Nuclear Export in Non-Hodgkin Lymphoma and Implications for Targeted XPO1 Inhibitors
Abstract
:1. Introduction
2. XPO1 Cargo in NHL
2.1. Proteins as XPO1 Cargo
2.2. RNA as XPO1 Cargo
3. Preclinical Data on Selinexor as a Monotherapy
3.1. Preclinical Trials Investigating SINE Compounds in NHL
3.2. Preclinical Studies Investigating Selinexor
4. Preclinical Data on Selinexor in Combination with Other Agents
4.1. Selinexor + BTK Inhibitors
4.2. Selinexor + Proteasome Inhibitors
4.3. Selinexor + Salicylates
4.4. Selinexor + BCL-2 Inhibitors
4.5. Selinexor + Chemotherapy
5. Clinical Trials with Selinexor
5.1. Selinexor as a Monotherapy
5.2. Selinexor in Combination with Other Anti-Cancer Agents
6. Conclusions and Future Directions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Timney, B.L.; Raveh, B.; Mironska, R.; Trivedi, J.M.; Kim, S.J.; Russel, D.; Wente, S.R.; Sali, A.; Rout, M.P. Simple rules for passive diffusion through the nuclear pore complex. J. Cell Biol. 2016, 215, 57–76. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Subhash, V.V.; Yeo, M.S.; Wang, L.; Tan, S.H.; Wong, F.Y.; Thuya, W.L.; Tan, W.L.; Peethala, P.C.; Soe, M.Y.; Tan, D.; et al. Anti-tumour efficacy of Selinexor (KPT-330) in gastric cancer is dependent on nuclear accumulation of p53 tumour suppressor. Sci. Rep. 2018, 8, 12248. [Google Scholar] [CrossRef] [Green Version]
- Chook, Y.M.; Süel, K.E. Nuclear import by karyopherin-βs: Recognition and inhibition. Biochim. Biophys. Acta (BBA) Mol. Cell Res. 2011, 1813, 1593–1606. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pemberton, L.F.; Paschal, B.M. Mechanisms of Receptor-Mediated Nuclear Import and Nuclear Export. Traffic 2005, 6, 187–198. [Google Scholar] [CrossRef] [PubMed]
- Kirli, K.; Karaca, S.; Dehne, H.J.; Samwer, M.; Pan, K.T.; Lenz, C.; Urlaub, H.; Görlich, D. A deep proteomics perspective on CRM1-mediated nuclear export and nucleocytoplasmic partitioning. eLife 2015, 4, 11466. [Google Scholar] [CrossRef] [PubMed]
- Allegra, A.; Innao, V.; Allegra, A.G.; Leanza, R.; Musolino, C. Selective Inhibitors of Nuclear Export in the Treatment of Hematologic Malignancies. Clin. Lymphoma Myeloma Leuk. 2019, 19, 689–698. [Google Scholar] [CrossRef]
- Azmi, A.S.; Al-Katib, A.; Aboukameel, A.; McCauley, D.; Kauffman, M.; Shacham, S.; Mohammad, R.M. Selective inhibitors of nuclear export for the treatment of non-Hodgkin’s lymphomas. Haematologica 2013, 98, 1098–1106. [Google Scholar] [CrossRef]
- Ming, M.; Wu, W.; Xie, B.; Sukhanova, M.; Wang, W.; Kadri, S.; Wang, Y.L. XPO1 Inhibitor Selinexor Overcomes Intrinsic Ibrutinib Resistance in Mantle Cell Lymphoma via Nuclear Retention of IkappaB. Mol. Cancer Ther. 2018, 17, 2564–2574. [Google Scholar] [CrossRef] [Green Version]
- Miloudi, H.; Leroy, K.; Jardin, F.; Sola, B. STAT6 is a cargo of exportin 1: Biological relevance in primary mediastinal B-cell lymphoma. Cell. Signal. 2018, 46, 76–82. [Google Scholar] [CrossRef] [Green Version]
- Tabe, Y.; Kojima, K.; Yamamoto, S.; Sekihara, K.; Matsushita, H.; Davis, R.E.; Wang, Z.; Ma, W.; Ishizawa, J.; Kazuno, S.; et al. Ribosomal Biogenesis and Translational Flux Inhibition by the Selective Inhibitor of Nuclear Export (SINE) XPO1 Antagonist KPT-185. PLoS ONE 2015, 10, e0137210. [Google Scholar] [CrossRef]
