Hypoxia-Induced Changes in L-Cysteine Metabolism and Antioxidative Processes in Melanoma Cells
Abstract
:1. Introduction
2. Materials and Methods
2.1. Cell Culture
2.2. Cell Proliferation Measurement
2.3. Expression of Hypoxia Markers (CAIX, PFKBF4), and Proteins Involved in L-cysteine Metabolism (CBS, MPST, CTH, TST) and Thioredoxin/Glutathione Systems (TXNRD1, TRX, GPx)
2.3.1. Total RNA Isolation
2.3.2. Reverse Transcription (RT)
2.3.3. Polymerase Chain Reaction (PCR)
2.3.4. Densitometric Evaluation of PCR Products
2.4. Western Blot Analysis
2.5. Homogenate Preparation for Biochemical Measurements
2.6. MPST Activity Measurement
2.7. Sulfane Sulfur Level
2.8. Protein Level
2.9. Statistical Analysis
3. Results
3.1. Hypoxia-Related Genes Expression in Two Melanoma Cell Lines (WM115, WM266-4) under Different Oxygen Concentrations
3.2. The Effect of a Hypoxic Environment on Human Melanoma WM115 and WM266-4 Cells Proliferation
3.3. The Effect of Hypoxia Environment on Sulfane Sulfur Level in Human Melanoma WM115 and WM266-4 Cells
3.4. The Expression and Activity of 3-Mercapropyruvate Sulfurtransferase in Human Melanoma WM115 and WM266-4 Cells in a Hypoxia Environment
3.5. The Expression of Other Enzymes Involved in L-cysteine Metabolism in Human Melanoma WM115 and WM266-4 Cells in a Hypoxia Environment
3.6. The Expression of Enzymes Involved in Antioxidative Cellular Defense in Human Melanoma WM115 and WM266-4 Cells in a Hypoxia Environment
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Erdei, E.; Torres, S.M. A new understanding in the epidemiology of melanoma. Expert. Rev. Anticancer. Ther. 2010, 10, 1811–1823. [Google Scholar] [CrossRef] [PubMed]
- Leonardi, G.C.; Falzone, L.; Salemi, R.; Zanghì, A.; Spandidos, D.A.; Mccubrey, J.A.; Candido, S.; Libra, M. Cutaneous melanoma: From pathogenesis to therapy (Review). Int. J. Oncol. 2018, 52, 1071–1080. [Google Scholar] [CrossRef] [PubMed]
- Santiago-Walker, A.; Li, L.; Haass, N.K.; Herlyn, M. Melanocytes: From morphology to application. Skin Pharmacol. Physiol. 2009, 22, 114–121. [Google Scholar] [CrossRef] [PubMed]
- Bedogni, B.; Powell, M.B. Hypoxia, melanocytes and melanoma—Survival and tumor development in the permissive microenvironment of the skin. Pigment Cell Melanoma Res. 2009, 22, 166–174. [Google Scholar] [CrossRef] [PubMed]
- Petrova, V.; Annicchiarico-Petruzzelli, M.; Melino, G.; Amelio, I. The hypoxic tumour micro environment. Oncogenesis 2018, 7, 10. [Google Scholar] [CrossRef] [PubMed]
- Xi, L.; Peng, M.; Liu, S.; Liu, Y.; Wan, X.; Hou, Y.; Qin, Y.; Yang, L.; Chen, S.; Zeng, H.; et al. Hypoxia-stimulated ATM activation regulates autophagy-associated exosome release from cancer-associated fibroblasts to promote cancer cell invasion. J. Extracell. Vesicles 2021, 10, e12146. [Google Scholar] [CrossRef] [PubMed]
- Gilkes, D.M.; Semenza, G.L.; Wirtz, D. Hypoxia and the extracellular matrix: Drivers of tumour metastasis. Nat. Rev. Cancer 2014, 14, 430–439. [Google Scholar] [CrossRef] [PubMed]
- Semenza, G.L. Targeting HIF-1 for cancer therapy. Nat. Rev. Cancer 2003, 3, 721–732. [Google Scholar] [CrossRef]
