Coping with Water Stress: Ameliorative Effects of Combined Treatments of Salicylic Acid and Glycine Betaine on the Biometric Traits and Water-Use Efficiency of Onion (Allium cepa) Cultivated under Deficit Drip Irrigation
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Layout
2.2. Soil Sample Analysis
2.3. Experimental Treatments
2.4. Growth Parameter Measurements
2.5. Irrigation Water-Use Efficiency (IWUE)
2.6. Bulb Quality and Yield Measurements
2.7. Bulb Biochemical Analysis
2.8. Microwave Digestion and Bulb Nutritive Composition Analysis
2.9. Statistical Analysis
3. Results
3.1. Plant Growth Parameters
3.2. Fresh Bulb Yield and Irrigation Water-Use Efficiency (IWUE)
3.3. Bulb Equatorial and Polar Diameter
3.4. Bulb Biochemical Composition
3.5. Bulb Quality
3.6. Bulb Nutrient Composition and Principal Component Analysis
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
References
- Fukase, E.; Martin, W. Economic Growth, Convergence, and World Food Demand and Supply. World Dev. 2020, 132, 104954. [Google Scholar] [CrossRef]
- Amin, I.; Ali, M.E.A.; Bayoumi, S.; Balah, A.; Oterkus, S.; Shawky, H.; Oterkus, E. Numerical Hydrodynamics-Based Design of an Offshore Platform to Support a Desalination Plant and a Wind Turbine in Egypt. Ocean Eng. 2021, 229, 108598. [Google Scholar] [CrossRef]
- Oberkircher, L.; Hornidge, A.K. “Water Is Life”-Farmer Rationales and Water Saving in Khorezm, Uzbekistan: A Lifeworld Analysis. Rural Sociol. 2011, 76, 394–421. [Google Scholar] [CrossRef]
- WWAP United Nations World Water Assessment Programme. UN World Water Development Report 2018: Nature-Based Solutions for Water; UNESCO: Paris, France, 2018; ISBN 978-92-3-100264-9. [Google Scholar]
- Roudi-Fahimi, F.; Creel, L.; De Souza, R.-M. Finding the Balance: Population and Water Scarcity in the Middle East and North Africa. In Population Reference Bureau; Population Reference Bureau: Washington, DC, USA, 2002; Volume 1, pp. 1–8. [Google Scholar]
- El-Sadek, A. Water Desalination: An Imperative Measure for Water Security in Egypt. Desalination 2010, 250, 876–884. [Google Scholar] [CrossRef]
- Falkenmark, M. Growing Water Scarcity in Agriculture: Future Challenge to Global Water Security. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 2013, 371, 20120410. [Google Scholar] [CrossRef]
- Hess, T.; Sutcliffe, C. The Exposure of a Fresh Fruit and Vegetable Supply Chain to Global Water-Related Risks. Water Int. 2018, 43, 746–761. [Google Scholar] [CrossRef]
- Statistica World Vegetable Production by Type 2020|Statista. Available online: https://www.statista.com/statistics/264065/global-production-of-vegetables-by-type/ (accessed on 15 May 2022).
- FAOSTAT. Crops and Livestock Products. Available online: https://www.fao.org/faostat/en/#data/QCL/visualize (accessed on 15 May 2022).
- Da Yang, M.; Leghari, S.J.; Guan, X.K.; Ma, S.C.; Ding, C.M.; Mei, F.J.; Wei, L.; Wang, T.C. Deficit Subsurface Drip Irrigation Improves Water Use Efficiency and Stabilizes Yield by Enhancing Subsoil Water Extraction in Winter Wheat. Front. Plant Sci. 2020, 11, 508. [Google Scholar] [CrossRef]
- Chai, Q.; Gan, Y.; Turner, N.C.; Zhang, R.Z.; Yang, C.; Niu, Y.; Siddique, K.H.M. Water-Saving Innovations in Chinese Agriculture. Adv. Agron. 2014, 126, 149–201. [Google Scholar] [CrossRef]
- Fereres, E.; Soriano, M.A. Deficit Irrigation for Reducing Agricultural Water Use. J. Exp. Bot. 2007, 58, 147–159. [Google Scholar] [CrossRef]
- Enchalew, B.; Gebre, S.; Rabo, M. Effect of Deficit Irrigation on Water Productivity of Onion (Allium cepal) under Drip Irrigation. Irrig. Drain. Syst. Eng. 2016, 5, 6–10. [Google Scholar] [CrossRef]
- Abd El-Mageed, T.A.; Rady, M.O.A.; Abd El-Wahed, M.H.; Abd El-Mageed, S.A.; Omran, W.M.; Aljuaid, B.S.; El-Shehawi, A.M.; El-Tahan, A.M.; El-Saadony, M.T.; Abdou, N.M. Consecutive Seasonal Effect on Yield and Water Productivity of Drip Deficit Irrigated Sorghum in Saline Soils. Saudi J. Biol. Sci. 2022, 29, 2683–2690. [Google Scholar] [CrossRef]
- Mattar, M.A.; Zin El-Abedin, T.K.; Alazba, A.A.; Al-Ghobari, H.M. Soil Water Status and Growth of Tomato with Partial Root-Zone Drying and Deficit Drip Irrigation Techniques. Irrig. Sci. 2020, 38, 163–176. [Google Scholar] [CrossRef]
