Selection of Mexican Medicinal Plants by Identification of Potential Phytochemicals with Anti-Aging, Anti-Inflammatory, and Anti-Oxidant Properties through Network Analysis and Chemoinformatic Screening
Abstract
:1. Introduction
2. Materials and Methods
2.1. Collection of Data
2.1.1. Identification of MMPs
2.1.2. Search of AOX-AINF-AAG-ASEN Activity from MMPs
2.1.3. Bibliographic Review of the Phytochemicals Reported to MMPs
2.1.4. Creating MMP Dataset
2.2. Identifying Plants with One or More AOX-AINF-AAG-ASEN Effects and Their Corresponding Phytochemicals
2.3. MMPs Are Identified through Network Analysis Based on Taxonomic Features and AOX-AINF-AAG-ASEN Activities
2.4. Collection of Drugs with AOX-AINF-AAG-ASEN Activity
Selection of Reference Compounds with One or More AOX-AINF-AAG-ASEN Activities through Hierarchical Analysis
2.5. Identifying Drug-like Phytochemicals from MMPs
Estimation of the Drug-likeness Index of Phytochemicals in the MMP Dataset Based on the Quantitative Estimate of Drug-Likeness (QED)
2.6. Drug-like Phytochemicals Are Excluded Because of Toxicity and Lack of Targeting for AOX-AINF-AAG-ASEN
2.7. Identifying Drug-like Phytochemicals via Fingerprint Analysis with Reference Compounds
2.8. Structural Network Analysis Identifies MMPs with One or More Potential AOX-AINF-AAG-ASEN Activities
Enrichment Analysis of the Pharmacological Targets from the Most Relevant MMPs
2.9. Animal Care
2.9.1. Experimental Testing
2.9.2. Statistical Analysis
3. Results
3.1. Identifying MMPs with and without Evidence of One or More AOX-AINF-AAG-ASEN Activities
3.1.1. MMPs with AOX-AINF-AAG-ASEN Multi-Effect and Their Corresponding Phytochemicals
3.1.2. Identification of MMPs without Scientific Evidence of AOX-AINF-AAG-ASEN Properties
3.1.3. Identification of Reference Compounds with Some Reported AOX-AINF-AAG-ASEN Activity through Hierarchical Analysis
3.1.4. Identification of Drug-like Phytochemicals from MMPs
3.1.5. Drug-like Phytochemicals Were Excluded Because of Toxicity and No Target for AOX-AINF-AAG-ASEN Activity
3.1.6. Identification of Drug-like Phytochemicals via Fingerprint Analysis with Reference Compounds
3.1.7. Identification of MMPs with One or More Potential AOX-AINF-AAG-ASEN Activities through Structural Network Analysis
3.1.8. Enrichment Analysis of the Pharmacological Targets from the Most Relevant MMPs
3.1.9. Effects of L. guatemalensis Benth on Carrageenan-Induced Paw Edema
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zhu, M.-J.; Wang, X.; Shi, L.; Liang, L.-Y.; Wang, Y. Senescence, oxidative stress and mitochondria dysfunction. Med. Res. Innov. 2018, 2, 1–5. [Google Scholar] [CrossRef]
- Zuo, L.; Prather, E.R.; Stetskiv, M.; Garrison, D.E.; Meade, J.R.; Peace, T.I.; Zhou, T. Inflammaging and Oxidative Stress in Human Diseases: From Molecular Mechanisms to Novel Treatments. Int. J. Mol. Sci. 2019, 20, 4472. [Google Scholar] [CrossRef] [PubMed]
- Sharifi-Rad, M.; Anil Kumar, N.V.; Zucca, P.; Varoni, E.M.; Dini, L.; Panzarini, E.; Rajkovic, J.; Tsouh Fokou, P.V.; Azzini, E.; Peluso, I.; et al. Lifestyle, Oxidative Stress, and Antioxidants: Back and Forth in the Pathophysiology of Chronic Diseases. Front. Physiol. 2020, 11, 694. [Google Scholar] [CrossRef] [PubMed]
- Liberale, L.; Badimon, L.; Montecucco, F.; Lüscher Thomas, F.; Libby, P.; Camici Giovanni, G. Inflammation, Aging, and Cardiovascular Disease. J. Am. Coll. Cardiol. 2022, 79, 837–847. [Google Scholar] [CrossRef] [PubMed]
- Leyane, T.S.; Jere, S.W.; Houreld, N.N. Oxidative Stress in Ageing and Chronic Degenerative Pathologies: Molecular Mechanisms Involved in Counteracting Oxidative Stress and Chronic Inflammation. Int. J. Mol. Sci. 2022, 23, 7273. [Google Scholar] [CrossRef] [PubMed]
- Ferrucci, L.; Fabbri, E. Inflammageing: Chronic inflammation in ageing, cardiovascular disease, and frailty. Nat. Rev. Cardiol. 2018, 15, 505–522. [Google Scholar] [CrossRef]
- Cuollo, L.; Antonangeli, F.; Santoni, A.; Soriani, A. The Senescence-Associated Secretory Phenotype (SASP) in the Challenging Future of Cancer Therapy and Age-Related Diseases. Biology 2020, 9, 485. [Google Scholar] [CrossRef]
- Kurutas, E.B. The importance of antioxidants which play the role in cellular response against oxidative/nitrosative stress: Current state. Nutr. J. 2015, 15, 71. [Google Scholar] [CrossRef]
- Newman, D.J.; Cragg, G.M. Natural products as sources of new drugs over the nearly four decades from 01/1981 to 09/2019. J. Nat. Prod. 2020, 83, 770–803. [Google Scholar] [CrossRef]
- Newman, D.J. Natural products and drug discovery. Natl. Sci. Rev. 2022, 9, nwac206. [Google Scholar] [CrossRef]
- Tresina, P.S.; Selvam, M.S.; Rajesh, A.; Doss, A.; Mohan, V.R. Natural products in drug discovery: Approaches and development. J. Pharm. Res. Int. 2021, 33, 93–110. [Google Scholar] [CrossRef]
- Calixto, J.B. The role of natural products in modern drug discovery. An. Acad. Bras. Cienc. 2019, 91, e20190105. [Google Scholar] [CrossRef]
- Martinez, L.N. South Texas Mexican American use of traditional folk and mainstream alternative therapies. Hisp. J. Behav. Sci. 2009, 31, 128–143. [Google Scholar] [CrossRef]
