Dendritic Cell Density and Morphology Can Be Used to Differentiate Vernal Keratoconjunctivitis from Allergic Conjunctivitis
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design and Participants
2.2. Ocular Surface Symptoms and Signs
2.3. In Vivo Assessment of DC Density and Morphology Using Confocal Microscopy
2.4. Statistical Analysis
3. Results
3.1. Clinical Findings
3.2. DC Density
3.3. DC Morphology
3.4. Associations between DC Density and Morphology and Ocular Surface Symptoms and Signs
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Dupuis, P.; Prokopich, C.L.; Hynes, A.; Kim, H. A contemporary look at allergic conjunctivitis. Allergy Asthma Clin. Immunol. 2020, 16, 5. [Google Scholar] [CrossRef] [PubMed]
- Uphoff, E.; Cabieses, B.; Pinart, M.; Valdés, M.; Antó, J.M.; Wright, J. A systematic review of socioeconomic position in relation to asthma and allergic diseases. Eur. Respir. J. 2015, 46, 364. [Google Scholar] [CrossRef] [PubMed]
- Belfort, R.; Marbeck, P.; Hsu, C.C.; Freitas, D. Epidemiological study of 134 subjects with allergic conjunctivitis. Acta Ophthalmol. Scand 2000, 78, 38–40. [Google Scholar] [CrossRef] [PubMed]
- Kumar, S. Vernal keratoconjunctivitis: A major review. Acta Ophthalmol. 2009, 87, 133–147. [Google Scholar] [CrossRef]
- Ghiglioni, D.G.; Zicari, A.M.; Parisi, G.F.; Marchese, G.; Indolfi, C.; Diaferio, L.; Brindisi, G.; Ciprandi, G.; Marseglia, G.L.; Miraglia del Giudice, M. Vernal keratoconjunctivitis: An update. Eur. J. Ophthalmol. 2021, 31, 2828–2842. [Google Scholar] [CrossRef]
- Manzouri, B.; Flynn, T.; Ohbayashi, M.; Ono, S.J. The dendritic cell in allergic conjunctivitis. Ocul. Surf. 2008, 6, 70–78. [Google Scholar] [CrossRef]
- Saban, D.R.; Calder, V.; Kuo, C.-H.; Reyes, N.J.; Dartt, D.A.; Ono, S.J.; Niederkorn, J.Y. New twists to an old story: Novel concepts in the pathogenesis of allergic eye disease. Curr. Eye Res. 2013, 38, 317–330. [Google Scholar] [CrossRef]
- von Bubnoff, D.; Koch, S.; Bieber, T. Dendritic cells and atopic eczema/dermatitis syndrome. Curr. Opin. Allergy Clin. Immunol. 2003, 3, 353–358. [Google Scholar] [CrossRef]
- Sánchez-Hernández, M.; Montero, J.; Rondon, C.; Benitez del Castillo, J.; Velázquez, E.; Herreras, J.; Fernández-Parra, B.; Merayo-Lloves, J.; Del Cuvillo, A.; Vega, F.; et al. Consensus document on allergic conjunctivitis (DECA). J. Investig. Allergol. Clin. Immunol. 2015, 25, 94–106. [Google Scholar]
- Ohbayashi, M.; Manzouri, B.; Flynn, T.; Toda, M.; Ikeda, Y.; Nakamura, T.; Ono, S.J. Dynamic changes in conjunctival dendritic cell numbers, anatomical position and phenotype during experimental allergic conjunctivitis. Exp. Mol. Pathol. 2007, 83, 216–223. [Google Scholar] [CrossRef]
- Tajbakhsh, Z.; Golebiowski, B.; Stapleton, F.; Alghamdi, A.; Gray, P.E.; Altavilla, B.; Briggs, N.; Jalbert, I. Increased dendritic cell density and altered morphology in allergic conjunctivitis. Eye 2023, 6, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Le, Q.; Hong, J.; Zhu, W.; Sun, X.; Xu, J. In vivo laser scanning confocal microscopy of vernal keratoconjunctivitis. Clin. Exp. Ophthalmol. 2011, 39, 53–60. [Google Scholar] [CrossRef] [PubMed]
- Liu, M.; Gao, H.; Wang, T.; Wang, S.; Li, S.; Shi, W. An essential role for dendritic cells in vernal keratoconjunctivitis: Analysis by laser scanning confocal microscopy. Clin. Exp. Allergy 2014, 44, 362–370. [Google Scholar] [CrossRef] [PubMed]
