In Silico Maturation of a Nanomolar Antibody against the Human CXCR2
Abstract
:1. Introduction
2. Materials and Methods
2.1. Molecular Dynamics Simulations and MM-PBSA
2.2. Monte Carlo Simulations
2.3. Antibody Expression and Purification
2.4. Measurement of Binding Affinity Using Surface-Plasmon-Resonance
2.5. Measurement of the Antibody Binding to CXCR2 Expressed on Live Cell Surface
3. Results
3.1. Computed Binding Free Energies Correlated with Experimental Binding Affinity
3.2. Monte Carlo Sampling of the Sequence Space Rapidly Converged to Antibodies with Improved Affinity
3.3. In Vitro Test of Antibodies Showed the Efficacy of the Method
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Fellouse, F.A.; Esaki, K.; Birtalan, S.; Raptis, D.; Cancasci, V.J.; Koide, A.; Jhurani, P.; Vasser, M.; Wiesmann, C.; Kossiakoff, A.A.; et al. High-throughput Generation of Synthetic Antibodies from Highly Functional Minimalist Phage-displayed Libraries. J. Mol. Biol. 2007, 373, 924–940. [Google Scholar] [CrossRef] [PubMed]
- Briney, B.; Inderbitzin, A.; Joyce, C.; Burton, D.R. Commonality despite exceptional diversity in the baseline human antibody repertoire. Nature 2019, 566, 393–397. [Google Scholar] [CrossRef]
- Qiang, M.; Dong, X.; Zha, Z.; Zuo, X.-K.; Song, X.-L.; Zhao, L.; Yuan, C.; Huang, C.; Tao, P.; Hu, Q.; et al. Selection of an ASIC1a-blocking combinatorial antibody that protects cells from ischemic death. Proc. Natl. Acad. Sci. USA 2018, 115, E7469–E7477. [Google Scholar] [CrossRef]
- Shi, X.; Wan, Y.; Wang, N.; Xiang, J.; Wang, T.; Yang, X.; Wang, J.; Dong, X.; Dong, L.; Yan, L.; et al. Selection of a picomolar antibody that targets CXCR2-mediated neutrophil activation and alleviates EAE symptoms. Nat. Commun. 2021, 12, 1–14. [Google Scholar] [CrossRef] [PubMed]
- Xu, L.; Carrer, A.; Zonta, F.; Qu, Z.; Ma, P.; Li, S.; Ceriani, F.; Buratto, D.; Crispino, G.; Zorzi, V.; et al. Design and Characterization of a Human Monoclonal Antibody that Modulates Mutant Connexin 26 Hemichannels Implicated in Deafness and Skin Disorders. Front. Mol. Neurosci. 2017, 10, 298. [Google Scholar] [CrossRef]
- Zhang, Y.; Sun, X.; Qian, Y.; Yi, H.; Song, K.; Zhu, H.; Zonta, F.; Chen, W.; Ji, Q.; Miersch, S.; et al. A Potent Anti-SpuE Antibody Allosterically Inhibits Type III Secretion System and Attenuates Virulence of Pseudomonas Aeruginosa. J. Mol. Biol. 2019, 431, 4882–4896. [Google Scholar] [CrossRef]
- Kabayama, H.; Takeuchi, M.; Tokushige, N.; Muramatsu, S.-I.; Kabayama, M.; Fukuda, M.; Yamada, Y.; Mikoshiba, K. An ultra-stable cytoplasmic antibody engineered for in vivo applications. Nat. Commun. 2020, 11, 336. [Google Scholar] [CrossRef] [PubMed]
- Castelli, M.S.; Mcgonigle, P.; Hornby, P.J. The pharmacology and therapeutic applications of monoclonal antibodies. Pharmacol. Res. Perspect. 2019, 7, e00535. [Google Scholar] [CrossRef] [PubMed]
- Singh, S.; Tank, N.K.; Dwiwedi, P.; Charan, J.; Kaur, R.; Sidhu, P.; Chugh, V.K. Monoclonal Antibodies: A Review. Curr. Clin. Pharmacol. 2022, 13, 85–99. [Google Scholar] [CrossRef]
- Chen, G.; Sidhu, S.S. Design and Generation of Synthetic Antibody Libraries for Phage Display. Monoclon. Antibodies 2014, 1131, 113–131. [Google Scholar] [CrossRef]