- Maduro, R. Curanderismo and Latino views of disease and curing. West. J. Med. 1983, 139, 868–874. [Google Scholar] [PubMed]
- Lucía, C.-P.A.; Jacqueline, B.-R.; Alberto, B.-R.L.; David, B.-A.; Beatriz, R.-A. Ethnomedicine. Actualized inventory of medicinal plants used in traditional medicine in Oaxaca, Mexico. J. Ethnobiol. Ethnomed. 2021, 17, 1–15. [Google Scholar] [CrossRef]
- de México, A.C.C. Comisión Nacional para el Conocimiento y Uso de la Biodiversidad (CONABIO). 2021. [Google Scholar]
- Villaseñor, J.L. Checklist of the native vascular plants of Mexico. Rev. Mex. Biodivers. 2016, 87, 559–902. [Google Scholar] [CrossRef]
- Argueta, A.; Cano Asseleih, L.M.; Rodarte García, M.E. Atlas de las Plantas de la Medicina Tradicional Mexicana; Instituto Nacional Indigenista: Mexico City, Mexico, 1994. [Google Scholar]
- Bye, R. La intervención del hombre en la diversificación de las plantas en México. In Diversidad Biológica en México Orígenes y Distribución; Ramamoorthy, T.P., Bye, R., Lot, H.A., Fa, J., Eds.; UNAM, Instituto de Biología: Mexico City, Mexico, 1998; pp. 689–713. [Google Scholar]
- Conabio. EncicloVida. Usos y Agrobiodiversidad; Comisión Nacional para el Conocimiento y Uso de la Biodiversidad: Mexico City, Mexico, 2019; Available online: https://enciclovida.mx/busquedas/resultados?utf8=%E2%9C%93&nombre=&busqueda=avanzada&id=&uso%5B%5D=11-4-0-0-0-0-0&uso%5B%5D=11-16-0-0-0-0-0&uso%5B%5D=11-5-0-0-0-0-0&uso%5B%5D=11-40-1-0-0-0-0&uso%5B%5D=11-40-2-0-0-0-0&uso%5B%5D=11-8-0-0-0-0-0&uso%5B%5D=11-47-0-0-0-0-0&uso%5B%5D=11-9-0-0-0-0-0&uso%5B%5D=11-10-0-0-0-0-0&uso%5B%5D=11-11-0-0-0-0-0&uso%5B%5D=11-13-0-0-0-0-0&uso%5B%5D=11-15-0-0-0-0-0&uso%5B%5D=11-14-0-0-0-0-0&uso%5B%5D=25-1-0-0-0-0-0&por_pagina=50&commit= (accessed on 2 June 2023).
- Brown, C.M.; Pena, A.; Resendiz, K. Pharmacists’ actions when patients use complementary and alternative medicine with medications: A look at Texas-Mexico border cities. J. Am. Pharm. Assoc. JAPhA 2011, 51, 619–622. [Google Scholar] [CrossRef] [PubMed]
- Sorrell, T.R. Mexican traditional medicine: Application of a traditional and complementary medicine system to improve opioid use treatment in Latinos. Sage J. 2020, 38, 384–399. [Google Scholar]
- Taddei-Bringas, G.A.; Santillana-Macedo, M.A.; Romero-Cancio, J.A.; Romero-Téllez, M.B. Aceptación y uso de herbolaria en medicina familiar. Salud Publica Mex. 1999, 41, 216–220. [Google Scholar] [CrossRef]
- NOM-072-SSA1–2012; Official Mexican Standards. Labeling of Medications and Herbal Remedies. Available online: http://www.dof.gob.mx/nota_detalle.php?codigo=5278341&fecha=21/11/2012 (accessed on 1 December 2022).
- Cabada-Aguirre, P.; López López, A.M.; Mendoza, K.C.O.; Garay Buenrostro, K.D.; Luna-Vital, D.A.; Mahady, G.B. Mexican traditional medicines for women’s reproductive health. Sci. Rep. 2023, 13, 2807. [Google Scholar] [CrossRef]
- Xia, X. Bioinformatics and Drug Discovery. Curr. Top. Med. Chem. 2017, 17, 1709–1726. [Google Scholar] [CrossRef]
- Shannon, P.; Markiel, A.; Ozier, O.; Baliga, N.S.; Wang, J.T.; Ramage, D.; Amin, N.; Schwikowski, B.; Ideker, T. Cytoscape: A software environment for integrated models of biomolecular interaction networks. Genome Res. 2003, 13, 2498–2504. [Google Scholar] [CrossRef] [PubMed]
- Chin, C.H.; Chen, S.H.; Wu, H.H.; Ho, C.W.; Ko, M.T.; Lin, C.Y. cytoHubba: Identifying hub objects and sub-networks from complex interactome. BMC Syst. Biol. 2014, 8, S11. [Google Scholar] [CrossRef] [PubMed]
- Wishart, D.S.; Knox, C.; Guo, A.C.; Cheng, D.; Shrivastava, S.; Tzur, D.; Gautam, B.; Hassanali, M. DrugBank: A knowledgebase for drugs, drug actions and drug targets. Nucleic Acids Res. 2008, 36, D901–D906. [Google Scholar] [CrossRef] [PubMed]
- Barrera-Vázquez, O.S.; Gómez-Verjan, J.C.; Magos-Guerrero, G.A. Chemoinformatic Screening for the Selection of Potential Senolytic Compounds from Natural Products. Biomolecules 2021, 11, 467. [Google Scholar] [CrossRef]
- Barrera-Vázquez, O.S.; Magos-Guerrero, G.A.; Escobar-Ramírez, J.L.; Gomez-Verjan, J.C. Natural Products as a Major Source of Candidates for Potential Senolytic Compounds obtained by in silico Screening. Med. Chem. 2023, 19, 653–668. [Google Scholar] [CrossRef]
- Kim, S.; Thiessen, P.A.; Bolton, E.E.; Chen, J.; Fu, G.; Gindulyte, A.; Han, L.; He, J.; He, S.; Shoemaker, B.A.; et al. PubChem Substance and Compound databases. Nucleic Acids Res. 2016, 44, D1202–D1213. [Google Scholar] [CrossRef]
- Sander, T.; Freyss, J.; von Korff, M.; Rufener, C. DataWarrior: An open-source program for chemistry aware data visualization and analysis. J. Chem. Inf. Model. 2015, 55, 460–473. [Google Scholar] [CrossRef]
- Gu, Z.; Eils, R.; Schlesner, M. Complex heatmaps reveal patterns and correlations in multidimensional genomic data. Bioinformatics 2016, 32, 2847–2849. [Google Scholar] [CrossRef]
- RStudio, T. RStudio: Integrated Development for R; PBC: Boston, MA, USA, 2020; Available online: http://www.rstudio.com (accessed on 1 January 2020).