- Mastropasqua, L.; Nubile, M.; Lanzini, M.; Carpineto, P.; Ciancaglini, M.; Pannellini, T.; Di Nicola, M.; Dua, H.S. Epithelial dendritic cell distribution in normal and inflamed human cornea: In vivo confocal microscopy study. Am. J. Ophthalmol. 2006, 142, 736–744. [Google Scholar] [CrossRef]
- Csorba, A.; Maneschg, O.A.; Resch, M.D.; Nagy, Z.Z. Examination of corneal microstructure in the quiescent phase of vernal keratoconjunctivitis using in vivo confocal microscopy. Eur. J. Ophthalmol. 2022, 33, 196–202. [Google Scholar] [CrossRef]
- Tajbakhsh, Z.; Jalbert, I.; Stapleton, F.; Alghamdi, A.; Gray, P.E.; Briggs, N.; Altavilla, B.; Mobeen, R.; Golebiowski, B. Dendritiform immune cells with reduced antigen-capture capacity persist in the cornea during the asymptomatic phase of allergic conjunctivitis. Eye 2023, 6, 1–8. [Google Scholar] [CrossRef]
- Tajbakhsh, Z.; Jalbert, I.; Kolanu, S.; Stapleton, F.; Golebiowski, B. Density and morphology of corneal epithelial dendritic cells are different in allergy. Curr. Eye Res. 2019, 45, 675–679. [Google Scholar] [CrossRef]
- Chinnery, H.R.; Zhang, X.Y.; Wu, C.Y.; Downie, L.E. Corneal immune cell morphometry as an indicator of local and systemic pathology: A review. Clin. Exp. Ophthalmol. 2021, 49, 729–740. [Google Scholar] [CrossRef]
- Chao, C.; Tajbakhsh, Z.; Stapleton, F.; Mobeen, R.; Madigan, M.C.; Jalbert, I.; Briggs, N.; Golebiowski, B. Corneal epithelial dendritic cells, tear neuropeptides and corneal nerves continue to be affected more than 12 months after LASIK. Acta Ophthalmol. 2022, 101, e302–e314. [Google Scholar] [CrossRef]
- Tajbakhsh, Z.; Jalbert, I.; Stapleton, F.; Briggs, N.; Golebiowski, B. Diurnal changes and topographical distribution of ocular surface epithelial dendritic cells in humans, and repeatability of density and morphology assessment. Ophthalmic Physiol. Opt. 2023, 43, 273–283. [Google Scholar] [CrossRef]
- Mobeen, R.; Stapleton, F.; Chao, C.; Madigan, M.C.; Briggs, N.; Golebiowski, B. Corneal epithelial dendritic cell density in the healthy human cornea: A meta-analysis of in-vivo confocal microscopy data. Ocul. Surf. 2019, 17, 753–762. [Google Scholar] [CrossRef]
- Takamura, E.; Uchio, E.; Ebihara, N.; Ohno, S.; Ohashi, Y.; Okamoto, S.; Kumagai, N.; Satake, Y.; Shoji, J.; Nakagawa, Y.; et al. Japanese guideline for allergic conjunctival diseases. Allergol. Int. 2011, 60, 191–203. [Google Scholar] [CrossRef] [PubMed]
- Bonini, S.; Coassin, M.; Aronni, S.; Lambiase, A. Vernal keratoconjunctivitis. Eye 2004, 18, 345–351. [Google Scholar] [CrossRef] [PubMed]
- Wolffsohn, J.S.; Naroo, S.A.; Gupta, N.; Emberlin, J. Prevalence and impact of ocular allergy in the population attending UK optometric practice. Cont. Lens Anterior Eye 2011, 34, 133–138. [Google Scholar] [CrossRef] [PubMed]
- Terry, R.L.; Schnider, C.M.; Holden, B.A.; Cornish, R.; Grant, T.; Sweeney, D.; La, D.H.; Back, A. CCLRU standards for success of daily and extended wear contact lenses. Optom. Vis. Sci. Off. Publ. Am. Acad. Optom. 1993, 70, 234–243. [Google Scholar] [CrossRef]