- Xu, B.; Zhang, X.; Gao, Y.; Song, J.; Shi, B. Microglial Annexin A3 promoted the development of melanoma via activation of hypoxia-inducible factor-1α/vascular endothelial growth factor signaling pathway. J. Clin. Lab. Anal. 2021, 35, e23622. [Google Scholar] [CrossRef]
- Chamboredon, S.; Ciais, D.; Desroches-Castan, A.; Savi, P.; Bono, F.; Feige, J.J.; Cherradi, N. Hypoxia-inducible factor-1α mRNA: A new target for destabilization by tristetraprolin in endothelial cells. Mol. Biol. Cell. 2011, 22, 3366–3378. [Google Scholar] [CrossRef]
- Choi, J.; Kim, W.; Yoon, H.; Lee, J.; Jun, J.H. Dynamic oxygen conditions promote the translocation of HIF-1α to the nucleus in mouse blastocysts. Biomed. Res. Int. 2021, 2021, 5050527. [Google Scholar] [CrossRef] [PubMed]
- Ke, Q.; Costa, M. Hypoxia-inducible factor-1 (HIF-1). Mol. Pharmacol. 2006, 70, 1469–1480. [Google Scholar] [CrossRef] [PubMed]
- Ziello, J.E.; Jovin, I.S.; Huang, Y. Hypoxia-Inducible Factor (HIF)-1 regulatory pathway and its potential for therapeutic intervention in malignancy and ischemia. Yale J. Biol. Med. 2007, 80, 51–60. [Google Scholar] [PubMed]
- Succoio, M.; Amiranda, S.; Sasso, E.; Marciano, C.; Finizio, A.; De Simone, G.; Garbi, C.; Zambrano, N. Carbonic anhydrase IX subcellular localization in normoxic and hypoxic SH-SY5Y neuroblastoma cells is assisted by its C-terminal protein interaction domain. Heliyon 2023, 9, e18885. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.; Lu, C.; Fang, M.; Yan, W.; Chen, M.; Ji, Y.; He, S.; Liu, T.; Chen, T.; Xiao, J. HIF-1α activates hypoxia-induced PFKFB4 expression in human bladder cancer cells. Biochem. Biophys. Res. Commun. 2016, 476, 146–152. [Google Scholar] [CrossRef] [PubMed]
- Kotowski, K.; Supplitt, S.; Wiczew, D.; Przystupski, D.; Bartosik, W.; Saczko, J.; Rossowska, J.; Drąg-Zalesińska, M.; Michel, O.; Kulbacka, J. 3PO as a selective inhibitor of 6-phosphofructo-2-kinase/fructose-2,6-biphosphatase 3 in A375 human melanoma cells. Anticancer. Res. 2020, 40, 2613–2625. [Google Scholar] [CrossRef] [PubMed]
- Trojan, S.E.; Dudzik, P.; Totoń-Żurańska, J.; Laidler, P.; Kocemba-Pilarczyk, K.A. Expression of alternative splice variants of 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase-4 in normoxic and hypoxic melanoma cells. Int. J. Mol. Sci. 2021, 22, 8848. [Google Scholar] [CrossRef] [PubMed]
- Venturella, M.; Falsini, A.; Coppola, F.; Giuntini, G.; Carraro, F.; Zocco, D.; Chiesi, A.; Naldini, A. CA-IX-expressing small Extracellular Vesicles (sEVs) are released by melanoma cells under hypoxia and in the blood of advanced melanoma patients. Int. J. Mol. Sci. 2023, 24, 6122. [Google Scholar] [CrossRef]
- Tafani, M.; Sansone, L.; Limana, F.; Arcangeli, T.; De Santis, E.; Polese, M.; Fini, M.; Russo, M.A. The interplay of reactive oxygen species, hypoxia, inflammation, and sirtuins in cancer initiation and progression. Oxid. Med. Cell Longev. 2015, 2016, 3907147. [Google Scholar] [CrossRef]
- Fuhrmann, D.C.; Brüne, B. Mitochondrial composition and function under the control of hypoxia. Redox Biol. 2017, 12, 208–215. [Google Scholar] [CrossRef]
- Zhang, J.; Li, X.; Han, X.; Liu, R.; Fang, J. Targeting the thioredoxin system for cancer therapy. Trends Pharmacol. Sci. 2017, 318, 794–808. [Google Scholar] [CrossRef]