- Oktem, A.; Simsek, M.; Oktem, A.G. Deficit Irrigation Effects on Sweet Corn (Zea mays saccharata Sturt) with Drip Irrigation System in a Semi-Arid Region I. Water-Yield Relationship. Agric. Water Manag. 2003, 61, 63–74. [Google Scholar] [CrossRef]
- Wu, Y.; Yan, S.; Fan, J.; Zhang, F.; Xiang, Y.; Zheng, J.; Guo, J. Responses of Growth, Fruit Yield, Quality and Water Productivity of Greenhouse Tomato to Deficit Drip Irrigation. Sci. Hortic. 2021, 275, 109710. [Google Scholar] [CrossRef]
- Chen, F.; Cui, N.; Jiang, S.; Li, H.; Wang, Y.; Gong, D.; Hu, X.; Zhao, L.; Liu, C.; Qiu, R. Effects of Water Deficit at Different Growth Stages under Drip Irrigation on Fruit Quality of Citrus in the Humid Areas of South China. Agric. Water Manag. 2022, 262, 107407. [Google Scholar] [CrossRef]
- Basal, H.; Dagdelen, N.; Unay, A.; Yilmaz, E. Effects of Deficit Drip Irrigation Ratios on Cotton (Gossypium hirsutum L.) Yield and Fibre Quality. J. Agron. Crop Sci. 2009, 195, 19–29. [Google Scholar] [CrossRef]
- Abdelkhalik, A.; Pascual, B.; Nájera, I.; Domene, M.A.; Baixauli, C.; Pascual-Seva, N. Effects of Deficit Irrigation on the Yield and Irrigation Water Use Efficiency of Drip-Irrigated Sweet Pepper (Capsicum annuum L.) under Mediterranean Conditions. Irrig. Sci. 2020, 38, 89–104. [Google Scholar] [CrossRef]
- Parkash, V.; Singh, S.; Deb, S.K.; Ritchie, G.L.; Wallace, R.W. Plant Stress Effect of Deficit Irrigation on Physiology, Plant Growth, and Fruit Yield of Cucumber Cultivars. Plant Stress 2021, 1, 100004. [Google Scholar] [CrossRef]
- Adak, N. Effects of Glycine Betaine Concentrations on the Agronomic Characteristics of Strawberry Grown under Deficit Irrigation Condions. Appl. Ecol. Environ. Res. 2019, 17, 3753–3767. [Google Scholar] [CrossRef]
- El-Mageed, T.A.A.; Semida, W.M.; Mohamed, G.F.; Rady, M.M. South African Journal of Botany Combined Effect of Foliar-Applied Salicylic Acid and de Fi Cit Irrigation on Physiological—Anatomical Responses, and Yield of Squash Plants under Saline Soil. S. Afr. J. Bot. 2016, 106, 8–16. [Google Scholar] [CrossRef]
- El-Hady, M.A.M.A. Influence of Salicylic Acid on Cucumber Plants under Different Irrigation Levels. J. Plant Prod. Mansoura Univ. 2019, 10, 165–171. [Google Scholar]
- Me, R.; Sawan, O.M.; Zf, F.H.; Am, E.; Sm, E. Increasing the Productivity of Tomato Plants Grown in Sandy Soil under Deficit Irrigation Water Conditions Increasing the Productivity of Tomato Plants Grown in Sandy Soil under Deficit Irrigation Water Conditions. Res. Rev. J. Agric. Allied Sci. 2018, 7, 76–87. [Google Scholar]
- Semida, W.M.; Abdelkhalik, A.; Rady, M.O.A.; Marey, R.A.; Abd El-mageed, T.A. Scientia Horticulturae Exogenously Applied Proline Enhances Growth and Productivity of Drought Stressed Onion by Improving Photosynthetic Efficiency, Water Use Efficiency and Up-Regulating Osmoprotectants. Sci. Hortic. 2020, 272, 109580. [Google Scholar] [CrossRef]
- Tisarum, R.; Theerawitaya, C.; Samphumphung, T.; Takabe, T. Exogenous Foliar Application of Glycine Betaine to Alleviate Water Deficit Tolerance in Two Indica Rice Genotypes under Greenhouse Conditions. Agronomy 2019, 9, 138. [Google Scholar] [CrossRef]
- Mugwanya, M.; Kimera, F.; Dawood, M.; Sewilam, H. Elucidating the Effects of Combined Treatments of Salicylic Acid and l—Proline on Greenhouse—Grown Cucumber Under Saline Drip Irrigation. J. Plant Growth Regul. 2022, 42, 1488–1504. [Google Scholar] [CrossRef]
- Dempsey, D.M.A.; Klessig, D.F. How Does the Multifaceted Plant Hormone Salicylic Acid Combat Disease in Plants and Are Similar Mechanisms Utilized in Humans? BMC Biol. 2017, 15, 23. [Google Scholar] [CrossRef]
- Koo, Y.M.; Heo, A.Y.; Choi, H.W. Salicylic Acid as a Safe Plant Protector and Growth Regulator. Plant Pathol. J. 2020, 36, 1–10. [Google Scholar] [CrossRef]
- Song, W.; Shao, H.; Zheng, A.; Zhao, L.; Xu, Y. Advances in Roles of Salicylic Acid in Plant Tolerance Responses to Biotic and Abiotic Stresses. Plants 2023, 12, 3475. [Google Scholar] [CrossRef] [PubMed]
