Design, Synthesis and Pharmacological Evaluation of Novel Conformationally Restricted N-arylpiperazine Derivatives Characterized as D2/D3 Receptor Ligands, Candidates for the Treatment of Neurodegenerative Diseases
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemistry
2.1.1. General Procedure for the Synthesis of 4-Nitrobenzyl-phenylpiperazine Intermediates 8a–c
1-(4-Nitrobenzyl)-4-phenylpiperazine (8a)
1-(4-Nitrobenzyl)-4-phenylpiperazine (8b)
1-(4-Nitrobenzyl)-4-phenylpiperazine (8c)
2.1.2. General Procedure for the Synthesis of Key Intermediates 4-((4-Phenylpiperazin-1-yl)methyl)anilines (6a–c)
4-((4-Phenylpiperazin-1-yl)methyl)aniline (6a)
4-((4-Phenylpiperazin-1-yl)methyl)aniline (6b)
4-((4-Phenylpiperazin-1-yl)methyl)aniline (6c)
2.1.3. General Procedure for the Synthesis of Potassium Methylenedioxybenzenesulfonates (12a–b)
Benzo [d] [1,3] Dioxole-5-potassium Sulfonate (12a)
6-Methylbenzo [d] [1,3] Dioxole-5-potassium Sulfonate (12b)
2.1.4. General Procedure for the Synthesis of Methylenedioxy-Benzenesulfonyl Chlorides (7a–b)
Benzo[d] [1,3] Dioxole-5-sulfonyl Chloride (7a)
6-Methylbenzo [d] [1,3] Dioxole-5-sulfonyl Chloride (7b)
2.1.5. General Procedure for the Synthesis of 1,3-Benzodioxolyl-Sulfonamide N-arylpiperazine Derivatives 5a–f
6-Methyl-N-(4-((4-phenylpiperazin-1-yl)methyl)phenyl) Benzo [d] [1,3] Dioxole-5-sulfonamide (5a)
N-(4-((4-(2-Methoxyphenyl)piperazin-1-yl)methyl)phenyl)-6-methylbenzo [d] [1,3] Dioxole-5-sulfonamide (5b)
N-(4-((4-(2,3-Dichlorophenyl)piperazin-1-yl)methyl)phenyl)-6-methylbenzo [d] [1,3] Dioxole-5-sulfonamide (5c)
N-(4-((4-Phenylpiperazin-1-yl) Methyl) Phenyl) Benzo [d] [1,3] Dioxole-5-Sulfonamide (5d)
N-(4-((4-(2-Methoxyphenyl)piperazin-1-yl)methyl)phenyl) Benzo [d] [1,3] Dioxole-5-sulfonamide (5e)
N-(4-((4-(2,3-Dichlorophenyl)piperazin-1-yl)methyl)phenyl) Benzo [d] [1,3] Dioxole-5-sulfonamide (5f)
2.2. Molecular Modeling
2.3. Binding and GTP-Shift
3. Results and Discussion
3.1. Chemistry
3.2. Binding Affinity, Intrinsic Energy and Molecular Modeling Studies
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Martel, J.C.; McArthur, S.G. Dopamine receptor rubtypes, physiology and pharmacology: New ligands and concepts in schizophrenia. Front. Pharmacol. 2020, 11, 1003. [Google Scholar] [CrossRef] [PubMed]
- Iversen, S.D.; Iversen, L.L. Dopamine: 50 years in perspective. Trends Neurosci. Educ. 2007, 30, 188–193. [Google Scholar] [CrossRef]
- Klein, M.O.; Battagello, D.S.; Cardoso, A.R.; Hauser, D.N.; Bittencourt, J.C.; Correa, R.G. Dopamine: Functions, signaling, and sssociation with neurological diseases. Cell Mol. Neurobiol. 2019, 39, 31–59. [Google Scholar] [CrossRef] [PubMed]
- Blandini, F.; Armenteiro, M. Dopamine receptor agonists for Parkinson’s disease. Expert Opin. Investig. Drugs 2014, 23, 387–410. [Google Scholar] [CrossRef] [PubMed]