- Frenzel, A.; Schirrmann, T.; Hust, M. Phage display-derived human antibodies in clinical development and therapy. mAbs 2016, 8, 1177–1194. [Google Scholar] [CrossRef] [PubMed]
- Lerner, R.A. Combinatorial antibody libraries: New advances, new immunological insights. Nat. Rev. Immunol. 2016, 16, 498–508. [Google Scholar] [CrossRef]
- McCafferty, J.; Griffiths, A.D.; Winter, G.; Chiswell, D.J. Phage antibodies: Filamentous phage displaying antibody variable domains. Nature 1990, 348, 552–554. [Google Scholar] [CrossRef] [PubMed]
- Nardin, C.; Tettey-Matey, A.; Donati, V.; Marazziti, D.; Di Pietro, C.; Peres, C.; Raspa, M.; Zonta, F.; Yang, G.; Gorelik, M.; et al. A Quantitative Assay for Ca2+ Uptake through Normal and Pathological Hemichannels. Int. J. Mol. Sci. 2022, 23, 7337. [Google Scholar] [CrossRef] [PubMed]
- Hammers, C.M.; Stanley, J.R. Antibody Phage Display: Technique and Applications. J. Investig. Dermatol. 2014, 134, 1–5. [Google Scholar] [CrossRef]
- Gram, H.; Marconi, A.L.; Barbas, C.F.; Collet, A.T.; Lerner, A.R.; Kang, A.S. In vitro selection and affinity maturation of antibodies from a naive combinatorial immunoglobulin library. Proc. Natl. Acad. Sci. USA 1992, 89, 3576–3580. [Google Scholar] [CrossRef] [PubMed]
- Clark, L.A.; Boriack-Sjodin, P.A.; Eldredge, J.; Fitch, C.; Friedman, B.; Hanf, K.; Jarpe, M.; Liparoto, S.F.; Li, Y.; Lugovskoy, A.; et al. Affinity enhancement of an in vivo matured therapeutic antibody using structure-based computational design. Protein Sci. 2006, 15, 949–960. [Google Scholar] [CrossRef]
- Soler, M.A.; Medagli, B.; Semrau, M.S.; Storici, P.; Bajc, G.; de Marco, A.; Laio, A.; Fortuna, S. A consensus protocol for the in silico optimisation of antibody fragments. Chem. Commun. 2019, 55, 14043–14046. [Google Scholar] [CrossRef]
- Baran, D.; Pszolla, M.G.; Lapidoth, G.D.; Norn, C.; Dym, O.; Unger, T.; Albeck, S.; Tyka, M.D.; Fleishman, S.J. Principles for computational design of binding antibodies. Proc. Natl. Acad. Sci. USA 2017, 114, 10900–10905. [Google Scholar] [CrossRef]
- Barderas, R.; Desmet, J.; Timmerman, P.; Meloen, R.; Casal, J.I. Affinity maturation of antibodies assisted by in silico modeling. Proc. Natl. Acad. Sci. USA 2008, 105, 9029–9034. [Google Scholar] [CrossRef] [Green Version]
- Kiyoshi, M.; Caaveiro, J.M.; Miura, E.; Nagatoishi, S.; Nakakido, M.; Soga, S.; Shirai, H.; Kawabata, S.; Tsumoto, K. Affinity Improvement of a Therapeutic Antibody by Structure-Based Computational Design: Generation of Electrostatic Interactions in the Transition State Stabilizes the Antibody-Antigen Complex. PLoS ONE 2014, 9, e87099. [Google Scholar] [CrossRef]
- Hearty, S.; Leonard, P.; Ma, H.; O’Kennedy, R. Measuring Antibody-Antigen Binding Kinetics Using Surface Plasmon Resonance BT—Antibody Engineering: Methods and Protocols; Nevoltris, D., Chames, P., Eds.; Springer: New York, NY, USA, 2018; pp. 421–455. ISBN 978-1-4939-8648-4. [Google Scholar]
- Lippow, S.M.; Wittrup, K.D.; Tidor, B. Computational design of antibody-affinity improvement beyond in vivo maturation. Nat. Biotechnol. 2007, 25, 1171–1176. [Google Scholar] [CrossRef] [PubMed]