- Karimian, A.; Ahmadi, Y.; Yousefi, B. Multiple functions of p21 in cell cycle, apoptosis and transcriptional regulation after DNA damage. DNA Repair 2016, 42, 63–71. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Ao, X.; Ding, W.; Ponnusamy, M.; Wu, W.; Hao, X.; Yu, W.; Wang, Y.; Li, P.; Wang, J. Critical role of FOXO3a in carcinogenesis. Mol. Cancer 2018, 17, 104. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yoshimura, M.; Ishizawa, J.; Ruvolo, V.; Dilip, A.; Quintás-Cardama, A.; McDonnell, T.J.; Neelapu, S.S.; Kwak, L.W.; Shacham, S.; Kauffman, M.; et al. Induction of p53-mediated transcription and apoptosis by exportin-1 ( XPO 1) inhibition in mantle cell lymphoma. Cancer Sci. 2014, 105, 795–801. [Google Scholar] [CrossRef]
- Deng, M.; Zhang, M.; Xu-Monette, Z.Y.; Pham, L.V.; Tzankov, A.; Visco, C.; Fang, X.; Bhagat, G.; Zhu, F.; Dybkaer, K.; et al. XPO1 expression worsens the prognosis of unfavorable DLBCL that can be effectively targeted by selinexor in the absence of mutant p53. J. Hematol. Oncol. 2020, 13, 148. [Google Scholar] [CrossRef] [PubMed]
- Kashyap, T.; Argueta, C.; Unger, T.; Klebanov, B.; Debler, S.; Senapedis, W.; Crochiere, M.L.; Lee, M.S.; Kauffman, M.; Shacham, S.; et al. Selinexor reduces the expression of DNA damage repair proteins and sensitizes cancer cells to DNA damaging agents. Oncotarget 2018, 9, 30773–30786. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nachmias, B.; Schimmer, A.D. Targeting nuclear import and export in hematological malignancies. Leukemia 2020, 34, 2875–2886. [Google Scholar] [CrossRef] [PubMed]
- Kashyap, T.; Argueta, C.; Aboukameel, A.; Unger, T.J.; Klebanov, B.; Mohammad, R.M.; Landesman, Y. Selinexor, a Selective Inhibitor of Nuclear Export (SINE) compound, acts through NF-kappaB deactivation and combines with proteasome inhibitors to synergistically induce tumour cell death. Oncotarget 2016, 7, 78883–78895. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xia, L.; Tan, S.; Zhou, Y.; Lin, J.; Wang, H.; Oyang, L.; Liao, Q. Role of the NFκB-signaling pathway in cancer. Onco Targets Ther. 2018, 11, 2063–2073. [Google Scholar] [CrossRef] [Green Version]
- Yu, H.; Pardoll, D.; Jove, R. STATs in cancer inflammation and immunity: A leading role for STAT3. Nat. Rev. Cancer 2009, 9, 798–809. [Google Scholar] [CrossRef]
- Yildiz, M.; Li, H.; Bernard, D.; Amin, N.A.; Ouillette, P.; Jones, S.; Saiya-Cork, K.; Parkin, B.; Jacobi, K.; Shedden, K.; et al. Activating STAT6 mutations in follicular lymphoma. Blood 2015, 125, 668–679. [Google Scholar] [CrossRef]