- Bickerton, G.R.; Paolini, G.V.; Besnard, J.; Muresan, S.; Hopkins, A.L. Quantifying the chemical beauty of drugs. Nat. Chem. 2012, 4, 90–98. [Google Scholar] [CrossRef] [PubMed]
- Voicu, A.; Duteanu, N.; Voicu, M.; Vlad, D.; Dumitrascu, V. The rcdk and cluster R packages applied to drug candidate selection. J. Cheminform. 2020, 12, 3. [Google Scholar] [CrossRef] [PubMed]
- Winterhalter, C.; Widera, P.; Krasnogor, N. JEPETTO: A Cytoscape plugin for gene set enrichment and topological analysis based on interaction networks. Bioinformatics 2014, 30, 1029–1030. [Google Scholar] [CrossRef] [PubMed]
- Sui, S.; Wang, X.; Zheng, H.; Guo, H.; Chen, T.; Ji, D.M. Gene set enrichment and topological analyses based on interaction networks in pediatric acute lymphoblastic leukemia. Oncol. Lett. 2015, 10, 3354–3362. [Google Scholar] [CrossRef]
- Glaab, E.; Baudot, A.; Krasnogor, N.; Schneider, R.; Valencia, A. EnrichNet: Network-based gene set enrichment analysis. Bioinformatics 2012, 28, i451–i457. [Google Scholar] [CrossRef] [PubMed]
- Kanehisa, M.; Furumichi, M.; Tanabe, M.; Sato, Y.; Morishima, K. KEGG: New perspectives on genomes, pathways, diseases and drugs. Nucleic Acids Res. 2017, 45, D353–D361. [Google Scholar] [CrossRef] [PubMed]
- NOM-062-ZOO-1999; Especificaciones Técnicas Para la Producción, Cuidado y Uso de los Animales de Laboratorio. Official Mexican Standards: Mexico City, Mexico, 1999. Available online: https://www.gob.mx/cms/uploads/attachment/file/203498/NOM-062-ZOO-1999_220801.pdf (accessed on 20 June 2023).
- NOM-087-SEMARNAT-SSA1-2002; Protección Ambiental-Salud Ambiental Residuos Peligrosos Biológico-Infecciosos-Clasificación y Especificaciones de Manejo. Official Mexican Standards: Mexico City, Mexico, 2002. Available online: https://www.cndh.org.mx/sites/default/files/doc/Programas/VIH/Leyes%20y%20normas%20y%20reglamentos/Norma%20Oficial%20Mexicana/NOM-087-SEMARNAT-SSA1-2002%20Proteccion%20ambiental-salud.pdf (accessed on 11 June 2023).