- Singh, M. Roles of Osmoprotectants in Improving Salinity and Drought Tolerance in Plants: A Review. Environ. Sci. Biotechnol. 2015, 14, 407–426. [Google Scholar] [CrossRef]
- Sofy, M.R.; Seleiman, M.F.; Alhammad, B.A.; Alharbi, B.M.; Mohamed, H.I. Minimizing Adverse Effects of Pb on Maize Plants by Combined Treatment with Jasmonic, Salicylic Acids and Proline. Agronomy 2020, 10, 699. [Google Scholar] [CrossRef]
- Huang, Y.; Bie, Z.; Liu, Z.; Zhen, A.; Wang, W.; Huang, Y.; Bie, Z.; Liu, Z.; Zhen, A.; Wang, W. Protective Role of Proline against Salt Stress Is Partially Related to the Improvement of Water Status and Peroxidase Enzyme Activity in Cucumber. Soil Sci. Plant Nutr. 2010, 55, 698–704. [Google Scholar] [CrossRef]
- Huang, Y.; Tang, R.; Cao, Q.; Bie, Z. Improving the Fruit Yield and Quality of Cucumber by Grafting onto the Salt Tolerant Rootstock under NaCl Stress. Sci. Hortic. 2009, 122, 26–31. [Google Scholar] [CrossRef]
- Oddo, E.; Russo, G.; Grisa, F. Effects of Foliar Application of Glycine Betaine and Chitosan on Puccinellia Distans (Jacq.) Parl. Subjected to Salt Stress. Biol. Futur. 2019, 70, 47–55. [Google Scholar] [CrossRef]
- Wang, N.; Cao, F.; Eusi, M.; Richmond, A.; Qiu, C.; Wu, F. Foliar Application of Betaine Improves Water—Deficit Stress Tolerance in Barley (Hordeum vulgare L.). Plant Growth Regul. 2019, 89, 109–118. [Google Scholar] [CrossRef]
- Niu, T.; Zhang, T.; Qiao, Y.; Wen, P.; Zhai, G.; Liu, E.; Al-bakre, D.A.; Al-harbi, M.S.; Gao, X.; Id, X.Y. Glycinebetaine Mitigates Drought Stress-Induced Oxidative Damage in Pears. PLoS ONE 2021, 16, e0277597. [Google Scholar] [CrossRef]
- Miri, M.; Ghooshchi, F.; Tohidi-Moghadam, H.R.; Larijani, H.R.; Kasraie, P. Ameliorative Effects of Foliar Spray of Glycine Betaine and Gibberellic Acid on Cowpea (Vigna unguiculata L. Walp.) Yield Affected by Drought Stress. Arab. J. Geosci. 2021, 14, 830. [Google Scholar] [CrossRef]
- Kader, A.; Hamani, M.; Li, S.; Chen, J.; Amin, A.S.; Wang, G.; Xiaojun, S.; Zain, M.; Gao, Y. Linking Exogenous Foliar Application of Glycine Betaine and Stomatal Characteristics with Salinity Stress Tolerance in Cotton (Gossypium hirsutum L.) Seedlings. BMC Plant Biol. 2021, 21, 146. [Google Scholar]
- Gupta, P.; Rai, R.; Vasudev, S.; Yadava, D.K.; Dash, P.K. Ex-Foliar Application of Glycine Betaine and Its Impact on Protein, Carbohydrates and Induction of ROS Scavenging System during Drought Stress in Flax (Linum usitatissimum). J. Biotechnol. 2021, 337, 80–89. [Google Scholar] [CrossRef]
- Desoky, E.S.M.; Ibrahim, S.A.; Merwad, A.R.M. Mitigation of Salinity Stress Effects on Growth, Physio-Chemical Parameters and Yield of Snapbean (Phaseolus vulgaris L.) by Exogenous Application of Glycine Betaine. Int. Lett. Nat. Sci. 2019, 76, 60–71. [Google Scholar] [CrossRef]
- Giri, J. Glycinebetaine and Abiotic Stress Tolerance in Plants. Plant Signal. Behav. 2011, 6, 1746–1751. [Google Scholar] [CrossRef]
- Pradhan, M.; Tripathy, P.; Mandal, P.; Sahoo, B.B.; Pradhan, R.; Mishra, S.P.; Mishra, H.N. Effect of Salicylic Acid on Growth and Bulb Yield of Onion (Allium cepa L.). Int. J. Bio-Resour. Stress Manag. 2016, 7, 960–963. [Google Scholar] [CrossRef]
- Prajapati, S.; Jain, P.K.; Tiwari, A. Effects of Salicylic Acid (SA) and Azospirillum on Growth and Bulb Yield of Onion (Allium cepa L.) Cv. Agrifound Light Red. Int. J. Agric. Environ. Biotechnol. 2016, 9, 393. [Google Scholar] [CrossRef]
- Chattoo, M.; Magray, M.M.; Shah, M.; Malik, A.A.; Mushtaq, F. Influence of Salicylic Acid on Growth, Yield and Quality Attributes of Onion under Temperate Conditions. Int. J. Chem. Stud. 2020, 8, 2486–2489. [Google Scholar] [CrossRef]
- Desai, A.P.; Desai, S. UV Spectroscopic Method for Determination of Vitamin C (Ascorbic Acid) Content in Different Fruits in South Gujarat Region. Int. J. Environ. Sci. Nat. Resour. 2019, 22, 41–44. [Google Scholar] [CrossRef]
- Silkina, A.; Flynn, K.; Llewellyn, C.; Bayliss, C. Standard Operating Procedures for Analytical Methods and Data Collection in Support of Pilot-Scale Cultivation of Microalgae. Public Output Report WP1A3.01 of the EnAlgae Project. Available online: https://repository.oceanbestpractices.org/handle/11329/1283 (accessed on 13 June 2022).