- Ritz, O.; Guiter, C.; Castellano, F.; Dorsch, K.; Melzner, J.; Jais, J.-P.; Dubois, G.; Gaulard, P.; Möller, P.; Leroy, K. Recurrent mutations of the STAT6 DNA binding domain in primary mediastinal B-cell lymphoma. Blood 2009, 114, 1236–1242. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Morin, R.D.; Assouline, S.; Alcaide, M.; Mohajeri, A.; Johnston, R.L.; Chong, L.; Grewal, J.; Yu, S.; Fornika, D.; Bushell, K.; et al. Genetic Landscapes of Relapsed and Refractory Diffuse Large B-Cell Lymphomas. Clin. Cancer Res. 2016, 22, 2290–2300. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cheng, Y.; Holloway, M.P.; Nguyen, K.; McCauley, D.; Landesman, Y.; Kauffman, M.G.; Shacham, S.; Altura, R.A. XPO1 (CRM1) Inhibition Represses STAT3 Activation to Drive a Survivin-Dependent Oncogenic Switch in Triple-Negative Breast Cancer. Mol. Cancer Ther. 2014, 13, 675–686. [Google Scholar] [CrossRef] [Green Version]
- Borden, K.L.B. The Nuclear Pore Complex and mRNA Export in Cancer. Cancers 2020, 13, 42. [Google Scholar] [CrossRef] [PubMed]
- Culjkovic-Kraljacic, B.; Baguet, A.; Volpon, L.; Amri, A.; Borden, K.L. The Oncogene eIF4E Reprograms the Nuclear Pore Complex to Promote mRNA Export and Oncogenic Transformation. Cell Rep. 2012, 2, 207–215. [Google Scholar] [CrossRef] [PubMed]
- Natalizio, B.J.; Wente, S.R. Postage for the messenger: Designating routes for nuclear mRNA export. Trends Cell Biol. 2013, 23, 365–373. [Google Scholar] [CrossRef] [Green Version]
- Culjkovic-Kraljacic, B.; Borden, K.L.B. The Impact of Post-transcriptional Control: Better Living Through RNA Regulons. Front. Genet. 2018, 9, 512. [Google Scholar] [CrossRef]
- Graff, J.R.; Zimmer, S.G. Translational control and metastatic progression: Enhanced activity of the mRNA cap-binding protein eIF4E selectively enhances translation of metastasis-related mRNAs. Clin. Exp. Metastasis 2003, 20, 265–273. [Google Scholar] [CrossRef]
- Culjkovic, B.; Topisirovic, I.; Skrabanek, L.; Ruiz-Gutierrez, M.; Borden, K.L. eIF4E promotes nuclear export of cyclin D1 mRNAs via an element in the 3′UTR. J. Cell Biol. 2005, 169, 245–256. [Google Scholar] [CrossRef]
- Shannon-Lowe, C.; Rickinson, A.B.; Bell, A.I. Epstein–Barr virus-associated lymphomas. Philos. Trans. R. Soc. B Biol. Sci. 2017, 372, 20160271. [Google Scholar] [CrossRef]
- Hutten, S.; Kehlenbach, R.H. CRM1-mediated nuclear export: To the pore and beyond. Trends Cell Biol. 2007, 17, 193–201. [Google Scholar] [CrossRef] [PubMed]
- Sheng, P.; Fields, C.; Aadland, K.; Wei, T.; Kolaczkowski, O.; Gu, T.; Kolaczkowski, B.; Xie, M. Dicer cleaves 5′-extended microRNA precursors originating from RNA polymerase II transcription start sites. Nucleic Acids Res. 2018, 46, 5737–5752. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Okamura, M.; Inose, H.; Masuda, S. RNA Export through the NPC in Eukaryotes. Genes 2015, 6, 124–149. [Google Scholar] [CrossRef] [PubMed]
- Moy, T.I.; Silver, P.A. Requirements for the nuclear export of the small ribosomal subunit. J. Cell Sci. 2002, 115, 2985–2995. [Google Scholar] [CrossRef]
- Han, X.; Wang, J.; Shen, Y.; Zhang, N.; Wang, S.; Yao, J.; Shi, Y. CRM1 as a new therapeutic target for non-Hodgkin lymphoma. Leuk. Res. 2014, 39, 38–46. [Google Scholar] [CrossRef] [PubMed]
- Abeykoon, J.P.; Paludo, J.; Nowakowski, K.E.; Stenson, M.J.; King, R.L.; Wellik, L.E.; Wu, X.; Witzig, T.E. The effect of CRM1 inhibition on human non-Hodgkin lymphoma cells. Blood Cancer J. 2019, 9, 24. [Google Scholar] [CrossRef] [Green Version]