- Latif, S.; Jahangeer, M.; Razia, D.M.; Ashiq, M.; Ghaffar, A.; Akram, M.; El Allam, A.; Bouyahya, A.; Garipova, L.; Ali Shariati, M.; et al. Dopamine in Parkinson’s diseases. Clin. Chim. Acta 2021, 522, 114–126. [Google Scholar] [CrossRef] [PubMed]
- Iarkov, A.; Barreto, G.E.; Grizzell, J.A.; Echeverria, V. Strategies for the treatment of Parkinson’s disease: Beyond dopamine. Front. Aging Neurosci. 2020, 12, 4. [Google Scholar] [CrossRef] [PubMed]
- Volkow, N.D.; Michaelides, M.A.; Baler, R. The neuroscience of drug reward and addiction. Physiol. Rev. 2019, 99, 2115–2140. [Google Scholar] [CrossRef] [PubMed]
- Wise, R.A.; Robble, M.A. Dopamine and addiction. Annu. Rev. Psychol. 2020, 71, 79–106. [Google Scholar] [CrossRef] [PubMed]
- Bentzley, B.S.; Han, S.S.; Neuner, S.; Humphreys, K.; Kampman, K.M.; Halpern, C.H. Comparison of treatments for cocaine use disorder among adults a systematic review and meta-analysis. JAMA Netw. Open 2021, 4, e218049. [Google Scholar] [CrossRef]
- Liu, Y.; McNally, G.P. Dopamine and relapse to drug seeking. J. Neurochem. 2021, 157, 1572–1584. [Google Scholar] [CrossRef] [PubMed]
- McCutcheon, R.A.; Abi-Dargham, A.; Howes, O.D. Schizophrenia, dopamine and the striatum: From biology to symptoms. Trends Neurosci. 2019, 42, 205–220. [Google Scholar] [CrossRef] [PubMed]
- Molitch, M.E. Dopamine agonists and antipsychotics. Eur. J. Endocrinol. 2020, 183, C11–C13. [Google Scholar] [CrossRef] [PubMed]
- Zeng, C.; Zhang, M.; Asico, L.D.; Eisner, G.M.; Jose, P.A. The dopaminergic system in hypertension. Clin. Sci. 2007, 112, 583–597. [Google Scholar] [CrossRef] [PubMed]
- Zeng, C.; Jose, P.A. Dopamine receptors: Important antihypertensive counterbalance against hypertensive factors. Hypertension 2011, 57, 11–17. [Google Scholar] [CrossRef]
- Belujon, P.; Grace, A.A. Dopamine system dysregulation in major depressive disorders. Int. J. Neuropsychopharmacol. 2017, 20, 1036–1046. [Google Scholar] [CrossRef]
- Butini, S.; Nikolic, K.; Kassel, S.; Brückmann, H.; Filipic, S.; Agbaba, D.; Gemma, S.; Brogi, S.; Brindisi, M.; Campiani, G.; et al. Polypharmacology of dopamine receptor ligands. Prog. Neurobiol. 2015, 142, 68–103. [Google Scholar] [CrossRef] [PubMed]
- Moritz, A.E.; Free, R.B.; Sibley, D.R. Advances and challenges in the search for D2 and D3 dopamine receptor-selective compounds. Cell Signal. 2019, 41, 75–81. [Google Scholar] [CrossRef] [PubMed]
- Overs, B.J.; Lenroot, R.K.; Roberts, G.; Green, M.J.; Toma, C.; Hadzi-Pavlovic, D.; Pierce, K.D.; Schofield, P.R.; Mitchell, P.B.; Fullerton, J.M. Cortical mediation of relationship between dopamine receptor D2 and cognition is absent in youth at risk of bipolar disorder. Psychiatry Res. Neuroimaging 2021, 309, 111258. [Google Scholar] [CrossRef]
