraborty, A.; Edkins, A.L. HSP90 as a Regulator of Extracellular Matrix Dynamics. Biochem. Soc. Trans. 2021, 49, 2611–2625. [Google Scholar] [CrossRef]
- Sarkar, A.A.; Zohn, I.E. Hectd1 Regulates Intracellular Localization and Secretion of Hsp90 to Control Cellular Behavior of the Cranial Mesenchyme. J. Cell Biol. 2012, 196, 789–800. [Google Scholar] [CrossRef]
- Chen, C.Y.; Balch, W.E. The Hsp90 Chaperone Complex Regulates GDI-Dependent Rab Recycling. Mol. Biol. Cell 2006, 17, 3494–3507. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sasaki, T.; Takai, Y. [9] Purification and Properties of Bovine Rab-GDP Dissociation Inhibitor. Methods Enzymol. 1995, 257, 70–79. [Google Scholar] [CrossRef]
- Nishimura, N.; Goji, J.; Nakamura, H.; Orita, S.; Takai, Y.; Sano, K. Cloning of a Brain-Type Isoform of Human Rab GDI and Its Expression in Human Neuroblastoma Cell Lines and Tumor Specimens. Cancer Res. 1995, 55, 5445–5450. [Google Scholar] [PubMed]
- Ono, T.; Nakashima, T. Recent Advances in Osteoclast Biology. Histochem. Cell Biol. 2018, 149, 325–341. [Google Scholar] [CrossRef] [PubMed]
- Raja, S.M.; Desale, S.S.; Mohapatra, B.; Luan, H.; Soni, K.; Zhang, J.; Storck, M.A.; Feng, D.; Bielecki, T.A.; Band, V.; et al. Marked Enhancement of Lysosomal Targeting and Efficacy of ErbB2-Targeted Drug Delivery by HSP90 Inhibition. Oncotarget 2016, 7, 10522–10535. [Google Scholar] [CrossRef] [Green Version]
- Matsui, T.; Itoh, T.; Fukuda, M. Small GTPase Rab12 Regulates Constitutive Degradation of Transferrin Receptor. Traffic 2011, 12, 1432–1443. [Google Scholar] [CrossRef]
- Liu, J.; Zhang, J.-P.; Shi, M.; Quinn, T.; Bradner, J.; Beyer, R.; Chen, S.; Zhang, J. Rab11a and HSP90 Regulate Recycling of Extracellular α-Synuclein. J. Neurosci. 2009, 29, 1480–1485. [Google Scholar] [CrossRef] [Green Version]
- Luo, D.; Bu, Y.; Ma, J.; Rajput, S.; He, Y.; Cai, G.; Liao, D.-F.; Cao, D. Heat Shock Protein 90-α Mediates Aldo-Keto Reductase 1B10 (AKR1B10) Protein Secretion through Secretory Lysosomes. J. Biol. Chem. 2013, 288, 36733–36740. [Google Scholar] [CrossRef] [Green Version]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mankovich, A.G.; Freeman, B.C. Regulation of Protein Transport Pathways by the Cytosolic Hsp90s. Biomolecules 2022, 12, 1077. https://doi.org/10.3390/biom12081077
Mankovich AG, Freeman BC. Regulation of Protein Transport Pathways by the Cytosolic Hsp90s. Biomolecules. 2022; 12(8):1077. https://doi.org/10.3390/biom12081077
Chicago/Turabian StyleMankovich, Anna G., and Brian C. Freeman. 2022. "Regulation of Protein Transport Pathways by the Cytosolic Hsp90s" Biomolecules 12, no. 8: 1077. https://doi.org/10.3390/biom12081077
APA StyleMankovich, A. G., & Freeman, B. C. (2022). Regulation of Protein Transport Pathways by the Cytosolic Hsp90s. Biomolecules, 12(8), 1077. https://doi.org/10.3390/biom12081077