- Xu, P.; Liu, X.; Ouyang, J.; Chen, B. TP53 mutation predicts the poor prognosis of non-Hodgkin lymphomas: Evidence from a meta-analysis. PLoS ONE 2017, 12, e0174809. [Google Scholar] [CrossRef] [Green Version]
- Zhang, K.J.; Wang, M. Potential effects of CRM1 inhibition in mantle cell lymphoma. Chin. J. Cancer Res. 2012, 24, 374–387. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kasamon, Y.L.; Price, L.S.; Okusanya, O.O.; Richardson, N.C.; Li, R.-J.; Ma, L.; Wu, Y.-T.; Theoret, M.; Pazdur, R.; Gormley, N.J. FDA Approval Summary: Selinexor for Relapsed or Refractory Diffuse Large B-Cell Lymphoma. Oncologist 2021, 26, 879–886. [Google Scholar] [CrossRef] [PubMed]
- Tarantelli, C.; Zhang, L.; Curti, E.; Gaudio, E.; Spriano, F.; Priebe, V.; Cascione, L.; Arribas, A.J.; Zucca, E.; Rossi, D.; et al. The Bruton tyrosine kinase inhibitor zanubrutinib (BGB-3111) demonstrated synergies with other anti-lymphoma targeted agents. Haematologica 2019, 104, e307–e309. [Google Scholar] [CrossRef]
- Abeykoon, J.P.; Wu, X.; Nowakowski, K.E.; Dasari, S.; Paludo, J.; Weroha, S.J.; Hu, C.; Hou, X.; Sarkaria, J.N.; Mladek, A.C.; et al. Salicylates enhance CRM1 inhibitor antitumour activity by induction of S-phase arrest and impairment of DNA-damage repair. Blood 2021, 137, 513–523. [Google Scholar] [CrossRef] [PubMed]
- Elloul, S.; Chang, H.; Klebanov, B.; Kashyap, T.; Werman, M.; Lee, M.; Landesman, Y.; Shacham, S.; Kauffman, M.; Friedlander, S.Y. Abstract 1299: Selinexor, a selective inhibitor of nuclear export (SINE) compound shows enhanced anti-tumour activity when combined with either venetoclax or bendamustine in diffuse large B cell lymphoma (DLBCL) mouse models. Cancer Res. 2016, 76, 1299. [Google Scholar] [CrossRef]
- Seymour, E.K.; Khan, H.Y.; Li, Y.; Chaker, M.; Muqbil, I.; Aboukameel, A.; Ramchandren, R.; Houde, C.; Sterbis, G.; Yang, J.; et al. Selinexor in Combination with R-CHOP for Frontline Treatment of Non-Hodgkin Lymphoma: Results of a Phase I Study. Clin. Cancer Res. 2021, 27, 3307–3316. [Google Scholar] [CrossRef] [PubMed]
- Sawalha, Y.; Bond, D.A.; Alinari, L. Evaluating the Therapeutic Potential of Zanubrutinib in the Treatment of Relapsed/Refractory Mantle Cell Lymphoma: Evidence to Date. OncoTargets Ther. 2020, 13, 6573–6581. [Google Scholar] [CrossRef]
- Yang, H.; Xiang, B.; Song, Y.; Zhang, H.; Zhao, W.; Zou, D.-H.; Lv, F.; Guo, W.; Liu, A.; Li, C.; et al. Zanubrutinib monotherapy for relapsed or refractory non-germinal center diffuse large B-cell lymphoma. Blood Adv. 2022, 6, 1629–1636. [Google Scholar] [CrossRef]
- Kashyap, T.; Muqbil, I.; Aboukameel, A.; Klebanov, B.; Mohammad, R.; Azmi, A.S.; Landesman, Y. Combination of Selinexor and the Proteasome Inhibitor, Bortezomib Shows Synergistic Cytotoxicity in Diffuse Large B-Cells Lymphoma Cells In Vitro and In Vivo. Blood 2016, 128, 4131. [Google Scholar] [CrossRef]
- Wang, R.; Shen, J.; Wang, Q.; Zhang, M. Bortezomib inhibited the progression of diffuse large B-cell lymphoma via targeting miR-198. Biomed. Pharmacother. 2018, 108, 43–49. [Google Scholar] [CrossRef]
- Stark, L.A.; Dunlop, M.G. Nucleolar sequestration of RelA (p65) regulates NF-kappaB-driven transcription and apoptosis. Mol. Cell Biol. 2005, 25, 5985–6004. [Google Scholar] [CrossRef] [Green Version]