- Peprah, K.; Zhu, X.Y.; Eyunni, S.V.K.; Setola, V.; Roth, B.L.; Ablordeppey, S.Y. Multi-receptor drug design: Haloperidol as a scaffold for the design and synthesis of atypical antipsychotics agents. Bioorg. Med. Chem. 2012, 20, 1291–1297. [Google Scholar] [CrossRef] [PubMed]
- Schwalbe, T.; Kaindl, J.; Hübner, H.; Gmeiner, P. Potent haloperidol derivatives covalently binding to the dopamine D2 receptor. Bioorg. Med. Chem. 2017, 25, 5084–5094. [Google Scholar] [CrossRef] [PubMed]
- de Bartolomeis, A.; Tomasetti, C.; Iasevoli, F. Update of mechanism of action of aripiprazole: Translational insights into antipsychotic strategies beyond dopamine receptor antagonism. CNS Drugs 2015, 29, 773–799. [Google Scholar] [CrossRef]
- Preda, A.; Shapiro, B.B. A safety evaluation of aripiprazole in the treatment of schizophrenia. Expert Opin. Drug Saf. 2020, 19, 1529–1538. [Google Scholar] [CrossRef] [PubMed]
- Casey, A.B.; Canal, C.E. Classics in chemical neuroscience: Aripiprazole. ACS Chem. Neurosci. 2017, 8, 1135–1146. [Google Scholar] [CrossRef] [PubMed]
- Cuomo, A.; Crescenzi, B.B.; Goracci, A.; Bolognesi, S.; Giordano, N.; Rossi, R.; Facchi, E.; Neal, S.M.; Fagiolini, A. Drug safety evaluation of aripiprazole in bipolar disorder. Expert Opin. Drug Saf. 2019, 18, 455–463. [Google Scholar] [CrossRef]
- Batinic, B.; Ristic, I.; Zugic, M.; Baldwin, D.S. Treatment of symptom clusters in schizophrenia, bipolar disorder and major depressive disorder with the dopamine D3/D2 preferring partial agonist cariprazine. Front. Psychiatry 2021, 12, 784370. [Google Scholar] [CrossRef] [PubMed]
- Laszlovszky, I.; Barabássy, A.; Németh, G. Cariprazine, a broad-spectrum antipsychotic for the treatment of schizophrenia: Pharmacology, efficacy, and safety. Adv. Ther. 2021, 38, 3652–3673. [Google Scholar] [CrossRef]
- Stemp, G.; Ashmeade, T.; Branch, C.L.; Hadley, M.S.; Hunter, A.J.; Johnson, C.N.; Nash, D.J.; Thewilis, K.M.; Vong, A.K.K.; Austin, N.E.; et al. Design and synthesis of trans-N-[4-[2-(6-cyano-1,2,3,4-tetrahydroisoquinolin-2-yl)ethyl]cyclohexyl]-4-quinolinecarboxamide (SB-277011): A potent and selective dopamine D3 receptor antagonist with high oral bioavailability and CNS penetration in the rat. J. Med. Chem. 2000, 43, 1878–1885. [Google Scholar] [CrossRef] [PubMed]
- Congestri, F.; Formenti, F.; Sonntag, V.; Hdou, G.; Crespi, F. Selective D3 receptor antagonist SB-277011-a potentiates the effect of cocaine on extracellular dopamine in the nucleus accumbens: A dual core-shell voltammetry study in anesthetized rats. Sensors 2008, 8, 6936–6951. [Google Scholar] [CrossRef] [PubMed]
- Newman, A.H.; Grundt, P.; Cyriac, G.; Deschamps, J.R.; Taylor, M.; Kumar, R.; Ho, D.; Luedtke, R.R. N-(4-(4-(2,3-dichloro- or 2-methoxyphenyl)piperazin-1-yl)-butyl)-heterobiarylcarboxamides with functionalized linking chains as high affinity and enantioselective D3 receptor antagonists. J. Med. Chem. 2009, 52, 2559–2570. [Google Scholar] [CrossRef] [PubMed]