- Soler, M.A.; Fortuna, S.; de Marco, A.; Laio, A. Binding affinity prediction of nanobody–protein complexes by scoring of molecular dynamics trajectories. Phys. Chem. Chem. Phys. 2018, 20, 3438–3444. [Google Scholar] [CrossRef]
- Mahajan, S.P.; Meksiriporn, B.; Waraho-Zhmayev, D.; Weyant, K.B.; Koçer, I.; Butler, D.C.; Messer, A.; Escobedo, F.A.; Delisa, M.P. Computational affinity maturation of camelid single-domain intrabodies against the nonamyloid component of alpha-synuclein. Sci. Rep. 2018, 8, 1–14. [Google Scholar] [CrossRef]
- Ochoa, R.; Soler, M.A.; Gladich, I.; Battisti, A.; Minovski, N.; Rodriguez, A.; Fortuna, S.; Cossio, P.; Laio, A. Computational Evolution Protocol for Peptide Design. In Computational Peptide Science: Methods and Protocols; Simonson, T., Ed.; Methods in Molecular Biology; Springer: New York, NY, USA, 2022; pp. 335–359. ISBN 978-1-07-161855-4. [Google Scholar]
- Enriquez, R.P.H.; Pavan, S.; Benedetti, F.; Tossi, A.; Savoini, A.; Berti, F.; Laio, A. Designing Short Peptides with High Affinity for Organic Molecules: A Combined Docking, Molecular Dynamics, And Monte Carlo Approach. J. Chem. Theory Comput. 2012, 8, 1121–1128. [Google Scholar] [CrossRef]
- Zhou, R.; Das, P.; Royyuru, A.K. Single Mutation Induced H3N2 Hemagglutinin Antibody Neutralization: A Free Energy Perturbation Study. J. Phys. Chem. B 2008, 112, 15813–15820. [Google Scholar] [CrossRef]
- Gromiha, M.M.; Yugandhar, K.; Jemimah, S. Protein–protein interactions: Scoring schemes and binding affinity. Curr. Opin. Struct. Biol. 2017, 44, 31–38. [Google Scholar] [CrossRef]
- Genheden, S.; Ryde, U. The MM/PBSA and MM/GBSA methods to estimate ligand-binding affinities. Expert Opin. Drug Discov. 2015, 10, 449–461. [Google Scholar] [CrossRef] [PubMed]
- Kollman, P.A.; Massova, I.; Reyes, C.; Kuhn, B.; Huo, S.; Chong, L.; Lee, M.; Lee, T.; Duan, Y.; Wang, W.; et al. Calculating Structures and Free Energies of Complex Molecules: Combining Molecular Mechanics and Continuum Models. Accounts Chem. Res. 2000, 33, 889–897. [Google Scholar] [CrossRef] [PubMed]
- Wang, E.; Sun, H.; Wang, J.; Wang, Z.; Liu, H.; Zhang, J.Z.H.; Hou, T. End-Point Binding Free Energy Calculation with MM/PBSA and MM/GBSA: Strategies and Applications in Drug Design. Chem. Rev. 2019, 119, 9478–9508. [Google Scholar] [CrossRef]
- Metropolis, N.; Rosenbluth, A.W.; Rosenbluth, M.N.; Teller, A.H.; Teller, E. Equation of State Calculations by Fast Computing Machines. J. Chem. Phys. 1953, 21, 1087–1092. [Google Scholar] [CrossRef]
- Hastings, W.K. Monte Carlo sampling methods using Markov chains and their applications. Biometrika 1970, 57, 97–109. [Google Scholar] [CrossRef]
- Huse, W.D.; Sastry, L.; Iverson, S.A.; Kang, A.S.; Alting-Mees, M.; Burton, D.R.; Benkovic, S.J.; Lerner, R.A. Generation of a Large Combinatorial Library of the Immunoglobulin Repertoire in Phage Lambda. Science 1989, 246, 1275–1281. [Google Scholar] [CrossRef]
- Pronk, S.; Páll, S.; Schulz, R.; Larsson, P.; Bjelkmar, P.; Apostolov, R.; Shirts, M.R.; Smith, J.C.; Kasson, P.M.; Van Der Spoel, D.; et al. GROMACS 4.5: A high-throughput and highly parallel open source molecular simulation toolkit. Bioinformatics 2013, 29, 845–854. [Google Scholar] [CrossRef] [PubMed]