- Ariyama, K.; Aoyama, Y.; Mochizuki, A.; Homura, Y.; Kadokura, M.; Yasui, A. Determination of the Geographic Origin of Onions between Three Main Production Areas in Japan and Other Countries by Mineral Composition. J. Agric. Food Chem. 2007, 55, 347–354. [Google Scholar] [CrossRef] [PubMed]
- Tolossa, T.T. Onion Yield Response to Irrigation Level during Low and High Sensitive Growth Stages and Bulb Quality under Semi- Arid Climate Conditions of Western Ethiopia. Cogent Food Agric. 2021, 7, 1859665. [Google Scholar] [CrossRef]
- Shirzadi, M.H.; Arvin, M.J.; Abootalebi, A.; Hasandokht, M.R. Effect of Nylon Mulch and Some Plant Growth Regulators on Water Use Efficiency and Some Quantitative Traits in Onion (Allium cepa Cv.) under Water Deficit Stress. Cogent Food Agric. 2020, 6, 1779562. [Google Scholar] [CrossRef]
- Almaroai, Y.A.; Eissa, M.A. Role of Marine Algae Extracts in Water Stress Resistance of Onion under Semi-Arid Conditions. J. Soil Sci. 2020, 1, 1092–1101. [Google Scholar]
- Zamaninejad, M.; Khorasani, S.K.; Moeini, M.J.; Heidarian, A.R. Effect of Salicylic Acid on Morphological Characteristics, Yield and Yield Components of Corn (Zea mays L.) under Drought Condition. Eur. J. Exp. Biol. 2013, 3, 153–161. [Google Scholar]
- Gautam, S.; Singh, P.K. Salicylic Acid-Induced Salinity Tolerance in Corn Grown under NaCl Stress. Acta Physiol. Plant. 2009, 31, 1185–1190. [Google Scholar] [CrossRef]
- Farahbakhsh, H.; Saiid, M.S. Effects of Foliar Application of Salicylic Acid on Vegetative Growth of Maize under Saline Conditions. Plant Sci. 2011, 5, 575–578. [Google Scholar]
- Chakma, R.; Biswas, A.; Saekong, P.; Ullah, H.; Datta, A. Foliar Application and Seed Priming of Salicylic Acid Affect Growth, Fruit Yield, and Quality of Grape Tomato under Drought Stress. Sci. Hortic. 2021, 280, 109904. [Google Scholar] [CrossRef]
- Souri, M.K.; Tohidloo, G. Effectiveness of Different Methods of Salicylic Acid Application on Growth Characteristics of Tomato Seedlings under Salinity. Chem. Biol. Technol. Agric. 2019, 6, 26. [Google Scholar] [CrossRef]
- Abbasi, F.; Khaleghi, A.; Khadivi, A. The Effect of Salicylic Acid on Physiological and Morphological Traits of Cucumber (Cucumis sativus L. Cv. Dream). Gesunde Pflanz. 2020, 72, 155–162. [Google Scholar] [CrossRef]
- Yildirim, E.; Turan, M.; Guvenc, I. Effect of Foliar Salicylic Acid Applications on Growth, Chlorophyll, and Mineral Content of Cucumber Grown under Salt Stress. J. Plant Nutr. 2008, 31, 593–612. [Google Scholar] [CrossRef]
- Mahmood, N.; Abbasi, N.A.; Hafiz, I.A.; Ali, I.; Zakia, S. Effect of Biostimulants on Growth, Yield and Quality of Bell Pepper Cv. Yolo Wonder. Pak. J. Agric. Sci. 2017, 54, 311–317. [Google Scholar] [CrossRef]
- Munshi, M.H.; Issak, M.; Kabir, K.; Hosain, M.T.; Bari, A.S.F.; Rahman, M.S.; Tamanna, M. Enhancement of Growth, Yield and Fruit Quality of Sweet Pepper (Capsicum annuum L.) by Foliar Application of Salicylic Acid. Int. J. Biosci. 2020, 17, 49–56. [Google Scholar]
- Prabha, D.; Kumar Negi, Y. Seed Treatment with Salicylic Acid Enhance Drought Tolerance in Capsicum. World J. Agric. Res. 2014, 2, 42–46. [Google Scholar] [CrossRef]
- Mohamed, H.; Elshazly, H.H.; Badr, A. Plant Phenolics in Sustainable Agriculture. In Plant Phenolics in Sustainable Agriculture; Springer: Berlin/Heidelberg, Germany, 2020; Volume 1. [Google Scholar] [CrossRef]