- Boateng, C.A.; Bakare, O.M.; Zhan, J.; Banala, A.K.; Burzynski, C.; Pommier, E.; Keck, T.M.; Domthamsetti, P.; Javitchi, J.A.; Rais, R.; et al. High affinity dopamine D3 receptor (D3R)-selective antagonists attenuate heroin self-administration in wild-type but not D3R knockout mice. J. Med. Chem. 2015, 58, 6195–6213. [Google Scholar] [CrossRef]
- Pinheiro, P.S.M.; Rodrigues, D.A.; Maia, R.C.; Thota, S.; Fraga, C.A.M. The Use of Conformational Restriction in Medicinal Chemistry. Curr. Top. Med. Chem. 2019, 19, 1712–1733. [Google Scholar] [CrossRef]
- Barbosa, M.L.C.; Lima, L.M.; Tesch, R.; Sant’Anna, C.M.R.; Totzke, F.; Kubuttat, M.H.G.; Schächtele, C.; Laufer, S.A.; Barreiro, E.J. Novel 2-chloro-4-anilino-quinazoline derivatives as EGFR and VEGFR-2 dual inhibitors. Eur. J. Med. Chem. 2014, 71, 1–14. [Google Scholar] [CrossRef] [PubMed]
- Kuipers, W.; van-Wijngaarden, I.; Kruse, C.G.; Horst-van-Amstel, M.; Tulp, M.T.M.; IJzerman, A.P. N4-Unsubstituted N1-Arylpiperazines as High-Affinity 5-HT1A Receptor Ligands. J. Med. Chem. 1995, 38, 1942–1954. [Google Scholar] [CrossRef] [PubMed]
- Barreiro, E.J.; Da-Silva, E.F. The synthesis and antiinflamatory activity of 1-alkyl-isochroman-1-yl acetic acids derivatives. J. Braz. Chem. Soc. 1993, 4, 40–44. [Google Scholar]
- Eldridge, M.D.; Murray, C.W.; Auton, T.R.; Paolini, G.V.; Mee, R.P. Empirical scoring functions: I. The development of a fast empirical scoring function to estimate the binding affinity of ligands in receptor complexes. J. Comput. Aided Mol. 1997, 11, 425–445. [Google Scholar] [CrossRef]
- Baxter, C.A.; Murray, C.W.; Clark, D.E.; Westhead, D.R.; Eldridge, M.D. Flexible docking using tabu search and an empirical estimate of binding affinity. Proteins 1998, 33, 367–382. [Google Scholar] [CrossRef]
- Jones, G.; Willett, P.; Glen, R.C. Molecular recognition of receptor-sites using a genetic algorithm with a description of desolvation. J. Mol. Biol. 1995, 245, 43–53. [Google Scholar] [CrossRef]
- Jones, G.; Willett, P.; Glen, R.C.; Leach, A.R.; Taylor, R. Development and validation of a genetic algorithm for flexible docking. J. Mol. Biol. 1997, 267, 727–748. [Google Scholar] [CrossRef]
- Korb, O.; Stützle, T.; Exner, T.E. Empirical scoring functions for advanced protein-ligand docking with PLANTS. J. Chem. Inf. Model. 2009, 49, 84–96. [Google Scholar] [CrossRef]
- Mooij, W.T.; Verdonk, M.L. General and targeted statistical potentials for protein–ligand interactions. Proteins 2005, 61, 272–287. [Google Scholar] [CrossRef]
- Chien, E.Y.T.; Liu, W.; Zhao, Q.; Katritch, V.; Han, G.W.; Hanson, M.A.; Shi, L.; Newman, A.H.; Javitch, J.A.; Cherezov, V.; et al. Structure of the human dopamine D3 receptor in complex with a D2/D3 selective antagonist. Science 2010, 330, 1091–1095. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.; Che, T.; Levit, A.; Shoichet, B.K.; Wacker, D.; Roth, B.L. Structure of the D2 dopamine receptor bound to the atypical antipsychotic drug risperidone. Nature 2018, 555, 269–273. [Google Scholar] [CrossRef] [PubMed]