- Council, N.R. Committee for the Update of the Guide for the Care and Use of Laboratory Animals. Guide for the Care and Use of Laboratory Animals, 8th ed.; National Academies Press (US): Washington, DC, USA, 2011. [Google Scholar]
- Reyes-Chilpa, R.; Baggio, C.H.; Alavez-Solano, D.; Estrada-Muñiz, E.; Kauffman, F.C.; Sanchez, R.I.; Mesia-Vela, S. Inhibition of gastric H+,K+-ATPase activity by flavonoids, coumarins and xanthones isolated from Mexican medicinal plants. J. Ethnopharmacol. 2006, 105, 167–172. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.-S.; Won, S.; Lee, H.E.; Ryu, S.H.; Choi, D.J.; Cho, S.I.; Gwag, B.J.; Youn, H.-Y.; Lee, J.H. Potent Analgesic Action of 2-acetoxy-5-(2-4 (trifluoromethyl)-phenethylamino)-benzoic Acid (Flusalazine) in Experimental Mice. J. Pain Res. 2022, 15, 3869–3879. [Google Scholar] [CrossRef]
- Chatterjee, C.J. Pharmacology. Evaluation of Anti-inflammatory and Immunosuppressive Activities of Indomethacin in Experimental. Animal Models. 2016, 3, 197–200. [Google Scholar]
- Emmanuel, U.; Onyekachi, J.; Uchenna, O. Phytochemical, anti-inflammatory and analgesic properties of stembark extract and fractions of Lonchocarpus sericeus Poir. (Papilionaceae) in albino mice. Avicenna J. Phytomed. 2020, 10, 584–593. [Google Scholar]
- Sen’kova, A.V.; Savin, I.A.; Odarenko, K.V.; Salomatina, O.V.; Salakhutdinov, N.F.; Zenkova, M.A.; Markov, A.V. Protective effect of soloxolone derivatives in carrageenan- and LPS-driven acute inflammation: Pharmacological profiling and their effects on key inflammation-related processes. Biomed. Pharmacother. 2023, 159, 114231. [Google Scholar] [CrossRef] [PubMed]
- Winter, C.A.; Risley, E.A.; Nuss, G.W. Carrageenin-induced edema in hind paw of the rat as an assay for antiiflammatory drugs. Proceedings of the Society for Experimental Biology and Medicine. Soc. Exp. Biol. Med. 1962, 111, 544–547. [Google Scholar] [CrossRef]
- Obiri, D.D.; Osafo, N.; Oppong-Sarfo, J.; Prah, J.K. Margaritaria discoidea (Euphorbiaceae) stem bark extract attenuates allergy and Freund’s adjuvant-induced arthritis in rodents. Pharmacogn. Res. 2014, 6, 163. [Google Scholar] [CrossRef]
- Patil, K.R.; Mahajan, U.B.; Unger, B.S.; Goyal, S.N.; Belemkar, S.; Surana, S.J.; Ojha, S.; Patil, C.R. Animal models of inflammation for screening of anti-inflammatory drugs: Implications for the discovery and development of phytopharmaceuticals. Int. J. Mol. Sci. 2019, 20, 4367. [Google Scholar] [CrossRef]
- Silva, J.C.; Araújo, C.d.S.; de Lima-Saraiva, S.R.G.; de Oliveira-Junior, R.G.; Diniz, T.C.; Wanderley, C.W.d.S.; Palheta-Júnior, R.C.; Mendes, R.L.; Guimarães, A.G.; Quintans-Júnior, L.J.; et al. Antinociceptive and anti-inflammatory activities of the ethanolic extract of Annona vepretorum Mart.(Annonaceae) in rodents. BMC Complement Altern. Med. 2015, 15, 1–10. [Google Scholar] [CrossRef]
- Winyard, P.G.; Willoughby, D.A. Inflammation Protocols; Springer: Berlin/Heidelberg, Germany, 2003; Volume 225. [Google Scholar]
- Mucha, P.; Skoczyńska, A.; Małecka, M.; Hikisz, P.; Budzisz, E. Overview of the Antioxidant and Anti-Inflammatory Activities of Selected Plant Compounds and Their Metal Ions Complexes. Molecules 2021, 26, 4886. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Su, X.; Xiang, Y.; Wang, X.; Lai, P. Chemical composition, antibacterial, cytotoxic and antioxidant activities of the essential oil of Malvastrum coromandelianum aerial parts. J. Essent. Oil Bear. Plants 2019, 22, 1040–1047. [Google Scholar] [CrossRef]
- Devi, S.; Lakhera, A.K.; Kumar, V. Structural analysis and antioxidant activity of an arabinoxylan from Malvastrum coromandelianum L. (Garcke). RSC Adv. 2019, 9, 24267–24279. [Google Scholar] [CrossRef]
- Bakrim, W.B.; Nurcahyanti, A.D.R.; Dmirieh, M.; Mahdi, I.; Elgamal, A.M.; El Raey, M.A.; Wink, M.; Sobeh, M. Phytochemical Profiling of the Leaf Extract of Ximenia americana var. caffra and Its Antioxidant, Antibacterial, and Antiaging Activities In Vitro and in Caenorhabditis elegans: A Cosmeceutical and Dermatological Approach. Oxidative Med. Cell. Longev. 2022, 2022, 3486257. [Google Scholar] [CrossRef] [PubMed]
- Abrantes Sarmento, J.D.; Dantas de Morais, P.L.; de Souza, F.I.; Ramos da Costa, L.; de Assis Melo, N.J. Bioactive compounds and antioxidant activity of Ximenia americana coming from different collection sites. Arch. Latinoam. Nutr. 2015, 65, 263–271. [Google Scholar]
- da Silva, B.A.F.; Pessoa, R.T.; da Costa, R.H.S.; de Oliveira, M.R.C.; Ramos, A.G.B.; de Lima Silva, M.G.; da Silva, L.Y.S.; Medeiros, C.R.; Florencio, S.G.L.; Ribeiro-Filho, J.; et al. Evaluation of the antiedematogenic and anti-inflammatory properties of Ximenia americana L. (Olacaceae) bark extract in experimental models of inflammation. Biomed. Pharmacother. Biomed. Pharmacother. 2023, 166, 115249. [Google Scholar] [CrossRef] [PubMed]