- Jun, L.; Holmgren, A. The thioredoxin antioxidant system. Free Radic. Biol. Med. 2014, 66, 75–87. [Google Scholar] [CrossRef]
- Görlach, A.; Dimova, E.Y.; Petry, A.; Martínez-Ruiz, A.; Hernansanz-Agustín, P.; Rolo, A.P.; Palmeira, C.M.; Kietzmann, T. Reactive oxygen species, nutrition, hypoxia and diseases: Problems solved? Redox Biol. 2015, 6, 372–385. [Google Scholar] [CrossRef]
- Hernansanz-Agustín, P.; Izquierdo-Álvarez, A.; Sánchez-Gómez, F.J.; Ramos, E.; Villa-Piña, T.; Lamas, S.; Bogdanova, A.; Martínez-Ruiz, A. Acute hypoxia produces a superoxide burst in cells. Free Rad. Biol. Med. 2014, 71, 146–156. [Google Scholar] [CrossRef]
- Špaková, I.; Rabajdová, M.; Mičková, H.; Graier, W.F.; Mareková, M. Effect of hypoxia factors gene silencing on ROS production and metabolic status of A375 malignant melanoma cells. Sci. Rep. 2021, 11, 10325. [Google Scholar] [CrossRef] [PubMed]
- Giannopoulou, A.F.; Velentzas, A.D.; Anagnostopoulos, A.K.; Agalou, A.; Papandreou, N.C.; Katarachia, S.A.; Koumoundourou, D.G.; Konstantakou, E.G.; Pantazopoulou, V.I.; Delis, A.; et al. From proteomic mapping to invasion-metastasis-cascade systemic biomarkering and targeted drugging of mutant BRAF-dependent human cutaneous melanomagenesis. Cancers 2021, 13, 2024. [Google Scholar] [CrossRef]
- Biswas, S.K. Metabolic reprogramming of immune cells in cancer progression. Immunity 2015, 43, 435–449. [Google Scholar] [CrossRef] [PubMed]
- Konstantakou, E.G.; Velentzas, A.D.; Anagnostopoulos, A.K.; Litou, Z.I.; Konstandi, O.A.; Giannopoulou, A.F.; Voutsinas, G.E.; Tsangaris, G.T.; Stravopodis, D.J. Deep-proteome mapping of WM-266-4 human metastatic melanoma cells: From oncogenic addiction to druggable targets. PLoS ONE. 2017, 12, e0171512. [Google Scholar] [CrossRef]
- Surman, M.; Kędracka-Krok, S.; Hoja-Łukowicz, D.; Jankowska, U.; Drożdż, A.; Stępień, E.Ł.; Przybyło, M. Mass spectrometry-based proteomic characterization of cutaneous melanoma ectosomes reveals the presence of cancer-related molecules. Int. J. Mol. Sci. 2020, 21, 2934. [Google Scholar] [CrossRef]
- Gao, M.; Wang, R.; Yu, F.; Chen, L. Evaluation of sulfane sulfur bioeffects via a mitochondria-targeting selenium-containing near-infrared fluorescent probe. Biomaterials 2018, 160, 1–14. [Google Scholar] [CrossRef]
- Rydz, L.; Wróbel, M.; Jurkowska, H. Sulfur administration in Fe–S cluster homeostasis. Antioxidants 2021, 10, 1738. [Google Scholar] [CrossRef] [PubMed]
- Bora, P.; Sathian, M.; Chakrapani, H. Enhancing cellular sulfane sulfur through β-glycosidase-activated persulfide donors: Mechanistic insights and oxidative stress mitigation. Chem. Commun. 2022, 58, 2987–2990. [Google Scholar] [CrossRef] [PubMed]
- Toohey, J.I.; Cooper, A.J.L. Thiosulfoxide (Sulfane) sulfur: New chemistry and new regulatory roles in biology. Molecules 2014, 19, 12789–12813. [Google Scholar] [CrossRef] [PubMed]
- Szabo, C. Hydrogen sulfide, an endogenous stimulator of mitochondrial function in cancer cells. Cells 2021, 10, 220. [Google Scholar] [CrossRef] [PubMed]
- Stipanuk, M.H.; Ueki, I. Dealing with methionine/homocysteine sulfur: Cysteine metabolism to taurine and inorganic sulfur. J. Inherit. Metab. Dis. 2011, 34, 17–32. [Google Scholar] [CrossRef] [PubMed]