- Maier, J.A.; Martinez, C.; Kasavajhala, K.; Wickstrom, L.; Hauser, K.E.; Simmerling, C. ff14SB: Improving the accuracy of protein side chain and backbone parameters from ff99SB. J. Chem. Theory Comput. 2015, 11, 3696–3713. [Google Scholar] [CrossRef] [PubMed]
- Buratto, D.; Saxena, A.; Ji, Q.; Yang, G.; Pantano, S.; Zonta, F. Rapid Assessment of Binding Affinity of SARS-COV-2 Spike Protein to the Human Angiotensin-Converting Enzyme 2 Receptor and to Neutralizing Biomolecules Based on Computer Simulations. Front. Immunol. 2021, 12. [Google Scholar] [CrossRef]
- Ziraldo, G.; Buratto, D.; Kuang, Y.; Xu, L.; Carrer, A.; Nardin, C.; Chiani, F.; Salvatore, A.M.; Paludetti, G.; Lerner, R.A.; et al. A Human-Derived Monoclonal Antibody Targeting Extracellular Connexin Domain Selectively Modulates Hemichannel Function. Front. Physiol. 2019, 10. [Google Scholar] [CrossRef] [PubMed]
- Berendsen, H.J.C.; Postma, J.P.M.; Van Gunsteren, W.F.; DiNola, A.; Haak, J.R. Molecular dynamics with coupling to an external bath. J. Chem. Phys. 1984, 81, 3684–3690. [Google Scholar] [CrossRef]
- Darden, T.; York, D.; Pedersen, L. Particle mesh Ewald: An N⋅log(N) method for Ewald sums in large systems. J. Chem. Phys. 1993, 98, 10089–10092. [Google Scholar] [CrossRef]
- Swindells, M.B.; Porter, C.T.; Couch, M.; Hurst, J.; Abhinandan, K.; Nielsen, J.H.; Macindoe, G.; Hetherington, J.; Martin, A.C. abYsis: Integrated Antibody Sequence and Structure—Management, Analysis, and Prediction. J. Mol. Biol. 2017, 429, 356–364. [Google Scholar] [CrossRef] [Green Version]
- Pettersen, E.F.; Goddard, T.D.; Huang, C.C.; Couch, G.S.; Greenblatt, D.M.; Meng, E.C.; Ferrin, T.E. UCSF Chimera-a visualization system for exploratory research and analysis. J. Comput. Chem. 2004, 25, 1605–1612. [Google Scholar] [CrossRef] [PubMed]
- Baker, N.A.; Sept, D.; Joseph, S.; Holst, M.J.; McCammon, J.A. Electrostatics of nanosystems: Application to microtubules and the ribosome. Proc. Natl. Acad. Sci. USA 2001, 98, 10037–10041. [Google Scholar] [CrossRef]
- Su, P.-C.; Tsai, C.-C.; Mehboob, S.; Hevener, K.E.; Johnson, M.E. Comparison of radii sets, entropy, QM methods, and sampling on MM-PBSA, MM-GBSA, and QM/MM-GBSA ligand binding energies of F. tularensis enoyl-ACP reductase (FabI). J. Comput. Chem. 2015, 36, 1859–1873. [Google Scholar] [CrossRef] [PubMed]
- Hou, T.; Wang, J.; Li, Y.; Wang, W. Assessing the Performance of the MM/PBSA and MM/GBSA Methods. 1. The Accuracy of Binding Free Energy Calculations Based on Molecular Dynamics Simulations. J. Chem. Inf. Model. 2011, 51, 69–82. [Google Scholar] [CrossRef]
- Virtanen, S.I.; Niinivehmas, S.P.; Pentikäinen, O.T. Case-specific performance of MM-PBSA, MM-GBSA, and SIE in virtual screening. J. Mol. Graph. Model. 2015, 62, 303–318. [Google Scholar] [CrossRef]
- Markov Chains. From Theory to Implementation and Experimentation. Wiley. Available online: https://www.wiley.com/en-us/Markov+Chains%3A+From+Theory+to+Implementation+and+Experimentation-p-9781119387558 (accessed on 15 July 2022).