- Ranganathan, P.; Kashyap, T.; Yu, X.; Meng, X.; Lai, T.H.; McNeil, B.; Garzon, R. XPO1 Inhibition using Selinexor Synergizes with Chemotherapy in Acute Myeloid Leukemia by Targeting DNA Repair and Restoring Topoisomerase IIalpha to the Nucleus. Clin. Cancer Res. 2016, 22, 6142–6152. [Google Scholar] [CrossRef] [Green Version]
- Schuetz, J.M.; Johnson, N.A.; Morin, R.D.; Scott, D.W.; Tan, K.; Ben-Nierah, S.; Boyle, M.J.; Slack, G.W.; Marra, M.A.; Connors, J.M.; et al. BCL2 mutations in diffuse large B-cell lymphoma. Leukemia 2011, 26, 1383–1390. [Google Scholar] [CrossRef]
- Sanchez-Gonzalez, B.; Peñalver, F.J.; Medina, A.; Guillén, H.; Calleja, M.; Gironella, M.; Arranz, R.; Sebastian, E.; de Oña, R.; Cánovas, A.; et al. Clinical experience of bendamustine treatment for non-Hodgkin lymphoma and chronic lymphocytic leukemia in Spain. Leuk. Res. 2012, 36, 709–714. [Google Scholar] [CrossRef] [PubMed]
- Hall, A.; Tilby, M. Mechanisms of action of, and modes of resistance to, alkylating agents used in the treatment of haematological malignancies. Blood Rev. 1992, 6, 163–173. [Google Scholar] [CrossRef]
- Herrera, A.; Ogbu, U.; Ku, G.; Chuo, C. Real-World Bendamustine Use in Relapsed/Refractory Diffuse Large B-Cell Lymphoma (R/R DLBCL). Hematol. Oncol. 2019, 37, 428–429. [Google Scholar] [CrossRef] [Green Version]
- Hong, J.Y.; Yoon, D.H.; Suh, C.; Kim, W.S.; Kim, S.J.; Jo, J.-C.; Kim, J.S.; Lee, W.-S.; Oh, S.Y.; Park, Y.; et al. Bendamustine plus rituximab for relapsed or refractory diffuse large B cell lymphoma: A multicenter retrospective analysis. Ann. Hematol. 2018, 97, 1437–1443. [Google Scholar] [CrossRef] [PubMed]
- Hill, R.; Rabb, M.; Madureira, P.; Clements, D.; A Gujar, S.; Waisman, D.; A Giacomantonio, C.; Lee, P.W.K. Gemcitabine-mediated tumour regression and p53-dependent gene expression: Implications for colon and pancreatic cancer therapy. Cell Death Dis. 2013, 4, e791. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, S.; Young, K.H.; Medeiros, L.J. Diffuse large B-cell lymphoma. Pathology 2018, 50, 74–87. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kuruvilla, J.; Savona, M.; Baz, R.; Mau-Sørensen, M.; Gabrail, N.; Garzon, R.; Stone, R.; Wang, M.; Savoie, L.; Martin, P.; et al. Selective inhibition of nuclear export with selinexor in patients with non-Hodgkin lymphoma. Blood 2017, 129, 3175–3183. [Google Scholar] [CrossRef] [PubMed]
- Kalakonda, N.; Maerevoet, M.; Cavallo, F.; Follows, G.; Goy, A.; Vermaat, J.S.P.; Casasnovas, O.; Hamad, N.; Zijlstra, J.M.; Bakhshi, S.; et al. Selinexor in patients with relapsed or refractory diffuse large B-cell lymphoma (SADAL): A single-arm, multinational, multicentre, open-label, phase 2 trial. Lancet Haematol. 2020, 7, e511–e522. [Google Scholar] [CrossRef] [PubMed]
- Stephens, D.M.; Huang, Y.; Agyeman, A.; Ruppert, A.S.; Hu, B.; Turner, N.; Vadeboncoeur, R.; A Rogers, K.; Bhat, S.A.; William, B.M.; et al. Selinexor Combined with Ibrutinib Demonstrates Tolerability and Efficacy in Advanced B-Cell Malignancies: A Phase I Study. Blood 2019, 134, 4310. [Google Scholar] [CrossRef]