- Kimura, H. Hydrogen sulfide: Its production, release and functions. Amino Acids. 2011, 41, 113–121. [Google Scholar] [CrossRef] [PubMed]
- Kocemba-Pilarczyk, K.A.; Ostrowska, B.; Trojan, S.; Aslan, E.; Kusior, D.; Lasota, M.; Lenouvel, C.; Dulińska-Litewka, J. Targeting the hypoxia pathway in malignant plasma cells by using 17-allylamino-17-demethoxygeldanamycin. Acta Biochim. Pol. 2018, 65, 101–109. [Google Scholar] [CrossRef] [PubMed]
- Gillies, R.J.; Didier, N.; Denton, M. Determination of cell number in monolayer cultures. Anal. Biochem. 1986, 159, 109–113. [Google Scholar] [CrossRef]
- Jurkowska, H.; Wróbel, M.; Kaczor-Kamińska, M.; Jasek-Gajda, E. A possible mechanism of inhibition of U87MG and SH-SY5Y cancer cell proliferation by diallyl trisulfide and other aspects of its activity. Amino Acids. 2017, 49, 1855–1866. [Google Scholar] [CrossRef]
- Bronowicka-Adamska, P.; Bentke, A.; Wróbel, M. Hydrogen sulfide generation from L-cysteine in the human glioblastoma-astrocytoma U-87 MG and neuroblastoma SHSY5Y cell lines. Acta Biochim. Pol. 2017, 64, 171–176. [Google Scholar] [CrossRef]
- Levonen, A.L.; Lapatto, R.; Saksela, M.; Raivio, K.O. Human cystathionine c-lyase: Developmental and in vitro expression oftwo isoforms. Biochem. J. 2000, 347, 291–295. [Google Scholar] [CrossRef] [PubMed]
- Jurkowska, H.; Wróbel, M.; Jasek-Gajda, E.; Rydz, L. Sulfurtransferases and cystathionine beta-synthase expression in different human leukemia cell lines. Biomolecules 2022, 12, 148. [Google Scholar] [CrossRef] [PubMed]
- Kusukawa, J.; Suefuji, Y.; Ryu, F.; Noguchi, R.; Iwamoto, O.; Kameyama, T. Dissemination of cancer cells into circulation occurs by incisional biopsy of oral squamous cell carcinoma. J. Oral. Pathol. Med. 2000, 29, 303–307. [Google Scholar] [CrossRef] [PubMed]
- Trojan, S.E.; Piwowar, M.; Ostrowska, B.; Laidler, P.; Kocemba-Pilarczyk, K.A. Analysis of malignant melanoma cell lines exposed to hypoxia reveals the importance of PFKFB4 overexpression for disease progression. Anticancer. Res. 2018, 38, 6745–6752. [Google Scholar] [CrossRef] [PubMed]
- Jurkowska, H.; Placha, W.; Nagahara, N.; Wróbel, M. The expression and activity of cystathionine-γ-lyase and 3-mercaptopyruvate sulfurtransferase in human neoplastic cell lines. Amino Acids. 2011, 41, 151–158. [Google Scholar] [CrossRef] [PubMed]
- Valentine, W.N.; Frankenfeld, J.K. 3-Mercaptopyruvate sulfurtransferase (EC 2.8.1.2): A simple assay adapted to human blood cells. Clin. Chim. Acta 1974, 51, 205–210. [Google Scholar] [CrossRef] [PubMed]
- Wróbel, M.; Jurkowska, H.; Sliwa, L.; Srebro, Z. Sulfurtransferases and cyanide detoxification in mouse liver, kidney, and brain. Toxicol. Mech. Methods 2004, 14, 331–337. [Google Scholar] [CrossRef]
- Wood, J.L. Sulfane sulphur. Methods Enzymol. 1987, 143, 25–29. [Google Scholar] [CrossRef]
- Lowry, O.H.; Rosenbrough, N.J.; Farr, A.L.; Randall, R.I. Protein measurement with the Folin phenol reagent. J. Biol. Chem. 1951, 193, 265–275. [Google Scholar] [CrossRef]