- Mobley, D.L.; Gilson, M.K. Predicting Binding Free Energies: Frontiers and Benchmarks. Annu. Rev. Biophys. 2017, 46, 531–558. [Google Scholar] [CrossRef]
- Shivakumar, D.; Williams, J.; Wu, Y.; Damm, W.; Shelley, J.; Sherman, W. Prediction of Absolute Solvation Free Energies using Molecular Dynamics Free Energy Perturbation and the OPLS Force Field. J. Chem. Theory Comput. 2010, 6, 1509–1519. [Google Scholar] [CrossRef] [PubMed]
- Zhu, F.; Bourguet, F.A.; Bennett, W.F.D.; Lau, E.Y.; Arrildt, K.T.; Segelke, B.W.; Zemla, A.T.; Desautels, T.A.; Faissol, D.M. Large-scale application of free energy perturbation calculations for antibody design. Sci. Rep. 2022, 12, 1–14. [Google Scholar] [CrossRef]
- Orlandini, E.; Baiesi, M.; Zonta, F. How Local Flexibility Affects Knot Positioning in Ring Polymers. Macromolecules 2016, 49, 4656–4662. [Google Scholar] [CrossRef]
- Patel, J.S.; Ytreberg, F.M. Fast Calculation of Protein–Protein Binding Free Energies Using Umbrella Sampling with a Coarse-Grained Model. J. Chem. Theory Comput. 2018, 14, 991–997. [Google Scholar] [CrossRef] [Green Version]
- Zonta, F.; Buratto, D.; Crispino, G.; Carrer, A.; Bruno, F.; Yang, G.; Mammano, F.; Pantano, S. Cues to Opening Mechanisms From in Silico Electric Field Excitation of Cx26 Hemichannel and in Vitro Mutagenesis Studies in HeLa Transfectans. Front. Mol. Neurosci. 2018, 11, 170. [Google Scholar] [CrossRef] [PubMed]
- Ohno, K.; Wada, M.; Saito, S.; Inoue, Y.; Sakurai, M. Quantum chemical study on the affinity maturation of 48G7 antibody. J. Mol. Struct. THEOCHEM 2005, 722, 203–211. [Google Scholar] [CrossRef]
- Zonta, F.; Mammano, F.; Torsello, M.; Fortunati, N.; Orian, L.; Polimeno, A. Role of gamma carboxylated Glu47 in connexin 26 hemichannel regulation by extracellular Ca2+: Insight from a local quantum chemistry study. Biochem. Biophys. Res. Commun. 2014, 445, 10–15. [Google Scholar] [CrossRef]
- Xue, L.C.; Rodrigues, J.P.; Kastritis, P.L.; Bonvin, A.M.; Vangone, A. PRODIGY: A web server for predicting the binding affinity of protein–protein complexes. Bioinformatics 2016, 32, btw514-3678. [Google Scholar] [CrossRef] [PubMed]
ΔΔGMM-PBSA | ΔGMM-PBSA | ΔGcoul | ΔGvdw | ΔGPolSolv | ΔGnonPolSolv | |
---|---|---|---|---|---|---|
(kJ/mol) | (kJ/mol) | (kJ/mol) | (kJ/mol) | (kJ/mol) | (kJ/mol) | |
abN48 | 0 ± 22 | −323 ± 16 | −2971 ± 42 | −334 ± 5 | 3015 ± 35 | −33 ± 0.5 |