- Stewart, J.J.P. Optimization of parameters for semiempirical methods VI: More modifications to the NDDO approximations and re-optimization of parameters. J. Mol. Model. 2013, 19, 1–32. [Google Scholar] [CrossRef] [PubMed]
- Adasme, M.F.; Linnemann, K.L.; Bolz, S.N.; Kaiser, F.; Salentin, S.; Haupt, V.J.; Schroeder, M. PLIP 2021: Expanding the scope of the protein–ligand interaction profiler to DNA and RNA. Nucleic Acids Res. 2021, 49, W530–W534. [Google Scholar] [CrossRef]
- Zhen, J.; Antonio, T.; Ali, S.; Neve, K.A.; Dutta, A.K.; Reith, M.E.A. Use of radiolabeled antagonist assays for assessing agonism at D2 and D3 dopamine receptors: Comparison with functional GTPγS assays. J. Neurosci. Methods 2015, 248, 7–15. [Google Scholar] [CrossRef]
- Pompeu, T.E.T.; Alves, F.R.S.; Figueiredo, C.D.M.; Antonio, C.B.; Herzfeldt, V.; Moura, B.C.; Rates, S.M.K.; Barreiro, E.J.; Fraga, C.A.M.; Noël, F. Synthesis and pharmacological evaluation of new N-phenylpiperazine derivatives designed as homologues of the antipsychotic lead compound LASSBio-579. Eur. J. Med. Chem. 2013, 66, 122–134. [Google Scholar] [CrossRef]
- Rabal, O.; Sánchez-Aria, J.A.; Cuadrado-Tejedor, M.; Miguel, I.; Pérez-González, M.; García-Barroso, C.; Ugarte, A.; Mendonza, A.E.H.; Sáez, E.; Espelosin, M.; et al. Design, synthesis, and biological evaluation of first-in-class dual acting histone deacetylases (HDACs) and phosphodiesterase 5 (PDE5) inhibitors for the treatment of alzheimer’s disease. J. Med. Chem. 2012, 59, 8967–9004. [Google Scholar] [CrossRef]
- Graham, S.L.; Hoffman, J.M.; Gautheron, P.; Michelson, S.R.; Scholz, H.; Shepard, K.L.; Smith, A.M.; Smith, R.L.; Sondey, J.M.; Sugrue, M.F. Topically active carbonic anhydrase inhibitors. 3. Benzofuran- and indole-2-sulfonamides. J. Med. Chem. 1990, 33, 749–754. [Google Scholar] [CrossRef]
- Gomes, T.F.; Pompeu, T.E.T.; Rodrigues, D.A.; Noël, F.; Menegatti, R.; Andrade, C.H.; Sabino, J.R.; Gil, E.S.; Costa, T.D.; Betti, A.H.; et al. Biotransformation of LASSBio-579 and pharmacological evaluation of p-hydroxylated metabolite a N-phenylpiperazine antipsychotic lead compound. Eur. J. Med. Chem. 2013, 62, 214–221. [Google Scholar] [CrossRef]
- Fraga, C.A.M.; Barreiro, E.J. The synthesis of a new benzothiazine derivative, related to oxicams, synthesized from natural safrole. J. Het. Chem. 1992, 29, 1667–1669. [Google Scholar] [CrossRef]
- Ehrlich, K.; Götz, A.; Bollinger, S.; Tschammer, N.; Bettinetti, L.; Härterich, S.; Hübner, H.; Lanig, H.; Gmeiner, P. Dopamine D2, D3 and D4 selective phenylpiperazines as molecular probes to explore the origins of subtype specific receptor binding. J Med. Chem. 2009, 52, 4923–4935. [Google Scholar] [CrossRef] [PubMed]