- Ward, B.R.; Jester, J.V.; Nishibu, A.; Vishwanath, M.; Shalhevet, D.; Kumamoto, T.; Petroll, W.M.; Cavanagh, H.D.; Takashima, A. Local thermal injury elicits immediate dynamic behavioural responses by corneal Langerhans cells. Immunology 2007, 120, 556–572. [Google Scholar] [CrossRef]
- Jamali, A.; Seyed-Razavi, Y.; Chao, C.; Ortiz, G.; Kenyon, B.; Blanco, T.; Harris, D.L.; Hamrah, P. Intravital multiphoton microscopy of the ocular surface: Alterations in conventional dendritic cell morphology and kinetics in dry eye disease. Front. Immunol. 2020, 11, 742. [Google Scholar] [CrossRef]
- Kissenpfennig, A.; Henri, S.; Dubois, B.; Laplace-Builhé, C.; Perrin, P.; Romani, N.; Tripp, C.H.; Douillard, P.; Leserman, L.; Kaiserlian, D.; et al. Dynamics and function of langerhans cells in vivo: Dermal dendritic cells colonize lymph node areas distinct from slower migrating langerhans cells. Immunity 2005, 22, 643–654. [Google Scholar] [CrossRef]
- Nasiri, N.; Sharifi, H.; Bazrafshan, A.; Noori, A.; Karamouzian, M.; Sharifi, A. Ocular manifestations of COVID-19: A systematic review and Meta-analysis. J. Ophthalmic Vis. Res. 2021, 16, 103–112. [Google Scholar] [CrossRef]
- Bitirgen, G.; Korkmaz, C.; Zamani, A.; Ozkagnici, A.; Zengin, N.; Ponirakis, G.; Malik, R.A. Corneal confocal microscopy identifies corneal nerve fibre loss and increased dendritic cells in patients with long COVID. Br. J. Ophthalmol. 2021, 106, 1635–1641. [Google Scholar] [CrossRef]
- Bergmann, K.-C.; Kugler, S.; Zuberbier, T.; Becker, S. Face masks suitable for preventing COVID-19 and pollen allergy. A study in the exposure chamber. Allergo J. Int. 2021, 30, 176–182. [Google Scholar] [CrossRef] [PubMed]
- Mengi, E.; Kara, C.O.; Alptürk, U.; Topuz, B. The effect of face mask usage on the allergic rhinitis symptoms in patients with pollen allergy during the covid-19 pandemic. Am. J. Otolaryngol. 2022, 43, 103206. [Google Scholar] [CrossRef] [PubMed]
- Downie, L.E.; Zhang, X.; Wu, M.; Karunaratne, S.; Loi, J.K.; Senthil, K.; Arshad, S.; Bertram, K.; Cunningham, A.L.; Carnt, N.; et al. Redefining the human corneal immune compartment using dynamic intravital imaging. Proc. Natl. Acad. Sci. USA 2023, 120, e2217795120. [Google Scholar] [CrossRef] [PubMed]
VKC (n = 20) | AC (n = 20) | Non-Allergy (n = 20) | p-Value | ||
---|---|---|---|---|---|
Ocular surface symptoms | AUAQ, Total symptom score (0–21) | 16 (13–19) ‡# | 10 (0–18) †# | 1 (0–3) †‡ | p < 0.001 |
Dryness (0–3) | 1 (0–2) ‡ | 1 (0–2) † | 0 (0–1) †‡ | p < 0.001 | |
Itchiness (0–3) | 3 (2–3) ‡ | 2 (0–3) † | 0 (0–0) †‡ | p < 0.001 | |
Burning (0–3) | 3 (2–3) ‡# | 1 (1–3) †# | 0 (0–1) †‡ | p < 0.001 | |
Stinging (0–3) | 2 (1–3) ‡# | 1 (0–3) †# | 0 (0–0) †‡ | p < 0.001 | |
Watering (0–3) | 1 (1–3) ‡ | 1 (0–2) † | 0 (0–1) †‡ | p < 0.001 | |
Redness (0–3) | 3 (2–3) ‡# | 2 (0–3) †# | 0 (0–1) †‡ | p < 0.001 | |
A need to rub eyes (0–3) | 3 (2–3) ‡# | 1 (0–3) †# | 0 (0–0) †‡ | p < 0.001 | |
Ocular surface signs | Limbal redness (0–4, 0.1) | 4.0 (3.0–4.0) ‡# | 2.9 (1.5–4.0) †# | 1.2 (0.5–2.0) †‡ | p < 0.001 |
Bulbar redness (0–4, 0.1) | 3.7 (2.8–4.0) ‡# | 2.9 (1.8–3.7) †# | 1.3 (0.7–2.0) †‡ | p < 0.001 | |
Palpebral redness (0–4, 0.1) | 3.5 (3.0–4.0) ‡# | 2.6 (1.5–4.0) †# | 1.2 (0.5–2.0) †‡ | p < 0.001 | |
Corneal epithelial disorder (0–3, 1) | 1 (0–2) ‡# | 0 (0–0) # | 0 (0–0) ‡ | p < 0.001 | |
Bulbar conjunctival chemosis (0–3, 1) | 1 (1–2) ‡# | 1 (0–2) †# | 0 (0–1) †‡ | p < 0.001 | |
