Galectins Differentially Regulate the Surface Glycosylation of Human Monocytes
Abstract
:1. Introduction
2. Materials and Methods
2.1. Cells and Cell Line
2.2. Expression, Purification and Treatment with Human Galectins
2.3. Biotinylation of Cell Surface Proteins
2.4. Lectin Array
2.5. Jacalin Pull-Down and Biotin Blotting
2.6. Flow Cytometry
2.7. Statistical Analysis
3. Results and Discussion
3.1. Galectins Differentially Regulate the Surface Glycosylation of Human Monocytes
3.2. Galectin-8 Induces Jacalin Binding to Human Monocytes
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Guilliams, M.; Mildner, A.; Yona, S. Developmental and Functional Heterogeneity of Monocytes. Immunity 2018, 49, 595–613. [Google Scholar] [CrossRef] [Green Version]
- Ozanska, A.; Szymczak, D.; Rybka, J. Pattern of human monocyte subpopulations in health and disease. Scand. J. Immunol. 2020, 92, e12883. [Google Scholar] [CrossRef] [PubMed]
- Yang, J.; Zhang, L.; Yu, C.; Yang, X.F.; Wang, H. Monocyte and macrophage differentiation: Circulation inflammatory monocyte as biomarker for inflammatory diseases. Biomark. Res. 2014, 2, 1. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bhattacharya, A.; Agarwal, M.; Mukherjee, R.; Sen, P.; Sinha, D.K. 3D micro-environment regulates NF-kappabeta dependent adhesion to induce monocyte differentiation. Cell Death Dis. 2018, 9, 914. [Google Scholar] [CrossRef] [PubMed]
- Iwamoto, S.; Iwai, S.; Tsujiyama, K.; Kurahashi, C.; Takeshita, K.; Naoe, M.; Masunaga, A.; Ogawa, Y.; Oguchi, K.; Miyazaki, A. TNF-alpha drives human CD14+ monocytes to differentiate into CD70+ dendritic cells evoking Th1 and Th17 responses. J. Immunol. 2007, 179, 1449–1457. [Google Scholar] [CrossRef] [Green Version]
- Trottein, F.; Schaffer, L.; Ivanov, S.; Paget, C.; Vendeville, C.; Cazet, A.; Groux-Degroote, S.; Lee, S.; Krzewinski-Recchi, M.A.; Faveeuw, C.; et al. Glycosyltransferase and sulfotransferase gene expression profiles in human monocytes, dendritic cells and macrophages. Glycoconj. J. 2009, 26, 1259–1274. [Google Scholar] [CrossRef] [Green Version]
- Ye, Z.; Guo, H.; Wang, L.; Li, Y.; Xu, M.; Zhao, X.; Song, X.; Chen, Z.; Huang, R. GALNT4 primes monocytes adhesion and transmigration by regulating O-Glycosylation of PSGL-1 in atherosclerosis. J. Mol. Cell. Cardiol. 2022, 165, 54–63. [Google Scholar] [CrossRef]
- Bax, M.; Garcia-Vallejo, J.J.; Jang-Lee, J.; North, S.J.; Gilmartin, T.J.; Hernandez, G.; Crocker, P.R.; Leffler, H.; Head, S.R.; Haslam, S.M.; et al. Dendritic cell maturation results in pronounced changes in glycan expression affecting recognition by siglecs and galectins. J. Immunol. 2007, 179, 8216–8224. [Google Scholar] [CrossRef]
- Delannoy, C.P.; Rombouts, Y.; Groux-Degroote, S.; Holst, S.; Coddeville, B.; Harduin-Lepers, A.; Wuhrer, M.; Elass-Rochard, E.; Guerardel, Y. Glycosylation Changes Triggered by the Differentiation of Monocytic THP-1 Cell Line into Macrophages. J. Proteome Res. 2017, 16, 156–169. [Google Scholar] [CrossRef]
- Cummings, R.D.; Liu, F.T. Galectins. In Essentials of Glycobiology, 2nd ed.; Varki, A., Cummings, R.D., Esko, J.D., Freeze, H.H., Stanley, P., Bertozzi, C.R., Hart, G.W., Etzler, M.E., Eds.; Cold Spring Harbor: New York, NY, USA, 2009; pp. 475–483. [Google Scholar]
- Kamili, N.A.; Arthur, C.M.; Gerner-Smidt, C.; Tafesse, E.; Blenda, A.; Dias-Baruffi, M.; Stowell, S.R. Key regulators of galectin-glycan interactions. Proteomics 2016, 16, 3111–3125. [Google Scholar] [CrossRef]
- Thiemann, S.; Baum, L.G. Galectins and Immune Responses-Just How Do They Do Those Things They Do? Annu. Rev. Immunol. 2016, 34, 243–264. [Google Scholar] [CrossRef]
- AbuSamra, D.B.; Panjwani, N.; Argueso, P. Induction of CXCL10-Mediated Cell Migration by Different Types of Galectins. Cells 2021, 10, 274. [Google Scholar] [CrossRef]
- AbuSamra, D.B.; Al-Kilani, A.; Hamdan, S.M.; Sakashita, K.; Gadhoum, S.Z.; Merzaban, J.S. Quantitative Characterization of E-selectin Interaction with Native CD44 and P-selectin Glycoprotein Ligand-1 (PSGL-1) Using a Real Time Immunoprecipitation-based Binding Assay. J. Biol. Chem. 2015, 290, 21213–21230. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sun, R.; Kim, A.M.J.; Lim, S.O. Glycosylation of Immune Receptors in Cancer. Cells 2021, 10, 1100. [Google Scholar] [CrossRef] [PubMed]