- Tang, T.; Martin, P.; Somasundaram, N.; Lim, C.; Tao, M.; Poon, E.; Yunon, M.J.; Toh, S.Q.; Yan, S.X.; Farid, M.; et al. Phase I study of selinexor in combination with dexamethasone, ifosfamide, carboplatin, etoposide chemotherapy in patients with relapsed or refractory peripheral T-cell or natural-killer/T-cell lymphoma. Haematologica 2021, 106, 3170–31755. [Google Scholar] [CrossRef]
- Kuruvilla, J.; Byrd, J.C.; Flynn, J.M.; Garzon, R.; Porcu, P.; Wagner-Johnston, N.; Shacham, S. The Oral Selective Inhibitor of Nuclear Export (SINE) Selinexor (KPT-330) Demonstrates Broad and Durable Clinical Activity in Relapsed/Refractory Non Hodgkin’s Lymphoma (NHL). Blood 2014, 124, 396. [Google Scholar] [CrossRef]
- Crespo, M.; Carabia, J.; Jiménez, I.; Bobillo, S.; Abrisqueta, P.; Palacio, C.; Carpio, C.; Castellvi, J.; Purroy, N.; Seoane, J.; et al. XPO1 Inhibition By Selinexor Synergizes with BCR Inhibition, Blocks Tumour Growth and Prolongs Survival in a Bioluminescent Animal Model of Primary Central Nervous System Lymphoma. Blood 2016, 128, 463. [Google Scholar] [CrossRef]
- Stephens, D.M.; Huang, Y.; Ruppert, A.S.; Walker, J.S.; Canfield, D.; Cempre, C.B.; Fu, Q.; Baker, S.; Hu, B.; Shah, H.; et al. Selinexor Combined with Ibrutinib Demonstrates Tolerability and Safety in Advanced B-Cell Malignancies: A Phase I Study. Clin. Cancer Res. 2022, 28, 3242–3247. [Google Scholar] [CrossRef] [PubMed]
Cargo Protein | Cargo Function | Discovered in | Methods |
---|---|---|---|
p53 [7] | Tumour suppressor protein | Non-Hodgkin lymphoma | Immunofluroescence staining, Western blotting, and immunoprecipitation after NHL cells were treated with nuclear export inhibitor KPT-185 |
p73 [7] | Tumour suppressor protein | Non-Hodgkin lymphoma | Immunofluroescence staining, Western blotting, and immunoprecipitation after NHL cells were treated with nuclear export inhibitor KPT-185 |
p21 [7] | Tumour suppressor protein; CDK inhibitor | Non-Hodgkin lymphoma | Western blotting after NHL cells were treated with nuclear export inhibitor KPT-185 |
p27 [7] | Tumour suppressor protein; CDK inhibitor | Non-Hodgkin lymphoma | Western blotting after NHL cells were treated with nuclear export inhibitor KPT-185 |
FOXO3 [7] | Tumour suppressor protein | Non-Hodgkin lymphoma | Western blotting after NHL cells were treated with nuclear export inhibitor KPT-185 |
IkB [8] | Inhibitor of inflammation | Non-Hodgkin lymphoma | Fluorescence microscopy and flow cytometry in NHL cells treated with nuclear export inhibitor KPT-330 |
STAT6 [9] | Transcription factor for maturation of immune cells including B cells, T cells, and macrophages | Primary mediastinal B-cell lymphoma | Immunofluroescence staining with overlap showing interaction of XPO1 and STAT, and how nuclear export inhibitor KPT-330 disrupts this |
Cyclin D1 mRNA [10] | Cell cycle progression factor | Mantle cell lymphoma | Immunoblotting after NHL cells were treated with nuclear export inhibitor KPT-185 |
PIM1 mRNA [10] | Cell cycle progression factor | Mantle cell lymphoma | Immunoblotting after NHL cells were treated with nuclear export inhibitor KPT-185 |