- Naranjo-Suarez, S.; Carlson, B.A.; Tsuji, P.A.; Yoo, M.H.; Gladyshev, V.N.; Hatfield, D.L. HIF-independent regulation of thioredoxin reductase 1 contributes to the high levels of reactive oxygen species induced by hypoxia. PLoS ONE 2012, 7, e30470. [Google Scholar] [CrossRef]
- Suwei, D.; Zhen, L.; Zhimin, L.; Mei, L.; Jianping, K.; Zhuohui, P.; Yanbin, X.; Xian, M. Hypoxia modulates melanoma cells proliferation and apoptosis via miRNA-210/ISCU/ROS signaling. Bull. Exp. Biol. Med. 2011, 173, 645–650. [Google Scholar] [CrossRef] [PubMed]
- Nunes, S.C.; Ramos, C.; Santos, I.; Mendes, C.; Silva, F.; Vicente, J.B.; Pereira, S.A.; Félix, A.; Gonçalves, L.G.; Serpa, J. Cysteine boosts fitness under hypoxia-mimicked conditions in ovarian cancer by metabolic reprogramming. Front. Cell Dev. Biol. 2021, 11, 2107. [Google Scholar] [CrossRef] [PubMed]
- Dey, A.; Prabhudesai, S.; Zhang, Y.; Rao, G.; Thirugnanam, K.; Hossen, M.N.; Dwivedi, S.K.D.; Ramchandran, R.; Mukherjee, P.; Bhattacharya, R. Cystathione β-synthase regulates HIF-1α stability through persulfidation of PHD2. Sci. Adv. 2020, 6, eaaz8534. [Google Scholar] [CrossRef] [PubMed]
- Tay, A.S.; Hu, L.F.; Lu, M.; Wong, P.T.; Bian, J.S. Hydrogen sulfide protects neurons against hypoxic injury via stimulation of ATP-sensitive potassium channel/protein kinase C/extracellular signal-regulated kinase/heat shock protein 90 pathway. Neuroscience 2010, 167, 277–286. [Google Scholar] [CrossRef] [PubMed]
- Omorou, M.; Liu, N.; Huang, Y.; Al-Ward, H.; Gao, M.; Mu, C.; Zhang, L.; Hui, X. Cystathionine beta-synthase in hypoxia and ischemia/reperfusion: A current overview. Arch. Biochem. Biophys. 2022, 718, 109149. [Google Scholar] [CrossRef] [PubMed]
- Gao, M.; Wang, R.; Yu, F.; Li, B.; Chen, L. Imaging of intracellular sulfane sulfur expression changes under hypoxic stress via a selenium-containing near-infrared fluorescent probe. J. Mater. Chem. B 2018, 6, 6637–6645. [Google Scholar] [CrossRef] [PubMed]
- Kennedy, L.; Sandhu, J.K.; Harper, M.E.; Cuperlovic-Culf, M. Role of glutathione in cancer: From mechanisms to therapies. Biomolecules 2020, 10, 1429. [Google Scholar] [CrossRef] [PubMed]
- Peng, G.; Tang, Z.; Xiang, Y.; Chen, W. Glutathione peroxidase 4 maintains a stemness phenotype, oxidative homeostasis and regulates biological processes in Panc-1 cancer stem-like cells. Oncol. Rep. 2019, 41, 1264–1274. [Google Scholar] [CrossRef]
- Mansfield, K.D.; Simon, M.C.; Keith, B. Hypoxic reduction in cellular glutathione levels requires mitochondrial reactive oxygen species. J. Appl. Physiol. (1985) 2004, 97, 1358–1366. [Google Scholar] [CrossRef]
- Ros-Bullón, M.R.; Sánchez-Pedreño, P.; Martínez-Liarte, J.H. Whole blood glutathione peroxidase activity in melanoma patients. Cancer Lett. 1999, 144, 25–30. [Google Scholar] [CrossRef] [PubMed]
- Yi, Z.; Jiang, L.; Zhao, L.; Zhou, M.; Ni, Y.; Yang, Y.; Yang, H.; Yang, L.; Zhang, Q.; Kuang, Y.; et al. Glutathione peroxidase 3 (GPX3) suppresses the growth of melanoma cells through reactive oxygen species (ROS)-dependent stabilization of hypoxia-inducible factor 1-α and 2-α. J. Cell. Biochem. 2019, 120, 19124–19136. [Google Scholar] [CrossRef]
Gene | Forward | Reverse | RT-PCR Product Size (bp) | Reference |
---|---|---|---|---|