- Habibi, G. Exogenous Salicylic Acid Alleviates Oxidative Damage of Barley Plants under Drought Stress. Acta Biol. Szeged. 2012, 56, 57–63. [Google Scholar]
- Singh, B.; Usha, K. Salicylic Acid Induced Physiological and Biochemical Changes in Wheat under Drought Stress Conditions. Plant Growth Regul. 2003, 39, 137–141. [Google Scholar] [CrossRef]
- Ying, Y.; Yue, Y.; Huang, X.; Wang, H.; Mei, L.; Yu, W.; Zheng, B.; Wu, J. Salicylic Acid Induces Physiological and Biochemical Changes in Three Red Bayberry (Myric rubra) Genotypes under Water Stress. Plant Growth Regul. 2013, 71, 181–189. [Google Scholar] [CrossRef]
- Abdelkhalik, A.; Pascual, B.; Nájera, I.; Baixauli, C.; Pascual-Seva, N. Regulated Deficit Irrigation as a Water-Saving Strategy for Onion Cultivation in Mediterranean Conditions. Agronomy 2019, 9, 521. [Google Scholar] [CrossRef]
- Geerts, S.; Raes, D. Deficit Irrigation as an On-Farm Strategy to Maximize Crop Water Productivity in Dry Areas. Agric. Water Manag. 2009, 96, 1275–1284. [Google Scholar] [CrossRef]
- Gholami Zali, A.; Ehsanzadeh, P. Exogenously Applied Proline as a Tool to Enhance Water Use Efficiency: Case of Fennel. Agric. Water Manag. 2018, 197, 138–146. [Google Scholar] [CrossRef]
- Ahmed, N.; Zhang, Y.; Li, K.; Zhou, Y.; Zhang, M.; Li, Z. Exogenous Application of Glycine Betaine Improved Water Use Efficiency in Winter Wheat (Triticum aestivum L.) via Modulating Photosynthetic Efficiency and Antioxidative Capacity under Conventional and Limited Irrigation Conditions. Crop J. 2019, 7, 635–650. [Google Scholar] [CrossRef]
- Abbaszadeh, B.; Layeghhaghighi, M.; Azimi, R.; Hadi, N. Improving Water Use Efficiency through Drought Stress and Using Salicylic Acid for Proper Production of Rosmarinus officinalis L. Ind. Crops Prod. 2020, 144, 111893. [Google Scholar] [CrossRef]
- Pérez Ortolá, M.; Knox, J.W. Water Relations and Irrigation Requirements of Onion (Allium cepa L.): A Review of Yield and Quality Impacts. Exp. Agric. 2015, 51, 210–231. [Google Scholar] [CrossRef]
- Shock, C.C.; Feibert, E.B.G.; Saunders, L.D. Short-Duration Water Stress Decreases Onion Single Centers without Causing Translucent Scale. Am. Soc. Hortic. Sci. 2007, 42, 1450–1455. [Google Scholar] [CrossRef]
- Seminario, A.; Song, L.; Zulet, A.; Nguyen, H.T.; González, E.M.; Larrainzar, E. Drought Stress Causes a Reduction in the Biosynthesis of Ascorbic Acid in Soybean Plants. Front. Plant Sci. 2017, 8, 1042. [Google Scholar] [CrossRef]
- Bartoli, C.G.; Simontacchi, M.; Tambussi, E.; Beltrano, J.; Montaldi, E.; Puntarulo, S. Drought and Watering-Dependent Oxidative Stress: Effect on Antioxidant Content in Triticum aestivum L. Leaves. J. Exp. Bot. 1999, 50, 375–383. [Google Scholar] [CrossRef]
- Munné-Bosch, S.; Alegre, L. Drought-Induced Changes in the Redox State of α-Tocopherol, Ascorbate, and the Diterpene Carnosic Acid in Chloroplasts of Labiatae Species Differing in Carnosic Acid Contents. Plant Physiol. 2003, 131, 1816–1825. [Google Scholar] [CrossRef]
- Yang, J.; Zhang, J.; Li, C.; Zhang, Z.; Ma, F.; Li, M. Response of Sugar Metabolism in Apple Leaves Subjected to Short-Term Drought Stress. Plant Physiol. Biochem. 2019, 141, 164–171. [Google Scholar] [CrossRef]
- Hou, J.; Huang, X.; Sun, W.; Du, C.; Wang, C.; Xie, Y.; Ma, Y.; Ma, D. Accumulation of Water-Soluble Carbohydrates and Gene Expression in Wheat Stems Correlates with Drought Resistance. J. Plant Physiol. 2018, 231, 182–191. [Google Scholar] [CrossRef]