- Rivas-Gastelum, M.F.; Garcia-Amezquita, L.E.; Garcia-Varela, R.; Sánchez-López, A.L. Manilkara zapota “chicozapote” as a fruit source of health-beneficial bioactive compounds and its effects on chronic degenerative and infectious diseases, a review. Front. Nutr. 2023, 10, 1194283. [Google Scholar] [CrossRef] [PubMed]
- Pientaweeratch, S.; Panapisal, V.; Tansirikongkol, A. Antioxidant, anti-collagenase and anti-elastase activities of Phyllanthus emblica, Manilkara zapota and silymarin: An in vitro comparative study for anti-aging applications. Pharm. Biol. 2016, 54, 1865–1872. [Google Scholar] [CrossRef] [PubMed]
- Dai, Y.L.; Li, Y.; Wang, Q.; Niu, F.J.; Li, K.W.; Wang, Y.Y.; Wang, J.; Zhou, C.Z.; Gao, L.N. Chamomile: A Review of Its Traditional Uses, Chemical Constituents, Pharmacological Activities and Quality Control Studies. Molecules 2022, 28, 133. [Google Scholar] [CrossRef]
- Janarny, G.; Ranaweera, K.; Gunathilake, K. Digestive recovery of polyphenols, antioxidant activity, and anti-inflammatory activity of selected edible flowers from the family Fabaceae. J. Food Biochem. 2022, 46, e14052. [Google Scholar] [CrossRef]
- Rana, A.; Samtiya, M.; Dhewa, T.; Mishra, V.; Aluko, R.E. Health benefits of polyphenols: A concise review. J. Food Biochem. 2022, 46, e14264. [Google Scholar] [CrossRef]
- Bihani, T. Plumeria rubra L. A review on its ethnopharmacological, morphological, phytochemical, pharmacological and toxicological studies. J. Ethnopharmacol. 2021, 264, 113291. [Google Scholar] [CrossRef]
- Borges-Argáez, R.; Díaz, M.E.P.; Waterman, P.G.; Peña-Rodríguez, L.M. Additional flavonoids from Lonchocarpus yucatanensis and L. xuul. J. Braz. Chem. Soc. 2005, 16, 1078–1081. [Google Scholar] [CrossRef]
- Baliga, M.S.; Shivashankara, A.R.; Venkatesh, S.; Bhat, H.P.; Palatty, P.L.; Bhandari, G.; Rao, S. Chapter 7—Phytochemicals in the Prevention of Ethanol-Induced Hepatotoxicity: A Revisit. In Dietary Interventions in Liver Disease; Watson, R.R., Preedy, V.R., Eds.; Academic Press: London, UK, 2019. [Google Scholar] [CrossRef]
- Robles-Zepeda, R.E.; Coronado-Aceves, E.W.; Velázquez-Contreras, C.A.; Ruiz-Bustos, E.; Navarro-Navarro, M.; Garibay-Escobar, A. In vitro anti-mycobacterial activity of nine medicinal plants used by ethnic groups in Sonora, Mexico. BMC Complement. Altern. Med. 2013, 13, 329. [Google Scholar] [CrossRef]
- Opara, E.I.; Chohan, M. Culinary herbs and spices: Their bioactive properties, the contribution of polyphenols and the challenges in deducing their true health benefits. Int. J. Mol. Sci. 2014, 15, 19183–19202. [Google Scholar] [CrossRef]
- Quiñonez-Bastidas, G.N.; Navarrete, A. Mexican Plants and Derivates Compounds as Alternative for Inflammatory and Neuropathic Pain Treatment-A Review. Plants 2021, 10, 865. [Google Scholar] [CrossRef]
- Liu, P.; Xiao, Q.; Zhai, S.; Qu, H.; Guo, F.; Deng, J. Optimization of drug scheduling for cancer chemotherapy with considering reducing cumulative drug toxicity. Heliyon 2023, 9, e17297. [Google Scholar] [CrossRef]
- Kerstjens, A.; De Winter, H. LEADD: Lamarckian evolutionary algorithm for de novo drug design. J. Cheminform. 2022, 14, 3. [Google Scholar] [CrossRef]
- Sartori, S.K.; Diaz, M.A.N.; Diaz-Muñoz, G. Lactones: Classification, synthesis, biological activities, and industrial applications. Tetrahedron 2021, 84, 132001. [Google Scholar] [CrossRef]
- Ericson-Neilsen, W.; Kaye, A.D. Steroids: Pharmacology, complications, and practice delivery issues. Ochsner J. 2014, 14, 203–207. [Google Scholar] [PubMed]
- Vollaro, A.; Esposito, A.; Antonaki, E.; Iula, V.D.; D’Alonzo, D.; Guaragna, A.; De Gregorio, E. Steroid Derivatives as Potential Antimicrobial Agents Against Staphylococcus aureus Planktonic Cells. Microorganisms 2020, 8, 468. [Google Scholar] [CrossRef] [PubMed]
- Ntie-Kang, F.; Svozil, D. An enumeration of natural products from microbial, marine and terrestrial sources. Phys. Sci. Rev. 2020, 5, 20180121. [Google Scholar] [CrossRef]
- Debnath, B.; Singh, W.S.; Das, M.; Goswami, S.; Singh, M.K.; Maiti, D.; Manna, K. Role of plant alkaloids on human health: A review of biological activities. Mater. Today Chem. 2018, 9, 56–72. [Google Scholar] [CrossRef]
- Bai, R.; Yao, C.; Zhong, Z.; Ge, J.; Bai, Z.; Ye, X.; Xie, T.; Xie, Y. Discovery of natural anti-inflammatory alkaloids: Potential leads for the drug discovery for the treatment of inflammation. Eur. J. Med. Chem. 2021, 213, 113165. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.; Dong, G.; Sheng, C. Structural Simplification of Natural Products. Chem. Rev. 2019, 119, 4180–4220. [Google Scholar] [CrossRef]
- Hopkins, A.L. Network pharmacology: The next paradigm in drug discovery. Nat. Chem. Biol. 2008, 4, 682–690. [Google Scholar] [CrossRef] [PubMed]