TRX | 5′-GGT GAA GCA GAT CGA GAG CA-3′ | 5′-TCA TTT TGC AAG GCC CAC AC-3′ | 144 bp | [NCBI database] |
TXNRD1 | 5′-ACG TTA CTT GGG CAT CCC TG-3′ | 5′-AGA AAT CCA GCG CAC TCC AA-3′ | 130 bp | [NCBI database] |
GPx | 5′-ACA CCC AGA TGA ACG AGC TG-3′ | 5′-AGC ATG AAG TTG GGC TCG AA-3′ | 160 bp | [NCBI database] |
MPST | 5′-CCA GGT ACC GTG AAC ATC CC-3′ | 5′-TGT ACC ACT CCA CCC AGG A-3′ | 227 bp | [39] |
CBS | 5′-CGC TGC GTG GTC ATT CTG CC-3′ | 5′-TCC CAG GAT TAC CCC CGC CT-3′ | 280 bp | [40] |
CTH | 5′-GCA AGT GGC ATC TGA ATT TG-3′ | 5′-CCC ATT ACA ACA TCA CTG TGG-3′ | 301 bp | [41] |
TST | 5′-CCA GCT GGT GGA TTC AAG GT-3′ | 5′-CCC TTC TCG AAG CCA TCC TC-3′ | 144 bp | [42] |
β-actin | 5′-CTG TCT GGC GGC ACC ACC AT-3′ | 5′-GCA ACT AAG TCA TAG TCC GC-3′ | 254 bp | [43] |
CAIX | 5′-TAC AGC TGA ACT TCC GAG CG-3′ | 5′-CTA GGC TCC AGT CTC GGC TA-3′ | 270 bp | [44] |
PFKFB4 | 5′-GGG ATG GCG TCC CCA CGG G-3′ | 5′-CGC TCT CCG TTC TCG GGT G-3′ | 450 bp | [44] |
Gene | Initiation | Denaturation | Amplification | Elongation | Termination | Reference |
---|---|---|---|---|---|---|
TRX | 5 min at 94 °C | 30 s at 94 °C | 30 s at 56 °C | 1 min at 72 °C for 27 cycles | 8 min at 72 °C | first time published |
TXNRD1 | 5 min at 94 °C | 30 s at 94 °C | 30 s at 56 °C | 1 min at 72 °C for 28 cycles | 8 min at 72 °C | first time published |
GPx | 5 min at 94 °C | 30 s at 94 °C | 30 s at 56 °C | 1 min at 72 °C for 29 cycles | 8 min at 72 °C | first time published |
MPST | 5 min at 94 °C | 30 s at 94 °C | 30 s at 56 °C | 2 min at 72 °C for 28 cycles | 8 min at 72 °C | [39] |
CBS | 5 min at 94 °C | 30 s at 94 °C | 30 s at 60 °C | 2 min at 72 °C for 38 cycles | 8 min at 72 °C | [40] |
CTH | 5 min at 94 °C | 30 s at 94 °C | 60 s at 51 °C | 8 min at 72 °C for 28 cycles | 10 min at 72 °C | [45] |
TST | 5 min at 94 °C | 30 s at 94 °C | 30 s at 65.2 °C | 1 min at 72 °C for 28 cycles | 8 min at 72 °C | [42] |
β-actin | 5 min at 94 °C | 30 s at 94 °C | 30 s at 54 °C | 2 min at 72 °C for 28 cycles | 8 min at 72 °C | [45] |
CAIX | 5 min at 95 °C | 30 s at 95 °C | 30 s at 58 °C | 30 s at 72 °C for 27 cycles | 10 min at 72 °C | [44] |
PFKFB4 | 5 min at 95 °C | 30 s at 95 °C | 30 s at 58 °C | 30 s at 72 °C for 27 cycles | 10 min at 72 °C | [44] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rydz, L.; Wróbel, M.; Janik, K.; Jurkowska, H. Hypoxia-Induced Changes in L-Cysteine Metabolism and Antioxidative Processes in Melanoma Cells. Biomolecules 2023, 13, 1491. https://doi.org/10.3390/biom13101491
Rydz L, Wróbel M, Janik K, Jurkowska H. Hypoxia-Induced Changes in L-Cysteine Metabolism and Antioxidative Processes in Melanoma Cells. Biomolecules. 2023; 13(10):1491. https://doi.org/10.3390/biom13101491
Chicago/Turabian StyleRydz, Leszek, Maria Wróbel, Klaudia Janik, and Halina Jurkowska. 2023. "Hypoxia-Induced Changes in L-Cysteine Metabolism and Antioxidative Processes in Melanoma Cells" Biomolecules 13, no. 10: 1491. https://doi.org/10.3390/biom13101491
APA StyleRydz, L., Wróbel, M., Janik, K., & Jurkowska, H. (2023). Hypoxia-Induced Changes in L-Cysteine Metabolism and Antioxidative Processes in Melanoma Cells. Biomolecules, 13(10), 1491. https://doi.org/10.3390/biom13101491