abN48-1 | −77 ± 23 | −400 ± 16 | −3849 ± 57 | −360 ± 3 | 3845 ± 47 | −36 ± 0.4 |
abN48-2 | −123 ± 21 | −446 ± 15 | −3809 ± 48 | −362 ± 2 | 3760 ± 38 | −36 ± 0.3 |
abN48-3 | 6 ± 14 | −317 ± 10 | −3034 ± 36 | −347 ± 4 | 3099 ± 36 | −35 ± 0.3 |
abN48-8 | −120 ± 26 | −443 ± 19 | −3851 ± 45 | −354 ± 3 | 3799 ± 39 | −36 ± 0.4 |
abN48-10 | −141 ±17 | −464 ± 12 | −3861 ± 46 | −356 ± 3 | 3790 ± 42 | −36 ± 0.4 |
abN48-28 | −94 ± 18 | −417 ± 12 | −3499 ± 47 | −367 ± 3 | 3484 ± 42 | −35 ± 0.4 |
abN48-29 | −173 ± 31 | −496 ± 22 | −4196 ± 66 | −348 ± 2 | 4083 ± 50 | −35 ± 0.3 |
abN48-38 | −65 ± 21 | −388 ± 15 | −3751 ± 54 | −351 ± 2 | 3749 ± 51 | −36 ± 0.4 |
Exp. Values | ΔΔGMM-PBSA | ΔΔGPRODIGY | |
---|---|---|---|
(M) | (kJ/mol) | (kJ/mol) | |
abN48 | 1.3 × 10−9 | 0 ± 22 | 0.00 ± 0.07 |
abN48-1 | 2.6 × 10−10 | −77 ± 23 | 0.97 ± 0.06 |
abN48-2 | 1.1 × 10−10 | −123 ± 22 | −0.64 ± 0.06 |
abN48-3 | 2.0 × 10−9 | 6 ± 19 | −0.65 ± 0.06 |
abN48-8 | 8.3 × 10−10 | −120 ± 24 | −1.00 ± 0.06 |
abN48-10 | 2.7 × 10−10 | −141 ± 20 | −1.01 ± 0.06 |
abN48-28 | 6.5 × 10−10 | −94 ± 20 | 0.03 ± 0.06 |
abN48-29 | 1.3 × 10−10 | −173 ± 27 | −2.31 ± 0.06 |
abN48-38 | 2.3 × 10−10 | −65 ± 22 | −0.36 ± 0.06 |
KON (1/Ms) | KOFF (1/s) | KD (M) | Mean Fluorescence Intensity | % of Positive Cells | |
---|---|---|---|---|---|
abN48-2 | 2.5 × 106 | 2.7 × 10−4 | 1.1 × 10−10 | 174.7 × 103 | 98.6 |
S1-M22 | 4.0 × 107 | 1.8 × 10−2 | 4.6 × 10−10 | 40.8 × 103 | 40.9 |
S2-M12 | 7.2 × 105 | 3.3 × 10−4 | 4.6 × 10−10 | 43.1 × 103 | 43.0 |
S3-M20 | n/a | n/a | n/a | 6 × 103 | 0.2 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Buratto, D.; Wan, Y.; Shi, X.; Yang, G.; Zonta, F. In Silico Maturation of a Nanomolar Antibody against the Human CXCR2. Biomolecules 2022, 12, 1285. https://doi.org/10.3390/biom12091285
Buratto D, Wan Y, Shi X, Yang G, Zonta F. In Silico Maturation of a Nanomolar Antibody against the Human CXCR2. Biomolecules. 2022; 12(9):1285. https://doi.org/10.3390/biom12091285
Chicago/Turabian StyleBuratto, Damiano, Yue Wan, Xiaojie Shi, Guang Yang, and Francesco Zonta. 2022. "In Silico Maturation of a Nanomolar Antibody against the Human CXCR2" Biomolecules 12, no. 9: 1285. https://doi.org/10.3390/biom12091285
APA StyleBuratto, D., Wan, Y., Shi, X., Yang, G., & Zonta, F. (2022). In Silico Maturation of a Nanomolar Antibody against the Human CXCR2. Biomolecules, 12(9), 1285. https://doi.org/10.3390/biom12091285