- Predes, D.; Oliveira, L.F.; Ferreira, L.S.; Maia, L.A.; Delou, J.M.; Faletti, A.; Oliveira, I.; Amado, N.G.; Reis, A.H.; Fraga, C.A.J.C. The chalcone lonchocarpin inhibits Wnt/β-catenin signaling and suppresses colorectal cancer proliferation. Cancers 2019, 11, 1968. [Google Scholar] [CrossRef] [PubMed]
- Jo, H.; Shim, K.; Jeoung, D. The Potential of Senescence as a Target for Developing Anticancer Therapy. Int. J. Mol. Sci. 2023, 24, 3436. [Google Scholar] [CrossRef] [PubMed]
- Ahmed, S.M.U.; Luo, L.; Namani, A.; Wang, X.J.; Tang, X. Nrf2 signaling pathway: Pivotal roles in inflammation. Biochim. Biophys. Acta (BBA) Mol. Basis Dis. 2017, 1863, 585–597. [Google Scholar] [CrossRef]
- Jeong, Y.H.; Park, J.S.; Kim, D.H.; Kim, H.S. Lonchocarpine Increases Nrf2/ARE-Mediated Antioxidant Enzyme Expression by Modulating AMPK and MAPK Signaling in Brain Astrocytes. Biomol. Ther. 2016, 24, 581–588. [Google Scholar] [CrossRef] [PubMed]
- Silva-García, O.; Valdez-Alarcón, J.J.; Baizabal-Aguirre, V.M. The Wnt/β-catenin signaling pathway controls the inflammatory response in infections caused by pathogenic bacteria. Mediat. Inflamm. 2014, 2014. [Google Scholar] [CrossRef]
- Ji, Y.; Lv, J.; Sun, D.; Huang, Y. Therapeutic strategies targeting Wnt/β-catenin signaling for colorectal cancer (Review). Int. J. Mol. Med. 2022, 49, 378. [Google Scholar] [CrossRef]
- Ma, B.; Hottiger, M.O. Crosstalk between Wnt/β-catenin and NF-κB signaling pathway during inflammation. Front. Immunol. 2016, 7, 378. [Google Scholar] [CrossRef] [PubMed]
- Kumar, S.N.; Bavikar, S.R.; Pavan Kumar, C.N.S.S.; Yu, I.F.; Chein, R.-J. From Carbamate to Chalcone: Consecutive Anionic Fries Rearrangement, Anionic Si → C Alkyl Rearrangement, and Claisen–Schmidt Condensation. Org. Lett. 2018, 20, 5362–5366. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Zhang, J.; Wen, R.; Tu, G.Z.; Chen, H.B.; Liang, H.; Zhao, Y.Y. Anti-inflammatory and antiproliferative prenylated chalcones from Hedysarum gmelinii. J. Asian Nat. Prod. Res. 2018, 20, 1009–1018. [Google Scholar] [CrossRef] [PubMed]
- Arden, N.S.; Fisher, A.C.; Tyner, K.; Yu, L.X.; Lee, S.L.; Kopcha, M. Industry 4.0 for pharmaceutical manufacturing: Preparing for the smart factories of the future. Int. J. Pharm. 2021, 602, 120554. [Google Scholar] [CrossRef] [PubMed]
- Tarkang, P.A.; Appiah-Opong, R.; Ofori, M.F.; Ayong, L.S.; Nyarko, A.K. Application of multi-target phytotherapeutic concept in malaria drug discovery: A systems biology approach in biomarker identification. Biomark. Res. 2016, 4, 25. [Google Scholar] [CrossRef] [PubMed]
- Kumar, A.; Kini, S.G.; Rathi, E. A Recent Appraisal of Artificial Intelligence and In Silico ADMET Prediction in the Early Stages of Drug Discovery. Mini Rev. Med. Chem. 2021, 21, 2788–2800. [Google Scholar] [CrossRef] [PubMed]
- Park, J.; Choi, T.J.; Kang, K.S.; Choi, S.H. The Interrelationships between Intestinal Permeability and Phlegm Syndrome and Therapeutic Potential of Some Medicinal Herbs. Biomolecules 2021, 11, 284. [Google Scholar] [CrossRef]
NMMPs Collected from the Literature | Number |
---|---|
Total | 1025 |
With anti-oxidant activity | 218 |
With anti-inflammatory activity | 196 |
With anti-senescence activity | 6 |
With anti-aging activity | 14 |
Without AOX-AINF-AAG-ASEN activity | 661 |
Family | Genus | Species | Phytochemical Profile | Reported Activities |
---|---|---|---|---|
Dilleniaceae | Curatella | americana | Avicularin, gallic acid, quercetin, quercetin-3-O-galactopyranoside, quercetin galactoarabinoside, quercetin-3-glucoside, quercetin-3-O-Alpha-l-rhamnoside, procyanidin, β-amyrin, betulinic acid, lupeol, and foeniculin | Anti-oxidant, anti-inflammatory, and anti-aging |
Lauraceae | Persea | americana | Gallic acid, alfa-carotene, beta-carotene, vanillic acid, quercetin, catechin, epicatechin, procyanidins, tocopherols, lutein, glutathione, kaempferol, and chlorogenic acid | Anti-oxidant and anti-inflammatory |
Olacaceae | Ximenia | americana | Quinic acid, coumaroyl-o-galloyl glucose, (epi)-catechin-(epi)-catechin-(epi)-catechin, (epi)-catechin carboxylic ester, (epi)-catechin-(epi)-catechin, procyanidin b1, epicatechin, catechin, pyrogallol-o-methylgalloyl glucose, procyanidin dimer monogallate, quercetin galloyl-hexoside, rutin, isoquercetin, avicularin, kaempferol 3-o-glucoside, kaempferol 3-neohesperidoside, quercetin pentoside, quercetin rhamnoside, kaempferol 3-o-arabinoside, kaempferol pentoside, uronic acid, arabinose, rhamnose, galactose, and glucose | Anti-oxidant, anti-inflammatory, anti-senescence, and anti-aging |
Fabaceae | Parkinsonia | aculeata | 4-hydroxyhematoxylol, apigenine, chrysoeriol, diosmetin beta-glucoside, kaempferol, lucenine 2, luteolin, orientin, iso-orientin, coumaric acid, rosmarinic acid, 7-O-Methyl-cyanidin-3-O-galactoside, kaempferol-8-C-β-D-glucoside, Luteolin-8-C-β-D-glucopyranoside, diosmetin-8-C-glucoside, apigenin-7-O-glucoside, kaempferol-3-O-glucoside, and homoplantaginin | Anti-oxidant and anti-inflammatory |