- Medyouni, I.; Zouaoui, R.; Rubio, E.; Serino, S.; Ahmed, H.B.; Bertin, N. Effects of Water Deficit on Leaves and Fruit Quality during the Development Period in Tomato Plant. Food Sci. Nutr. 2021, 9, 1949–1960. [Google Scholar] [CrossRef]
- Hlahla, J.M.; Mafa, M.S.; van der Merwe, R.; Alexander, O.; Duvenhage, M.M.; Kemp, G.; Moloi, M.J. The Photosynthetic Efficiency and Carbohydrates Responses of Six Edamame (Glycine max L. Merrill) Cultivars under Drought Stress. Plants 2022, 11, 394. [Google Scholar] [CrossRef]
- Épron, D.; Dreyer, E. Starch and Soluble Carbohydrates in Leaves of Water-Stressed Oak Saplings. Ann. Sci. For. 1996, 53, 263–268. [Google Scholar] [CrossRef]
- Wang, Z.; Stutte, G.W. The Role of Carbohydrates in Active Osmotic Adjustment in Apple under Water Stress. J. Am. Soc. Hortic. Sci. 1992, 117, 816–823. [Google Scholar] [CrossRef]
- Youssef, R.A.; El-Azab, M.E.; Mahdy, H.A.A.; Essa, E.M.; Mohammed, K.A.S. Effect of Salicylic Acid on Growth, Yield, Nutritional Status and Physiological Properties of Sunflower Plant Under Salinity Stress. Int. J. Pharm. Phytopharm. Res. 2017, 7, 54–58. [Google Scholar]
- Rajabi Dehnavi, A.; Zahedi, M.; Razmjoo, J.; Eshghizadeh, H. Effect of Exogenous Application of Salicylic Acid on Salt-Stressed Sorghum Growth and Nutrient Contents. J. Plant Nutr. 2019, 42, 1333–1349. [Google Scholar] [CrossRef]
- Xu, Q.; Fu, H.; Zhu, B.; Hussain, H.A.; Zhang, K.; Tian, X.; Duan, M.; Xie, X.; Wang, L. Potassium Improves Drought Stress Tolerance in Plants by Affecting Root Morphology, Root Exudates and Microbial Diversity. Metabolites 2021, 11, 131. [Google Scholar] [CrossRef] [PubMed]
- Nieves-Cordones, M.; García-Sánchez, F.; Pérez-Pérez, J.G.; Colmenero-Flores, J.M.; Rubio, F.; Rosales, M.A. Coping with Water Shortage: An Update on the Role of K+, Cl−, and Water Membrane Transport Mechanisms on Drought Resistance. Front. Plant Sci. 2019, 10, 1619. [Google Scholar] [CrossRef] [PubMed]
pH 1:2.5 | EC ds/m | SP | Elements (mg/g) | Anions and Cations (meq./L) | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
N | P | K | Mn | HCO3− | Cl− | SO42− | Zn2+ | Fe2+ | Cu2+ | |||
9.09 | 0.52 | 25 | 163 | 7.92 | 118 | 0.25 | 0.5 | 3.5 | 1.17 | 0.178 | 1.02 | 0.32 |
60 DAT | |||||||||
---|---|---|---|---|---|---|---|---|---|
Sub Treatments | Plant Height (cm) | Leaf Number/Plant | Pseudostem Diameter (mm) | ||||||
100% FC | 70% FC | 40% FC | 100% FC | 70% FC | 40% FC | 100% FC | 70% FC | 40% FC | |
T1 | 59.73 ± 9.10 aB | 58.93 ± 6.95 aA | 53.73 ± 7.84 aB | 6.07 ± 1.33 aA | 5.93 ± 1.03 aA | 4.60 ± 0.74 aB | 19.22 ± 3.27 aB | 21.43 ± 3.45 aA | 17.45 ± 3.21 aB |
T2 | 51.97 ± 13.89 aB | 61.07 ± 4.89 aA | 54.80 ± 5.87 aB | 5.53 ± 1.36 abA | 5.60 ± 1.12 aA | 4.73 ± 0.80 aB | 17.56 ± 2.73 aB | 18.86 ± 2.74 aA | 19.25 ± 3.23 aB |
T3 | 54.83 ± 4.86 aB | 58.83 ± 4.82 aA | 52.67 ± 3.58 aB | 4.73 ± 0.70 bA | 5.93 ± 0.80 aA | 5.07 ± 0.70 aB | 15.90 ± 1.26 aB | 20.49 ± 3.16 aA | 19.88 ± 3.72 aB |
T4 | 55.73 ± 6.94 aB | 60.00 ± 4.69 aA | 50.53 ± 5.36 aB | 5.73 ± 1.39 abA | 6.00 ± 0.76 aA | 4.40 ± 0.63 aB | 17.76 ± 2.63 aB | 20.28 ± 2.07 aA | 17.00 ± 3.42 aB |
T5 | 55.93 ± 7.26 aB | 61.83 ± 6.70 aA | 52.73 ± 5.22 aB | 5.20 ± 0.41 abA | 5.73 ± 1.03 aA | 4.93 ± 0.88 aB | 16.78 ± 5.13 aB | 20.04 ± 3.17 aA | 18.07 ± 2.33 aB |
75 DAT | |||||||||
T1 | 51.20 ± 5.54 aC | 58.20 ± 7.99 bA | 56.47 ± 6.89 aB | 6.73 ± 1.53 aB | 7.80 ± 1.82 aA | 6.67 ± 1.11 aB | 33.14 ± 6.66 aBC | 32.29 ± 3.71 aA | 32.63 ± 2.73 aAB |
