GlycA: Evaluation of a New Biomarker of Acute Pancreatitis
Abstract
:1. Introduction
2. Methods
2.1. Study Design and Patient Selection
2.2. Healthy Controls
2.3. Data Collection
2.4. GlycA Measurement
2.5. Statistical Analysis
3. Results
3.1. Description of the Study Population
3.2. Sample Availability
3.3. Comparison of GlycA Levels between AP Patients and Healthy Controls
3.4. Subgroup Analyses of GlycA Levels Based on Severity
3.5. Multivariable Logistic Regression
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Mederos, M.A.; Reber, H.A.; Girgis, M.D. Acute Pancreatitis: A Review. Jama 2021, 325, 382–390. [Google Scholar] [CrossRef]
- Boxhoorn, L.; Voermans, R.P.; Bouwense, S.A.; Bruno, M.J.; Verdonk, R.C.; Boermeester, M.A.; van Santvoort, H.C.; Besselink, M.G. Acute pancreatitis. Lancet 2020, 396, 726–734. [Google Scholar] [CrossRef]
- Garg, S.K.; Sarvepalli, S.; Campbell, J.P.; Obaitan, I.; Singh, D.; Bazerbachi, F.; Singh, R.; Sanaka, M.R. Incidence, Admission Rates, and Predictors, and Economic Burden of Adult Emergency Visits for Acute Pancreatitis: Data from the National Emergency Department Sample, 2006 to 2012. J. Clin. Gastroenterol. 2019, 53, 220–225. [Google Scholar] [CrossRef] [PubMed]
- Gapp, J.; Hall, A.G.; Walters, R.W.; Jahann, D.; Kassim, T.; Reddymasu, S. Trends and Outcomes of Hospitalizations Related to Acute Pancreatitis: Epidemiology from 2001 to 2014 in the United States. Pancreas 2019, 48, 548–554. [Google Scholar] [CrossRef] [PubMed]
- Schepers, N.J.; Bakker, O.J.; Besselink, M.G.; Ahmed Ali, U.; Bollen, T.L.; Gooszen, H.G.; van Santvoort, H.C.; Bruno, M.J. Impact of characteristics of organ failure and infected necrosis on mortality in necrotising pancreatitis. Gut 2019, 68, 1044–1051. [Google Scholar] [CrossRef]
- Banks, P.A.; Bollen, T.L.; Dervenis, C.; Gooszen, H.G.; Johnson, C.D.; Sarr, M.G.; Tsiotos, G.G.; Vege, S.S. Classification of acute pancreatitis—2012: Revision of the Atlanta classification and definitions by international consensus. Gut 2013, 62, 102–111. [Google Scholar] [CrossRef] [PubMed]
- Mounzer, R.; Langmead, C.J.; Wu, B.U.; Evans, A.C.; Bishehsari, F.; Muddana, V.; Singh, V.K.; Slivka, A.; Whitcomb, D.C.; Yadav, D.; et al. Comparison of existing clinical scoring systems to predict persistent organ failure in patients with acute pancreatitis. Gastroenterology 2012, 142, 1476–1482. [Google Scholar] [CrossRef]
- Ranson, J.H.; Rifkind, K.M.; Roses, D.F.; Fink, S.D.; Eng, K.; Localio, S.A. Objective early identification of severe acute pancreatitis. Am. J. Gastroenterol. 1974, 61, 443–451. [Google Scholar]
- Larvin, M.; McMahon, M.J. APACHE-II score for assessment and monitoring of acute pancreatitis. Lancet 1989, 2, 201–205. [Google Scholar] [CrossRef]
- Dancu, G.M.; Popescu, A.; Sirli, R.; Danila, M.; Bende, F.; Tarta, C.; Sporea, I. The BISAP score, NLR, CRP, or BUN: Which marker best predicts the outcome of acute pancreatitis? Medicine 2021, 100, e28121. [Google Scholar] [CrossRef]
- Liu, G.; Tao, J.; Zhu, Z.; Wang, W. The early prognostic value of inflammatory markers in patients with acute pancreatitis. Clin. Res. Hepatol. Gastroenterol. 2019, 43, 330–337. [Google Scholar] [CrossRef]