Arecaceae | Acrocomia | aculeata | Gallic acid, caffeic acid, vanillic acid, rutin, quercetin, campesterol, stigmasterol, β-sitosterol, lupeol acetate, oleic acid, Docosahexaenoic acid, Eicosapentaenoic acid, and gamma-linolenic acid | Anti-oxidant and anti-inflammatory |
Meliaceae | Cedrela | odorata | Kaempferol-3-O-β-D-glucopyranoside Kaempferide-3-O-β-D-rutinoside, and Kaempferide-3-O-β-D-rutinosyl-7-O-α-L-rhamnopyranoside | Anti-oxidant and anti-inflammatory |
Asteraceae | Chromolaena | odorata | Caryophyllene, quercetin-4 methyl ether, aromadendrin-4′-methyl ether, taxifolin-7-methyl ether, taxifolin-4′-methyl ether, quercetin-7-methyl ether, kaempferol-4′-methyl ether, eridicytol-7, 4′-dimethyl ether, quercetin-7,4′-dimethyl ether, coriolic acid, coriolic acid methyl ester, 15-16-didehydrocoriolic acid, 15,16-didehydrocoriolic acid methyl ester, linoleamide, tamarixetin, kaempferide, 2-4-dihydroxy-3′,4′,6′-trimethoxychalcone, and 5,3′-dihydroxy-7,6′-dimethoxyflavanone or | Anti-oxidant and anti-inflammatory |
Malvaceae | Malvastrum | coromandelianum | Palmitic acid, hexahydrofarnesyl acetone, linoleic acid, β-caryophyllene, cedren-8-en-15-ol, and arabinoxylan | Anti-oxidant, anti-inflammatory, anti-senescence, and anti-aging |
Solanaceae | Solanum | nigrum | Acanthoside D, adenine, adenosine, allantoin, betaine, caffeic acid, cannabis in f, quercetin, quercitrin, stigmasterol, succinic acid, syringaresinol, tigogenin, tomatidenol, trans ferulic acid, trigonelline, ursolic acid, uttronin a, uttronin b, and vanillic acid | Anti-oxidant and anti-inflammatory |
Sapotaceae | Manilkara | zapota | Taraxerol methyl ether, spinasterol, 6-hydroxy flavanone, dihydrokaempferol, 3,4-dihydroxy benzoic acid, taraxerol, taraxerone, lupeol acetate, epicatechin, gallocatechin, gallic acid, quercetin, myricitrin, catechin, myricetin, vanillic acid, caffeic acid, ferulic acid, syringic acid, afzelechin, and epigallocatechin | Anti-oxidant, anti-inflammatory, anti-senescence, and anti-aging |
Family | Genus | Species | Score |
---|---|---|---|
Apocynaceae | Plumeria | rubra | 1023 |
Fabaceae | Lonchocarpus | yucatanensis | 187 |
Lamiaceae | Salvia | polystachya | 150 |
Phytochemicals | Score | ||
Beta-sitosterol | 329 | ||
Quercetin | 302 | ||
Ursolic acid | 288 | ||
Rutin | 197 | ||
Stigmasterol | 196 | ||
Apigenin | 101 | ||
Oleanolic acid | 93 | ||
Thymol | 51 | ||
Caffeic acid | 51 | ||
Gallic acid | 51 |
Compound | Structure | Predominance Pharmacological Activity * |
---|---|---|
Paromomycin | Antidiarrheal, antibiotic, and intestinal anti-inflammatory/anti-infective agent | |
Magnesium Ascorbate | Anti-oxidant agent | |
Tunicamycin A-D | Antibiotic agent | |
Ginsenoside Rb1 | Anti-diabetic agent | |
Calcium Ascorbate | Anti-oxidant agent | |
Roxithromycin | Antibiotic agent | |
Timosaponin a-III | Anticancer and anti-inflammatory agent | |
Digoxin | Positive inotropic and negative chronotropic agent | |
Rapamycin | Anticancer agent |
Number of Molecules from MMPs | Number of Molecules with a Score of Less than 0.5 | Number of Molecules with a Score Greater than 0.5 | |
---|---|---|---|
QED | 1373 | 605 | 718 |
Family | Genus | Species | Reported Activity * | Part of the Plant Used | Number of Compounds with Reported Targets | Number of Targets That Interact with the Network |
---|---|---|---|---|---|---|
Fabaceae | Lonchocarpus | guatemalensis | Antiacid activity | Roots | 1 | 2 |
Apocynaceae | Vallesia | glabra | ND | Leaves, fruits, seeds, and milk-clotting | 1 | 8 |
Fabaceae | Erythrina | oaxacana | ND | Flowers and seeds | 1 | 2 |
Fabaceae | Erythrina | sousae | ND | Flowers and seeds | 1 | 2 |
Phytochemicals | CID | Source MMPs | Pharmacological Activity | Structural Similarity with | Potential Activity |
---|---|---|---|---|---|
Apparicine | 5281349 | Vallesia glabra | Cytotoxic activity | Paromomycin, calcium ascorbate, magnesium ascorbate, rapamycin, timosaponin III, tunicamycin, geldanamycin, streptomycin, rifaximin, rifampicin, alvespimicyn, azithromycin, natamycin, roxithromycin, and oleuropein | Anti-oxidant, anti-inflammatory, and senolytic |
Vallesine | 20054841 | Vallesia glabra | Antimalarial, diuretic, and respiratory stimulant activity | Paromomycin, calcium ascorbate, magnesium ascorbate, rapamycin, timosaponin III, tunicamycin, geldanamycin, streptomycin, rifaximin, rifampicin, alvespimicyn, azithromycin, natamycin, roxithromycin, and oleuropein | Anti-oxidant, anti-inflammatory, and analytic |
Pseudotropine | 449293 | Datura stramonium | ND | Digoxin and strophanthin k | Senolytic |