c-Myc mRNA [10] | Transcription factor for cell proliferation | Mantle cell lymphoma | Immunoblotting after NHL cells were treated with nuclear export inhibitor KPT-185 |
Preclinical Model | Lymphoma Type | Results | Significance |
---|---|---|---|
Cell lines and patient tumour samples [35] | Non-Hodgkin lymphoma | Induction of caspase and PARP cleavage initiating apoptosis | SINE-induced apoptosis is initiated by several mechanisms |
Cell lines [7] | Non-Hodgkin lymphoma | Initiated apoptosis regardless of p53 function, but silencing other family members reduced efficacy | p53 and its family members play an important role in SINE-mediated cytotoxicity |
Cell lines [13] | Mantle cell lymphoma | Initiated expression of anti-cancer proteins and induced apoptosis regardless of p53 function, but p53-mutant cells were less sensitive | p53 plays an important role in SINE-mediated cytotoxicity |
Mouse models [7] | Non-Hodgkin lymphoma | Inhibition of tumour growth with anti-cancer activity equivalent to the chemotherapy standard of care (SOC), possibly due to enhancement of p73 | Enhanced expression and activity of p73 as a result of SINE compounds may be a mechanism behind their strong anti-cancer activity; provides a direct comparison of the treatment’s efficacy to the SOC with positive results |
Mouse models [35] | Non-Hodgkin lymphoma | Inhibition of tumour growth with minimal toxicity and weight loss | Demonstrates safety and efficacy in vivo |
Cell Lines [36] | Non-Hodgkin lymphoma | Strong anti-proliferative effects and cell cycle arrest were observed in T-cell lymphoma and mantle cell lymphoma, with less pronounced effects in diffuse large B-cell lymphoma | Demonstrates selinexor’s anti-cancer effects at the molecular level and how they vary in different non-Hodgkin lymphomas |
Combination Therapy | Drug Class | Used in | Preclinical Model | Outcomes/Relevant Data |
---|---|---|---|---|
S + zanubrutinib [40] | BTK inhibitor | Diffuse large B-cell lymphoma | Cell lines | Synergistic effects on lowering cell count |
S + zanubrutinib [40] | BTK inhibitor | Mantle cell lymphoma | Cell lines | Synergistic effects on lowering cell count |
S + bortezomib [36] | Proteasome inhibitor | Non-Hodgkin lymphoma | Cell Lines | Synergistic cytotoxic effects were seen in mantle cell lymphoma and T-cell lymphoma, but not diffuse large B-cell lymphoma |
S + gemcitabine [36] | Chemotherapy | Non-Hodgkin lymphoma | Cell Lines | Synergistic cytotoxic effects were seen in mantle cell lymphoma and T-cell lymphoma, but not diffuse large B-cell lymphoma |
S + choline salicylate [41] | Anti-inflammatory | Non-Hodgkin lymphoma | Cell lines and mouse models | Synergistic effects on apoptosis and tumour shrinkage |
S + venetoclax [42] | BCL-2 inhibitor | Diffuse large B-cell lymphoma | Cell lines and mouse models | Synergistic effects on apoptosis and tumour shrinkage |
S + bendamustine [42] | Chemotherapy | Diffuse large B-cell lymphoma | Cell lines and mouse models | Synergistic effects on apoptosis and tumour shrinkage |
S + CHO [43] | Chemotherapy combination | Non-Hodgkin lymphoma | Cell lines and mouse models | Synergistic cytotoxic effects, increased survival |