- Di, M.Y.; Liu, H.; Yang, Z.Y.; Bonis, P.A.; Tang, J.L.; Lau, J. Prediction Models of Mortality in Acute Pancreatitis in Adults: A Systematic Review. Ann. Intern. Med. 2016, 165, 482–490. [Google Scholar] [CrossRef] [PubMed]
- Besselink, M.; van Santvoort, H.; Freeman, M.; Gardner, T.; Mayerle, J.; Vege, S.S.; Werner, J.; Banks, P.; McKay, C.; Fernandez-del Castillo, C.; et al. IAP/APA evidence-based guidelines for the management of acute pancreatitis. Pancreatology 2013, 13 (Suppl. 2), e1–e15. [Google Scholar]
- Tenner, S.; Baillie, J.; DeWitt, J.; Vege, S.S. American College of Gastroenterology guideline: Management of acute pancreatitis. Am. J. Gastroenterol. 2013, 108, 1400–1415. [Google Scholar] [CrossRef] [PubMed]
- Gabay, C.; Kushner, I. Acute-phase proteins and other systemic responses to inflammation. N. Engl. J. Med. 1999, 340, 448–454. [Google Scholar] [CrossRef] [PubMed]
- Otvos, J.D.; Shalaurova, I.; Wolak-Dinsmore, J.; Connelly, M.A.; Mackey, R.H.; Stein, J.H.; Tracy, R.P. GlycA: A Composite Nuclear Magnetic Resonance Biomarker of Systemic Inflammation. Clin. Chem. 2015, 61, 714–723. [Google Scholar] [CrossRef]
- Noel, M.; Chasman, D.I.; Mora, S.; Otvos, J.D.; Palmer, C.D.; Parsons, P.J.; Smoller, J.W.; Cummings, R.D.; Mealer, R.G. The Inflammation Biomarker GlycA Reflects Plasma N-Glycan Branching. Clin. Chem. 2023, 69, 80–87. [Google Scholar] [CrossRef]
- Ballout, R.A.; Remaley, A.T. GlycA: A New Biomarker for Systemic Inflammation and Cardiovascular Disease (CVD) Risk Assessment. J. Lab. Precis. Med. 2020, 5, 17. [Google Scholar] [CrossRef]
- Mehta, N.N.; Dey, A.K.; Maddineni, R.; Kraus, W.E.; Huffman, K.M. GlycA measured by NMR spectroscopy is associated with disease activity and cardiovascular disease risk in chronic inflammatory diseases. Am. J. Prev. Cardiol. 2020, 4, 100120. [Google Scholar] [CrossRef]
- Dierckx, T.; Verstockt, B.; Vermeire, S.; van Weyenbergh, J. GlycA, a Nuclear Magnetic Resonance Spectroscopy Measure for Protein Glycosylation, is a Viable Biomarker for Disease Activity in IBD. J. Crohn’s Colitis 2019, 13, 389–394. [Google Scholar] [CrossRef]
- Chung, C.P.; Ormseth, M.J.; Connelly, M.A.; Oeser, A.; Solus, J.F.; Otvos, J.D.; Raggi, P.; Stein, C.M. GlycA, a novel marker of inflammation, is elevated in systemic lupus erythematosus. Lupus 2016, 25, 296–300. [Google Scholar] [CrossRef] [PubMed]
- Matyus, S.P.; Braun, P.J.; Wolak-Dinsmore, J.; Jeyarajah, E.J.; Shalaurova, I.; Xu, Y.; Warner, S.M.; Clement, T.S.; Connelly, M.A.; Fischer, T.J. NMR measurement of LDL particle number using the Vantera Clinical Analyzer. Clin. Biochem. 2014, 47, 203–210. [Google Scholar] [CrossRef] [PubMed]
- Yasuda, H.; Kataoka, K.; Takeyama, Y.; Takeda, K.; Ito, T.; Mayumi, T.; Isaji, S.; Mine, T.; Kitagawa, M.; Kiriyama, S.; et al. Usefulness of urinary trypsinogen-2 and trypsinogen activation peptide in acute pancreatitis: A multicenter study in Japan. World J. Gastroenterol. 2019, 25, 107–117. [Google Scholar] [CrossRef]
- Zhou, W.; Dong, S.; Chen, Z.; Li, X.; Jiang, W. New challenges for microRNAs in acute pancreatitis: Progress and treatment. J. Transl. Med. 2022, 20, 192. [Google Scholar] [CrossRef]
- Yakah, W.; Shah, I.; Skelton-Badlani, D.; Freedman, S.D.; Popov, Y.V.; Sheth, S.G. Circulating Mitochondrial DNA as a Diagnostic Biomarker for Predicting Disease Severity in Patients With Acute Pancreatitis. Gastroenterology 2023, 164, 1009–1011.e3. [Google Scholar] [CrossRef] [PubMed]