T2 | 50.87 ± 4.21 aC | 64.07 ± 2.79 aA | 56.00 ± 5.45 aB | 6.67 ± 0.98 aB | 8.07 ± 1.28 aA | 6.80 ± 1.01 aB | 28.62 ± 9.78 aBC | 32.91 ± 2.62 aA | 31.40 ± 3.77 aAB |
T3 | 49.73 ± 5.70 aC | 59.33 ± 5.37 abA | 53.40 ± 13.89 aB | 6.07 ± 0.59 aB | 7.87 ± 1.06 aA | 6.93 ± 1.22 aB | 27.92 ± 3.21 aBC | 32.60 ± 2.93 aA | 28.07 ± 8.36 aAB |
T4 | 51.13 ± 5.55 aC | 61.07 ± 4.98 abA | 55.73 ± 5.26 aB | 6.80 ± 1.01 aB | 8.40 ± 1.30 aA | 6.47 ± 0.83 aB | 29.45 ± 2.62 aBC | 30.51 ± 3.04 aA | 28.19 ± 4.25 aAB |
T5 | 53.00 ± 5.94 aC | 63.13 ± 3.74 abA | 59.13 ± 3.36 aB | 6.47 ± 0.92 aB | 8.20 ± 1.32 aA | 6.87 ± 0.83 aB | 28.19 ± 3.13 aBC | 33.14 ± 4.41 aA | 30.94 ± 3.06 aAB |
90 DAT | |||||||||
T1 | 44.47 ± 5.26 aC | 50.60 ± 15.58 bA | 46.87 ± 10.01 aB | 7.67 ± 1.68 aB | 8.00 ± 2.85 aA | 8.27 ± 1.98 aB | 32.63 ± 4.64 aB | 37.09 ± 4.58 aA | 32.58 ± 4.63 aB |
T2 | 44.13 ± 4.73 aC | 59.20 ± 4.68 aA | 46.73 ± 3.32 aB | 7.80 ± 2.08 aB | 9.27 ± 1.58 aA | 7.80 ± 1.74 aB | 31.16 ± 6.94 aB | 35.50 ± 4.59 aA | 32.27 ± 3.95 aB |
T3 | 42.53 ± 3.66 aC | 56.60 ± 3.68 abA | 45.80 ± 6.14 aB | 7.33 ± 1.40 aB | 8.73 ± 1.62 aA | 7.27 ± 1.79 aB | 29.99 ± 5.00 aB | 38.56 ± 5.26 aA | 31.74 ± 3.96 aB |
T4 | 44.67 ± 5.04 aC | 56.93 ± 5.08 abA | 46.87 ± 5.64 aB | 8.33 ± 1.05 aB | 8.93 ± 1.28 aA | 7.06 ± 1.39 aB | 31.71 ± 5.29 aB | 34.97 ± 2.93 aA | 29.17 ± 4.45 aB |
T5 | 43.53 ± 4.70 aC | 58.67 ± 4.12 abA | 48.73 ± 4.03 aB | 7.00 ± 1.13 aB | 9.80 ± 1.52 aA | 7.67 ± 1.23 aB | 30.59 ± 8.06 aB | 36.23 ± 3.63 aA | 32.23 ± 5.22 aB |
Sub-Treatments | % Doubles | % Grade A (<50 mm) | % Grade B (50–70 mm) | % Grade C (>70 mm) | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
100% FC | 70% FC | 40% FC | 100% FC | 70% FC | 40% FC | 100% FC | 70% FC | 40% FC | 100% FC | 70% FC | 40% FC | |
T1 | 13.81 ± 11.98 aB | 42.42 ± 5.25 aA | 26.11 ± 21.50 aAB | 2.78 ± 4.80 aA | 0.00 ± 0.00 aAB | 0.00 ± 0.00 aB | 47.22 ± 4.81 aA | 18.18 ± 9.09 aB | 36.11 ± 12.73 aA | 50.00 ± 0.00 aC | 81.81 ± 9.09 aA | 58.33 ± 8.34 aB |
T2 | 18.84 ± 11.00 aB | 34.20 ± 12.08 aA | 23.33 ± 8.82 aAB | 5.59 ± 4.89 aA | 7.14 ± 12.37 aAB | 2.78 ± 4.81 aB | 42.54 ± 17.00 aA | 16.23 ± 10.20 aB | 35.00 ± 6.01 aA | 51.86 ± 16.51 aC | 79.00 ± 6.51 aA | 62.20 ± 6.74 aB |
T3 | 13.59 ± 15.25 aB | 35.84 ± 10.85 aA | 34.40 ± 26.62 aAB | 2.78 ± 4.80 aA | 3.03 ± 5.25 aAB | 0.00 ± 0.00 aB | 59.61 ± 13.46 aA | 10.93 ± 3.87 aB | 29.91 ± 5.93 aA | 37.61 ± 18.23 aC | 86.03 ± 5.08 aA | 75.64 ± 8.40 aB |
T4 | 25.12 ± 2.10 aB | 39.74 ± 9.68 aA | 21.15 ± 19.52 aAB | 11.62 ± 10.09 aA | 0.00 ± 0.00 aAB | 2.56 ± 4.44 aB | 27.68 ± 2.91 aA | 15.02 ± 0.63 aB | 40.23 ± 21.45 aA | 60.70 ± 7.62 aC | 84.98 ± 0.63 aA | 57.20 ± 18.66 aB |
T5 | 23.89 ± 20.16 aB | 42.86 ± 26.53 aA | 33.89 ± 25.84 aAB | 7.22 ± 6.73 aA | 0.00 ± 0.00 aAB | 0.00 ± 0.00 aB | 42.78 ± 23.35 aA | 30.43 ± 18.67 aB | 31.11 ± 18.28 aA | 50.00 ± 22.05 aC | 69.56 ± 18.67 aA | 71.67 ± 16.42 aB |
Sub-Treatments | K (mg/100 g) | Ca (mg/100 g) | Mg (mg/100 g) | ||||||
---|---|---|---|---|---|---|---|---|---|
100% FC | 70% FC | 40% FC | 100% FC | 70% FC | 40% FC | 100% FC | 70% FC | 40% FC | |
T1 | 836.87 ± 2.15 dC | 2293.97 ± 1.40 eB | 8108.17 ± 0.35 cA | 336.43 ± 1.70 bC | 419.27 ± 0.64 eA | 1206.67 ± 4.04 cB | 506.72 ± 0.35 eB | 243.79 ± 0.38 eC | 690.59 ± 0.75 eA |
T2 | 396.83 ± 2.10 eC | 7699.60 ± 0.36 bB | 2824.20 ± 0.00 eA | 301.07 ± 0.29 cC | 1599.23 ± 0.29 bA | 364.80 ± 3.80 eB | 524.84 ± 0.13 dB | 860.37 ± 0.58 aC | 1130.06 ± 0.52 aA |