NCT | Treatment | Phase | Disease Type | Major Outcomes | Notable Toxicities |
---|---|---|---|---|---|
NCT01607892 [57] | Selinexor | I | Relapsed/refractory Non-Hodgkin lymphoma | ORR: 31% RP2D: 60 mg | 1 DLT of grade 4 thrombocytopenia MTD: not reached |
NCT02227251 [58] | Selinexor | II | Relapsed/refractory diffuse large B-cell lymphoma | ORR: 28% | Discontinuation of the 100 mg cohort due to higher toxicity with no significant added benefit |
NCT02303392 [59] | Selinexor + ibrutinib | I | Relapsed/refractory Non-Hodgkin lymphoma/Chronic lymphocytic leukemia | DCR: 81% ORR: 33% SD: 48% | MTD: 40 mg selinexor + 420 mg daily ibrutinib DLT: experienced in 2/33 patients |
NCT03147885 [43] | Selinexor + R-CHOP | I | Non-Hodgkin lymphoma | ORR: 100% CR: 90% RP2D: 60 mg selinexor | MTD: not reached Higher rate of grade 3 AEs in 80 mg group with no significant added benefit |
NCT03212937 [60] | Selinexor + DICE | I | Relapsed/refractory peripheral T-cell lymphoma/natural killer T-cell lymphoma | ORR: 91% CR: 82% | MTD: 40 mg selinexor DLT: 2 patients 45% of patients discontinuing treatment for reasons other than disease progression/poor response |
NCT Identifier | Treatment | Phase | Disease Type |
---|---|---|---|
NCT02741388 | Selinexor + R-DHAOx/R-GDP | II | Relapsed/refractory B-cell lymphoma |
NCT02227251 | Selinexor | IIb | Relapsed/refractory diffuse large B-cell lymphoma |
NCT02471911 | Selinexor + R-ICE | I | Relapsed/refractory B-cell lymphoma |
NCT03212937 | Selinexor + ICE | I | Peripheral T-cell lymphoma |
NCT04442022 | R-GDP +/− selinexor | II/III | Transplant/CAR-T ineligible relapsed/refractory B-cell lymphoma |
NCT02303392 | Selinexor + ibrutinib | I | Relapsed/refractory Non-Hodgkin lymphoma/Chronic lymphocytic leukemia |
NCT02436707 | Selinexor + R-GDP | II | Relapsed/refractory aggressive transplant ineligible B-cell lymphoma |
NCT03992339 | Selinexor | II | Relapsed/refractory diffuse large B-cell lymphoma |
NCT03147885 | Selinexor + RCHOP | Ib/II | B cell lymphoma |
NCT04640779 | Selinexor + choline salicylate | Ib | Relapsed/refractory Non-Hodgkin lymphoma |
NCT03955783 | Selinexor + venetoclax | Ib | High risk hematologic malignancies |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Trkulja, K.L.; Manji, F.; Kuruvilla, J.; Laister, R.C. Nuclear Export in Non-Hodgkin Lymphoma and Implications for Targeted XPO1 Inhibitors. Biomolecules 2023, 13, 111. https://doi.org/10.3390/biom13010111
Trkulja KL, Manji F, Kuruvilla J, Laister RC. Nuclear Export in Non-Hodgkin Lymphoma and Implications for Targeted XPO1 Inhibitors. Biomolecules. 2023; 13(1):111. https://doi.org/10.3390/biom13010111
Chicago/Turabian StyleTrkulja, Kyla L., Farheen Manji, John Kuruvilla, and Rob C. Laister. 2023. "Nuclear Export in Non-Hodgkin Lymphoma and Implications for Targeted XPO1 Inhibitors" Biomolecules 13, no. 1: 111. https://doi.org/10.3390/biom13010111
APA StyleTrkulja, K. L., Manji, F., Kuruvilla, J., & Laister, R. C. (2023). Nuclear Export in Non-Hodgkin Lymphoma and Implications for Targeted XPO1 Inhibitors. Biomolecules, 13(1), 111. https://doi.org/10.3390/biom13010111