- Papachristou, G.I.; Malehorn, D.E.; Lamb, J.; Slivka, A.; Bigbee, W.L.; Whitcomb, D.C. Serum proteomic patterns as a predictor of severity in acute pancreatitis. Pancreatology 2007, 7, 317–324. [Google Scholar] [CrossRef] [PubMed]
- Silva-Vaz, P.; Abrantes, A.M.; Castelo-Branco, M.; Gouveia, A.; Botelho, M.F.; Tralhão, J.G. Multifactorial Scores and Biomarkers of Prognosis of Acute Pancreatitis: Applications to Research and Practice. Int. J. Mol. Sci. 2020, 21, 338. [Google Scholar] [CrossRef]
- Sarrats, A.; Saldova, R.; Pla, E.; Fort, E.; Harvey, D.J.; Struwe, W.B.; de Llorens, R.; Rudd, P.M.; Peracaula, R. Glycosylation of liver acute-phase proteins in pancreatic cancer and chronic pancreatitis. Proteom. Clin. Appl. 2010, 4, 432–448. [Google Scholar] [CrossRef]
- De la Peña, J.; De las Heras, G.; Galo Peralta, F.; Casafont, F.; Pons Romero, F. Prospective study of the prognostic value of C reactive protein, alpha 1-antitrypsin and alpha 1-acid glycoprotein in acute pancreatitis. Rev. Esp. Enfermedades Dig. 1991, 79, 337–340. [Google Scholar]
- Giménez, E.; Balmaña, M.; Figueras, J.; Fort, E.; Bolós, C.; Sanz-Nebot, V.; Peracaula, R.; Rizzi, A. Quantitative analysis of N-glycans from human alfa-acid-glycoprotein using stable isotope labeling and zwitterionic hydrophilic interaction capillary liquid chromatography electrospray mass spectrometry as tool for pancreatic disease diagnosis. Anal. Chim. Acta 2015, 866, 59–68. [Google Scholar] [CrossRef]
- Karşıdağ, T.; Tüzün, S.; Kemik, A.S.; Purisa, S.; Unlü, A. Alpha-1 protease inhibitor and antichymotrypsin levels in acute pancreatitis. Turk. J. Trauma Emerg. Surg. 2012, 18, 195–199. [Google Scholar] [CrossRef]
- Aparicio, J.R.; Viedma, J.A.; Aparisi, L.; Navarro, S.; Martínez, J.; Pérez-Mateo, M. Usefulness of carbohydrate-deficient transferrin and trypsin activity in the diagnosis of acute alcoholic pancreatitis. Am. J. Gastroenterol. 2001, 96, 1777–1781. [Google Scholar] [CrossRef]
- Mucha, A.; Zaczek, M.; Kralisz, M.; Gruszewska, E.; Cylwik, B.; Panasiuk, A.; Chrostek, L. The Serum Profile of Transferrin Isoforms in Pancreatitis. J. Clin. Med. 2022, 11, 1638. [Google Scholar] [CrossRef] [PubMed]
- Gornik, O.; Gornik, I.; Gasparović, V.; Lauc, G. Change in transferrin sialylation is a potential prognostic marker for severity of acute pancreatitis. Clin. Biochem. 2008, 41, 504–510. [Google Scholar] [CrossRef] [PubMed]
- Lazzarin, G.; Romano, L.; Coletti, G.; Di Sibio, A.; Vicentini, V.; Fatayer, M.W.A.; Schietroma, M.; Pessia, B.; Leone, M.; Carlei, F.; et al. Branch Duct—IPMN and PanIN, in IgG4-Autoimmune pancreatitis: A case report. Clin. Case Rep. 2020, 8, 2111–2115. [Google Scholar] [CrossRef] [PubMed]
- Fischer, K.; Kettunen, J.; Würtz, P.; Haller, T.; Havulinna, A.S.; Kangas, A.J.; Soininen, P.; Esko, T.; Tammesoo, M.L.; Mägi, R.; et al. Biomarker profiling by nuclear magnetic resonance spectroscopy for the prediction of all-cause mortality: An observational study of 17,345 persons. PLoS Med. 2014, 11, e1001606. [Google Scholar] [CrossRef] [PubMed]
- Soininen, P.; Kangas, A.J.; Würtz, P.; Suna, T.; Ala-Korpela, M. Quantitative serum nuclear magnetic resonance metabolomics in cardiovascular epidemiology and genetics. Circ. Cardiovasc. Genet. 2015, 8, 192–206. [Google Scholar] [CrossRef]