Scopine | 1274465 | Datura stramonium | α1-adrenergic receptor agonist | Paromomycin, calcium ascorbate, magnesium ascorbate, rapamycin, timosaponin III, tunicamycin, geldanamycin, streptomycin, rifaximin, rifampicin, alvespimicyn, azithromycin, natamycin, roxithromycin, and oleuropein | Anti-oxidant, anti-inflammatory, and senolytic |
Tropine | 8424 | Datura stramonium | Acetylcholine antagonist | Oubain and ginsenoside Rb1 | Senolytic |
Corytuberine | 160500 | Cissampelos pareira | Inhibitor activity against malonyl-CoA: acyl carrier protein transacylase (MCAT) from Helicobacter pylori | Paromomycin, calcium ascorbate, magnesium ascorbate, rapamycin, timosaponin III, tunicamycin, geldanamycin, streptomycin, rifaximin, rifampicin, alvespimicyn, azithromycin, natamycin, roxithromycin, and oleuropein | Anti-oxidant, anti-inflammatory, and senolytic |
Cryptocavine | 72616 | Argemone platyceras | Antibacterial activity | Paromomycin, calcium ascorbate, magnesium ascorbate, rapamycin, timosaponin III, tunicamycin, geldanamycin, streptomycin, rifaximin, rifampicin, alvespimicyn, azithromycin, natamycin, roxithromycin, and oleuropein | Anti-oxidant, anti-inflammatory, and senolytic |
Erysotrine | 442219 | Erythrina oaxacana and Erythrina sousae | Cytotoxic and anticancer activity | Paromomycin, calcium ascorbate, magnesium ascorbate, rapamycin, timosaponin III, tunicamycin, geldanamycin, streptomycin, rifaximin, rifampicin, alvespimicyn, azithromycin, natamycin, roxithromycin, and oleuropein | Anti-oxidant, anti-inflammatory, and senolytic |
Germanicol | 122857 | Euphorbia pulcherrima | Antiproliferative activity | Oubain and ginsenoside Rb1 | |
Laudanosine | 15548 | Cissampelos pareira and Argemone platyceras | Neuromuscular blocking activity | Paromomycin, calcium ascorbate, magnesium ascorbate, rapamycin, timosaponin III, tunicamycin, geldanamycin, streptomycin, rifaximin, rifampicin, alvespimicyn, azithromycin, natamycin, roxithromycin, and oleuropein | Anti-oxidant, anti-inflammatory, and senolytic |
Liriodenine | 10144 | Annona reticulata | Antibacterial and antifungal activity | Paromomycin, calcium ascorbate, magnesium ascorbate, rapamycin, timosaponin III, tunicamycin, geldanamycin, streptomycin, rifaximin, rifampicin, alvespimicyn, azithromycin, natamycin, roxithromycin, and oleuropein | Anti-oxidant, anti-inflammatory, and senolytic |
Lonchocarpin | 6283743 | Lonchocarpus guatemalensis | Inhibitor of the Wnt/β-catenin pathway | Paromomycin, calcium ascorbate, magnesium ascorbate, rapamycin, timosaponin III, tunicamycin, geldanamycin, streptomycin, rifaximin, and rifampicin | Anti-oxidant, anti-inflammatory, and senolytic |
Magnocurarine | 53266 | Cissampelos pareira | ND | Paromomycin, calcium ascorbate, magnesium ascorbate, rapamycin, timosaponin III, tunicamycin, geldanamycin, streptomycin, rifaximin, and rifampicin | Anti-oxidant, anti-inflammatory, and senolytic |
Scopoline | 261184 | Datura stramonium | Anticholinergic activity | Paromomycin, calcium ascorbate, magnesium ascorbate, rapamycin, timosaponin III, tunicamycin, geldanamycin, streptomycin, rifaximin, rifampicin, alvespimicyn, azithromycin, natamycin, roxithromycin, and oleuropein | Anti-oxidant, anti-inflammatory, and senolytic |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Barrera-Vázquez, O.S.; Montenegro-Herrera, S.A.; Martínez-Enríquez, M.E.; Escobar-Ramírez, J.L.; Magos-Guerrero, G.A. Selection of Mexican Medicinal Plants by Identification of Potential Phytochemicals with Anti-Aging, Anti-Inflammatory, and Anti-Oxidant Properties through Network Analysis and Chemoinformatic Screening. Biomolecules 2023, 13, 1673. https://doi.org/10.3390/biom13111673
Barrera-Vázquez OS, Montenegro-Herrera SA, Martínez-Enríquez ME, Escobar-Ramírez JL, Magos-Guerrero GA. Selection of Mexican Medicinal Plants by Identification of Potential Phytochemicals with Anti-Aging, Anti-Inflammatory, and Anti-Oxidant Properties through Network Analysis and Chemoinformatic Screening. Biomolecules. 2023; 13(11):1673. https://doi.org/10.3390/biom13111673
Chicago/Turabian StyleBarrera-Vázquez, Oscar Salvador, Sergio Andrés Montenegro-Herrera, María Elena Martínez-Enríquez, Juan Luis Escobar-Ramírez, and Gil Alfonso Magos-Guerrero. 2023. "Selection of Mexican Medicinal Plants by Identification of Potential Phytochemicals with Anti-Aging, Anti-Inflammatory, and Anti-Oxidant Properties through Network Analysis and Chemoinformatic Screening" Biomolecules 13, no. 11: 1673. https://doi.org/10.3390/biom13111673
APA StyleBarrera-Vázquez, O. S., Montenegro-Herrera, S. A., Martínez-Enríquez, M. E., Escobar-Ramírez, J. L., & Magos-Guerrero, G. A. (2023). Selection of Mexican Medicinal Plants by Identification of Potential Phytochemicals with Anti-Aging, Anti-Inflammatory, and Anti-Oxidant Properties through Network Analysis and Chemoinformatic Screening. Biomolecules, 13(11), 1673. https://doi.org/10.3390/biom13111673