T3 | 2539.07 ± 1.53 cC | 5773.97 ± 0.97 dB | 10,743.53 ± 3.55 aA | 224.97 ± 2.91 eC | 1425.23 ± 2.27 cA | 2226.10 ± 3.84 aB | 829.26 ± 0.45 bB | 777.09 ± 2.59 bC | 799.02 ± 0.05 cA |
T4 | 2981.57 ± 1.65 bC | 8155.93 ± 5.46 aB | 3734.23 ± 0.23 dA | 829.30 ± 0.95 aC | 2102.93 ± 2.32 aA | 734.47 ± 0.81 dB | 548.22 ± 0.30 cB | 587.62 ± 0.59 dC | 767.65 ± 0.99 dA |
T5 | 6722.47 ± 0.60 aC | 7461.73 ± 0.64 cB | 8315.13 ± 2.86 bA | 249.43 ± 0.40 dC | 1070.43 ± 0.65 dA | 1491.99 ± 0.46 bB | 950.98 ± 0.75 aB | 650.89 ± 0.39 cC | 841.51 ± 0.46 bA |
Sub-Treatments | Mn (mg/100 g) | Cu (mg/100 g) | Zn (mg/100 g) | Fe (mg/100 g) | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
100% FC | 70% FC | 40% FC | 100% FC | 70% FC | 40% FC | 100% FC | 70% FC | 40% FC | 100% FC | 70% FC | 40% FC | |
T1 | 3.46 ± 0.02 cB | 1.66 ± 0.02 cC | 6.51 ± 0.47 bA | 1.38 ± 0.02 eA | 0.53 ± 0.02 aB | 2.19 ± 0.18 aA | 7.75 ± 0.25 dA | 3.53 ± 0.66 dC | 12.29 ± 0.29 dB | 12.45 ± 0.15 dB | 6.29 ± 0.51 dB | 30.41 ± 0.85 aA |
T2 | 5.14 ± 0.11 bB | 5.46 ± 0.06 aC | 13.01 ± 1.41 aA | 1.64 ± 0.08 dA | 1.74 ± 0.05 bB | 3.21 ± 0.70 aA | 43.15 ± 2.94 aA | 19.28 ± 2.63 aC | 22.02 ± 0.48 aB | 15.36 ± 1.17 cB | 26.29 ± 0.51 aB | 30.15 ± 1.05 aA |
T3 | 6.03 ± 0.05 bB | 4.66 ± 0.58 bC | 7.07 ± 0.09 bA | 2.72 ± 0.06 bA | 2.10 ± 0.13 aB | 2.54 ± 0.45 aA | 18.02 ± 1.01 cA | 17.35 ± 0.82 abC | 15.31 ± 0.63 bB | 23.39 ± 1.01 bB | 21.43 ± 0.53 bB | 28.69 ± 0.57 aA |
T4 | 7.38 ± 0.63 aB | 4.03 ± 0.56 bC | 4.60 ± 0.67 cA | 2.32 ± 0.01 cA | 1.17 ± 0.14 cB | 2.09 ± 0.04 aA | 10.41 ± 0.51 dA | 11.24 ± 0.29 cC | 14.65 ± 0.48 bcB | 9.53 ± 0.40 eB | 15.62 ± 2.56 cB | 21.25 ± 0.40 bA |
T5 | 7.59 ± 0.47 aB | 5.80 ± 0.18 aC | 5.47 ± 0.51 bcA | 3.63 ± 0.05 aA | 1.33 ± 0.09 cB | 2.58 ± 0.47 aA | 25.04 ± 0.99 bA | 15.49 ± 0.46 bC | 13.43 ± 0.62 cdB | 30.05 ± 0.10 aB | 22.87 ± 0.86 bB | 18.37 ± 0.72 cA |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mugwanya, M.; Kimera, F.; Abdelnaser, A.; Sewilam, H. Coping with Water Stress: Ameliorative Effects of Combined Treatments of Salicylic Acid and Glycine Betaine on the Biometric Traits and Water-Use Efficiency of Onion (Allium cepa) Cultivated under Deficit Drip Irrigation. Biomolecules 2023, 13, 1634. https://doi.org/10.3390/biom13111634
Mugwanya M, Kimera F, Abdelnaser A, Sewilam H. Coping with Water Stress: Ameliorative Effects of Combined Treatments of Salicylic Acid and Glycine Betaine on the Biometric Traits and Water-Use Efficiency of Onion (Allium cepa) Cultivated under Deficit Drip Irrigation. Biomolecules. 2023; 13(11):1634. https://doi.org/10.3390/biom13111634
Chicago/Turabian StyleMugwanya, Muziri, Fahad Kimera, Anwar Abdelnaser, and Hani Sewilam. 2023. "Coping with Water Stress: Ameliorative Effects of Combined Treatments of Salicylic Acid and Glycine Betaine on the Biometric Traits and Water-Use Efficiency of Onion (Allium cepa) Cultivated under Deficit Drip Irrigation" Biomolecules 13, no. 11: 1634. https://doi.org/10.3390/biom13111634
APA StyleMugwanya, M., Kimera, F., Abdelnaser, A., & Sewilam, H. (2023). Coping with Water Stress: Ameliorative Effects of Combined Treatments of Salicylic Acid and Glycine Betaine on the Biometric Traits and Water-Use Efficiency of Onion (Allium cepa) Cultivated under Deficit Drip Irrigation. Biomolecules, 13(11), 1634. https://doi.org/10.3390/biom13111634