Palpebral conjunctival papillae (0–3, 1) | 2 (1–2) ‡# | 0 (0–0) # | 0 (0–0) ‡ | p < 0.001 | |
Palpebral conjunctival follicle (0–3, 1) | 0 (0–2) ‡ | 0 (0–2) † | 0 (0–0) †‡ | p = 0.01 |
Location | Dendritic Cell Density (Cells/mm2) | Pairwise Comparison | ||||
---|---|---|---|---|---|---|
VKC (n = 20) | AC (n = 20) | Non-Allergy (n = 20) | Non-Allergy vs. AC | Non-Allergy vs. VKC | AC vs. VKC | |
Corneal centre | 126.2 (57.2–187.2) | 115.0 (37.2–181.6) | 13.7 (5.0–51.0) | 0.001 | 0.001 | 0.70 |
Inferior whorl | 50.0 (6.2–67.2) | 62.5 (12.5–153.1) | 9.4 (0–42.2) | 0.06 | ||
Corneal periphery | 83.7 (56.2–122.5) | 55.6 (38.7–84.4) | 17.5 (11.6–44.4) | 0.001 | 0.001 | 0.20 |
Corneal limbus | 294.4 (210.0–383.7) | 116.9 (86.9–210.0) | 77.5 (53.4–88.4) | 0.002 | 0.001 | 0.001 |
Bulbar conjunctiva | 78.1 (21.6–122.5) | 47.5 (6.6–92.5) | 5.6 (0–16.0) | 0.01 | 0.001 | 0.15 |
% of Participants | Pairwise Comparisons | |||||
---|---|---|---|---|---|---|
VKC n = 20 | AC n = 20 | Non-Allergy n = 20 | Non-Allergy vs. AC | Non-Allergy vs. VKC | AC vs. VKC | |
Presence of dendrites | ||||||
Corneal centre | 100% | 85% | 42% | 0.02 | 0.001 | 0.30 |
Inferior whorl | 31% | 33% | 7% | 0.31 | 0.35 | 1.0 |
Corneal periphery | 100% | 95% | 60% | 0.04 | 0.01 | 1.0 |
Corneal limbus | 100% | 100% | 100% | NA | NA | NA |
Bulbar conjunctiva | 100% | 100% | 86% | 0.40 | 0.40 | NA |
Presence of long dendrites | ||||||
Corneal centre | 60% | 35% | 5% | 0.09 | 0.001 | 0.20 |
Inferior whorl | 6% | 5% | 0 | 1.0 | 1.0 | 1.0 |
Corneal periphery | 84% | 55% | 10% | 0.01 | 0.001 | 0.08 |
Corneal limbus | 90% | 70% | 30% | 0.052 | 0.001 | 0.25 |
Bulbar conjunctiva | 84% | 88% | 50% | 0.13 | 0.13 | 1.0 |
Presence of thick dendrites | ||||||
Corneal centre | 0 | 0 | 0 | NA | NA | NA |
Inferior whorl | 0 | 0 | 0 | NA | NA | NA |
Corneal periphery | 10% | 0 | 0 | NA | 0.50 | 0.50 |
Corneal limbus | 55% | 40% | 20% | 0.60 | 0.15 | 0.60 |
Bulbar conjunctiva | 5% | 0 | 0 | NA | 1.0 | 1.0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tajbakhsh, Z.; Golebiowski, B.; Stapleton, F.; Salouti, R.; Nowroozzadeh, M.H.; Zamani, M.; Briggs, N.; Jalbert, I. Dendritic Cell Density and Morphology Can Be Used to Differentiate Vernal Keratoconjunctivitis from Allergic Conjunctivitis. Biomolecules 2023, 13, 1469. https://doi.org/10.3390/biom13101469
Tajbakhsh Z, Golebiowski B, Stapleton F, Salouti R, Nowroozzadeh MH, Zamani M, Briggs N, Jalbert I. Dendritic Cell Density and Morphology Can Be Used to Differentiate Vernal Keratoconjunctivitis from Allergic Conjunctivitis. Biomolecules. 2023; 13(10):1469. https://doi.org/10.3390/biom13101469
Chicago/Turabian StyleTajbakhsh, Zahra, Blanka Golebiowski, Fiona Stapleton, Ramin Salouti, M. Hosein Nowroozzadeh, Mohammad Zamani, Nancy Briggs, and Isabelle Jalbert. 2023. "Dendritic Cell Density and Morphology Can Be Used to Differentiate Vernal Keratoconjunctivitis from Allergic Conjunctivitis" Biomolecules 13, no. 10: 1469. https://doi.org/10.3390/biom13101469
APA StyleTajbakhsh, Z., Golebiowski, B., Stapleton, F., Salouti, R., Nowroozzadeh, M. H., Zamani, M., Briggs, N., & Jalbert, I. (2023). Dendritic Cell Density and Morphology Can Be Used to Differentiate Vernal Keratoconjunctivitis from Allergic Conjunctivitis. Biomolecules, 13(10), 1469. https://doi.org/10.3390/biom13101469