- Bissantz, C.; Kuhn, B.; Stahl, M. A Medicinal Chemist’s Guide to Molecular Interactions. J. Med. Chem. 2010, 53, 5061–5084. [Google Scholar] [CrossRef] [PubMed]
- Barreiro, E.J.; Kummerle, A.E.; Fraga, C.A.M. The methylation effect in medicinal chemistry. Chem. Rev. 2011, 111, 5215–5246. [Google Scholar] [CrossRef] [PubMed]
Compounds | Ki D2R Rat (μM) | IC50 (μM) (MgCl2 + CaCl2), D3R | IC50 (μM) (NaCl + GTP), D3R | Na+-Shift (II/I) D3R | Intrinsic Efficacy at D3R |
---|---|---|---|---|---|
Dopamine | - | 0.17 (0.13–0.22) | 1.5 (1–2.3) | 8.8 | agonist |
5a | 0.44 | 1.1 (0.79–1.6) | 1.2 (0.9–1.6) | 1.1 | antagonist |
5b | 0.08 | 0.76 (0.5–1.2) | 0.29 (0.2–0.4) | 0.4 | weak inverse agonist |
5c | 0.4 | 0.75 (0.4–1.3) | 0.78 (0.6–1.3) | 1 | antagonist |
5d | 0.82 | 0.42 (0.29–0.6) | 0.99 (0.7–1.4) | 2.4 | partial agonist |
5e | 0.1 | 0.23 (0.17–0.31) | 0.2 (0.15–0.27) | 0.9 | antagonist |
5f | 0.2 | 0.11 (0.06–0.2) | 0.2 (0.13–0.27) | 1.8 | partial agonist |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
da Silva Cunha, T.T.; Silva, R.R.; Rodrigues, D.A.; de Sena Murteira Pinheiro, P.; Kronenberger, T.; Sant’Anna, C.M.R.; Noël, F.; Fraga, C.A.M. Design, Synthesis and Pharmacological Evaluation of Novel Conformationally Restricted N-arylpiperazine Derivatives Characterized as D2/D3 Receptor Ligands, Candidates for the Treatment of Neurodegenerative Diseases. Biomolecules 2022, 12, 1112. https://doi.org/10.3390/biom12081112
da Silva Cunha TT, Silva RR, Rodrigues DA, de Sena Murteira Pinheiro P, Kronenberger T, Sant’Anna CMR, Noël F, Fraga CAM. Design, Synthesis and Pharmacological Evaluation of Novel Conformationally Restricted N-arylpiperazine Derivatives Characterized as D2/D3 Receptor Ligands, Candidates for the Treatment of Neurodegenerative Diseases. Biomolecules. 2022; 12(8):1112. https://doi.org/10.3390/biom12081112
Chicago/Turabian Styleda Silva Cunha, Thayssa Tavares, Rafaela Ribeiro Silva, Daniel Alencar Rodrigues, Pedro de Sena Murteira Pinheiro, Thales Kronenberger, Carlos Maurício R. Sant’Anna, François Noël, and Carlos Alberto Manssour Fraga. 2022. "Design, Synthesis and Pharmacological Evaluation of Novel Conformationally Restricted N-arylpiperazine Derivatives Characterized as D2/D3 Receptor Ligands, Candidates for the Treatment of Neurodegenerative Diseases" Biomolecules 12, no. 8: 1112. https://doi.org/10.3390/biom12081112
APA Styleda Silva Cunha, T. T., Silva, R. R., Rodrigues, D. A., de Sena Murteira Pinheiro, P., Kronenberger, T., Sant’Anna, C. M. R., Noël, F., & Fraga, C. A. M. (2022). Design, Synthesis and Pharmacological Evaluation of Novel Conformationally Restricted N-arylpiperazine Derivatives Characterized as D2/D3 Receptor Ligands, Candidates for the Treatment of Neurodegenerative Diseases. Biomolecules, 12(8), 1112. https://doi.org/10.3390/biom12081112