- Akinkuolie, A.O.; Glynn, R.J.; Padmanabhan, L.; Ridker, P.M.; Mora, S. Circulating N-Linked Glycoprotein Side-Chain Biomarker, Rosuvastatin Therapy, and Incident Cardiovascular Disease: An Analysis from the JUPITER Trial. J. Am. Heart Assoc. 2016, 5, e003822. [Google Scholar] [CrossRef] [PubMed]
- Connelly, M.A.; Shimizu, C.; Winegar, D.A.; Shalaurova, I.; Pourfarzib, R.; Otvos, J.D.; Kanegaye, J.T.; Tremoulet, A.H.; Burns, J.C. Differences in GlycA and lipoprotein particle parameters may help distinguish acute kawasaki disease from other febrile illnesses in children. BMC Pediatr. 2016, 16, 151. [Google Scholar] [CrossRef]
- Mietus-Snyder, M.; Suslovic, W.; Delaney, M.; Playford, M.P.; Ballout, R.A.; Barber, J.R.; Otvos, J.D.; DeBiasi, R.L.; Mehta, N.N.; Remaley, A.T. Changes in HDL cholesterol, particles, and function associate with pediatric COVID-19 severity. Front. Cardiovasc. Med. 2022, 9, 1033660. [Google Scholar] [CrossRef]
External Healthy Control (n = 477) | Internal Healthy Control (n = 22) | AP (n = 20) | p Value (External vs. AP) | p Value (Internal vs. AP) | |
---|---|---|---|---|---|
Demographic characteristics | |||||
Mean age in years (SD) | 40.0 (12.9) | 37.6 (11.1) | 41.8 (11.6) | 0.520 | 0.244 |
Mean BMI in kg/m2 (SD) | 24.7 (3.74) | 25.3 (3.67) | 29.9 (4.65) | <0.001 | 0.001 |
Male sex | 187 (39.5%) | 11 (42.3%%) | 12 (60%) | 0.111 | |
Race | 1.000 | 0.211 | |||
Non-White | 162 (34.2%) | 13 (59.1%) | 7 (35%) | ||
White | 311 (65.8) | 9 (40.9%) | 13 (65%) | ||
Clinical characteristics | |||||
Etiology of AP: | |||||
Alcohol | - | - | 10 (50%) | ||
Biliary | 3 (15%) | ||||
Hypertriglyceridemia | - | - | 3 (15%) | ||
Other | - | - | 4 (20%) | ||
Severity of AP: | |||||
Mild | - | - | 10 (50.0%) | ||
Moderate | - | - | 7 (35.0%) | ||
Severe | - | - | 3 (15%) | ||
History of recurrence: | |||||
Primary | - | - | 10 (50.0%) | ||
Recurrent | - | - | 10 (50.0%) | ||
Current Smoker | - | - | 11 (55.0%) | ||
Alcohol use disorder | - | - | 10 (50.0%) | ||
Diabetes mellitus | - | - | 7 (35.0%) |
Comparison | OR [95% CI] | p Value |
---|---|---|
GlycA cutoff = 400 µmol/L | ||
AP vs. control | 6.88 [2.07, 32.2] | 0.004 |
Mild AP vs. control | 6.16 [1.48, 42.0] | 0.025 |
Moderate–Severe AP vs. control | 10.0 [1.47, 229.2] | 0.050 |
Moderate–Severe vs. Mild AP | 1.75 [0.13, 44.8] | 0.680 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shah, I.; Yakah, W.; Ahmed, A.; Freedman, S.D.; Jiang, Z.G.; Sheth, S.G. GlycA: Evaluation of a New Biomarker of Acute Pancreatitis. Biomolecules 2023, 13, 1530. https://doi.org/10.3390/biom13101530
Shah I, Yakah W, Ahmed A, Freedman SD, Jiang ZG, Sheth SG. GlycA: Evaluation of a New Biomarker of Acute Pancreatitis. Biomolecules. 2023; 13(10):1530. https://doi.org/10.3390/biom13101530
Chicago/Turabian StyleShah, Ishani, William Yakah, Awais Ahmed, Steven D. Freedman, Zhenghui G. Jiang, and Sunil G. Sheth. 2023. "GlycA: Evaluation of a New Biomarker of Acute Pancreatitis" Biomolecules 13, no. 10: 1530. https://doi.org/10.3390/biom13101530
APA StyleShah, I., Yakah, W., Ahmed, A., Freedman, S. D., Jiang, Z. G., & Sheth, S. G. (2023). GlycA: Evaluation of a New Biomarker of Acute Pancreatitis. Biomolecules, 13(10), 1530. https://doi.org/10.3390/biom13101530