- Girotti, M.R.; Salatino, M.; Dalotto-Moreno, T.; Rabinovich, G.A. Sweetening the hallmarks of cancer: Galectins as multifunctional mediators of tumor progression. J. Exp. Med. 2020, 217, e20182041. [Google Scholar] [CrossRef] [PubMed]
- Kapellos, T.S.; Bonaguro, L.; Gemund, I.; Reusch, N.; Saglam, A.; Hinkley, E.R.; Schultze, J.L. Human Monocyte Subsets and Phenotypes in Major Chronic Inflammatory Diseases. Front. Immunol. 2019, 10, 2035. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zembala, M.; Kowalczyk, D.; Pryjma, J.; Ruggiero, I.; Mytar, B.; Klysik, J.; Stec, W.J. The role of tumor necrosis factor in the regulation of antigen presentation by human monocytes. Int. Immunol. 1990, 2, 337–342. [Google Scholar] [CrossRef] [PubMed]
- Mentzer, S.J.; Guyre, P.M.; Burakoff, S.J.; Faller, D.V. Spontaneous aggregation as a mechanism for human monocyte purification. Cell. Immunol. 1986, 101, 312–319. [Google Scholar] [CrossRef]
- Byrd, T.F. Tumor necrosis factor alpha (TNFalpha) promotes growth of virulent Mycobacterium tuberculosis in human monocytes iron-mediated growth suppression is correlated with decreased release of TNFalpha from iron-treated infected monocytes. J. Clin. Investig. 1997, 99, 2518–2529. [Google Scholar] [CrossRef]
- Jeyaprakash, A.A.; Geetha Rani, P.; Banuprakash Reddy, G.; Banumathi, S.; Betzel, C.; Sekar, K.; Surolia, A.; Vijayan, M. Crystal structure of the jacalin-T-antigen complex and a comparative study of lectin-T-antigen complexes. J. Mol. Biol. 2002, 321, 637–645. [Google Scholar] [CrossRef] [Green Version]
- Aragao, K.S.; Satre, M.; Imberty, A.; Varrot, A. Structure determination of Discoidin II from Dictyostelium discoideum and carbohydrate binding properties of the lectin domain. Proteins 2008, 73, 43–52. [Google Scholar] [CrossRef]
- Walser, P.J.; Haebel, P.W.; Kunzler, M.; Sargent, D.; Kues, U.; Aebi, M.; Ban, N. Structure and functional analysis of the fungal galectin CGL2. Structure 2004, 12, 689–702. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tateno, H.; Winter, H.C.; Petryniak, J.; Goldstein, I.J. Purification, characterization, molecular cloning, and expression of novel members of jacalin-related lectins from rhizomes of the true fern Phlebodium aureum (L) J. Smith (Polypodiaceae). J. Biol. Chem. 2003, 278, 10891–10899. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sabotic, J.; Kos, J. CNL-Clitocybe nebularis Lectin-The Fungal GalNAcbeta1-4GlcNAc-Binding Lectin. Molecules 2019, 24, 4204. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hirano, K.; Furukawa, K. Biosynthesis and Biological Significances of LacdiNAc Group on N- and O-Glycans in Human Cancer Cells. Biomolecules 2022, 12, 195. [Google Scholar] [CrossRef]
- Marth, J.D.; Grewal, P.K. Mammalian glycosylation in immunity. Nat. Rev. Immunol. 2008, 8, 874–887. [Google Scholar] [CrossRef] [Green Version]
- Block, H.; Ley, K.; Zarbock, A. Severe impairment of leukocyte recruitment in ppGalNAcT-1-deficient mice. J. Immunol. 2012, 188, 5674–5681. [Google Scholar] [CrossRef] [Green Version]
- Braenne, I.; Civelek, M.; Vilne, B.; Di Narzo, A.; Johnson, A.D.; Zhao, Y.; Reiz, B.; Codoni, V.; Webb, T.R.; Foroughi Asl, H.; et al. Prediction of Causal Candidate Genes in Coronary Artery Disease Loci. Arterioscler. Thromb. Vasc. Biol. 2015, 35, 2207–2217. [Google Scholar] [CrossRef] [Green Version]
- Bidon-Wagner, N.; Le Pennec, J.P. Human galectin-8 isoforms and cancer. Glycoconj. J. 2002, 19, 557–563. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
AbuSamra, D.B.; Martínez-Carrasco, R.; Argüeso, P. Galectins Differentially Regulate the Surface Glycosylation of Human Monocytes. Biomolecules 2022, 12, 1168. https://doi.org/10.3390/biom12091168
AbuSamra DB, Martínez-Carrasco R, Argüeso P. Galectins Differentially Regulate the Surface Glycosylation of Human Monocytes. Biomolecules. 2022; 12(9):1168. https://doi.org/10.3390/biom12091168
Chicago/Turabian StyleAbuSamra, Dina B., Rafael Martínez-Carrasco, and Pablo Argüeso. 2022. "Galectins Differentially Regulate the Surface Glycosylation of Human Monocytes" Biomolecules 12, no. 9: 1168. https://doi.org/10.3390/biom12091168
APA StyleAbuSamra, D. B., Martínez-Carrasco, R., & Argüeso, P. (2022). Galectins Differentially Regulate the Surface Glycosylation of Human Monocytes. Biomolecules, 12(9), 1168. https://doi.org/10.3390/biom12091168