Hormonal Status of Transgenic Birch with a Pine Glutamine Synthetase Gene during Rooting In Vitro and Budburst Outdoors
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Material
2.2. In Vitro Experiments
2.3. Pot Experiment
2.4. Amino Acid Analysis
2.5. Hormone Extraction and Purification
2.6. Immunoassay
2.7. Statistical Analysis
3. Results
3.1. Effect of PPT on Rooting Birch In Vitro
3.2. IAA and Amino Acid Content in Tissues of Birch Plants In Vitro
3.3. Effect of N Availability on Growth and Budburst of Birch Plants
3.4. IAA and ABA Content in Buds of Birch Plants
4. Discussion
4.1. Auxin Status of Birch Plants during Rooting In Vitro
4.2. Effect of N Availability on Spring Phenology of Birch
4.3. Hormonal Status of Birch Buds during Dormancy and Budburst
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Demura, T.; Ye, Z.-H. Regulation of plant biomass production. Curr. Opin. Plant Biol. 2010, 13, 298–303. [Google Scholar] [CrossRef] [PubMed]
- Singh, J.; Pandey, P.; James, D.; Chandrasekhar, K.; Achary, V.M.M.; Kaul, T.; Tripathy, B.C.; Reddy, M.K. Enhancing C3 photosynthesis: An outlook on feasible interventions for crop improvement. Plant Biotechnol. J. 2014, 12, 1217–1230. [Google Scholar] [CrossRef] [PubMed]
- Sinclair, T.R.; Rufty, T.R.; Lewis, R.S. Increasing photosynthesis: Unlikely solution for world food problem. Trends Plant Sci. 2019, 24, 1032–1039. [Google Scholar] [CrossRef] [PubMed]
- McAllister, C.H.; Beatty, P.H.; Good, A.G. Engineering nitrogen use efficient crop plants: The current status. Plant Biotechnol. J. 2012, 10, 1011–1025. [Google Scholar] [CrossRef] [PubMed]
- Lebedev, V.G.; Popova, A.A.; Shestibratov, K.A. Genetic engineering and genome editing for improving nitrogen use efficiency in plants. Cells 2021, 10, 3303. [Google Scholar] [CrossRef]
- Németh, E.; Nagy, Z.; Pécsváradi, A. Chloroplast glutamine synthetase, the key regulator of nitrogen metabolism in wheat, performs its role by fine regulation of enzyme activity via negative cooperativity of its subunits. Front. Plant Sci. 2018, 9, 191. [Google Scholar] [CrossRef] [PubMed]
- Pallardy, S.G. Nitrogen Metabolism. In Physiology of Woody Plants, 3rd ed.; Pallardy, S.G., Ed.; Academic Press: Cambridge, MA, USA, 2008; pp. 233–254. [Google Scholar]
- El-Khatib, R.T.; Hamerlynck, E.P.; Gallardo, F.; Kirby, E.G. Transgenic poplar characterized by ectopic expression of a pine cytosolic glutamine synthetase gene exhibits enhanced tolerance to water stress. Tree Physiol. 2004, 24, 729–736. [Google Scholar] [CrossRef]
- Lee, H.J.; Abdula, S.E.; Jang, D.W.; Park, S.-H.; Yoon, U.-H.; Jung, Y.J.; Kang, K.K.; Nou, I.S.; Cho, Y.-G. Overexpression of the glutamine synthetase gene modulates oxidative stress response in rice after exposure to cadmium stress. Plant Cell Rep. 2013, 32, 1521–1529. [Google Scholar] [CrossRef]
- James, D.; Borphukan, B.; Fartyal, D.; Ram, B.; Singh, J.; Manna, M.; Sheri, V.; Panditi, V.; Yadav, R.; Achary, V.M.M.; et al. Concurrent overexpression of OsGS1;1 and OsGS2 genes in transgenic rice (Oryza sativa L.): Impact on tolerance to abiotic stresses. Front. Plant Sci. 2018, 9, 786. [Google Scholar] [CrossRef]
- Vincent, R.; Fraisier, V.; Chaillou, S.; Limami, M.A.; Deleens, E.; Phillipson, B.; Douat, C.; Boutin, J.-P.; Hirel, B. Overexpression of a soybean gene encoding cytosolic glutamine synthetase in shoots of transgenic Lotus corniculatus L. plants triggers changes in ammonium assimilation and plant development. Planta 1997, 201, 424–433. [Google Scholar] [CrossRef]
- Giannino, D.; Nicolodi, C.; Testone, G.; Frugis, G.; Pace, E.; Santamaria, P.; Guardasole, M.; Mariotti, D. The overexpression of asparagine synthetase A from E. coli affects the nitrogen status in leaves of lettuce (Lactuca sativa L.) and enhances vegetative growth. Euphytica 2007, 162, 11–22. [Google Scholar] [CrossRef]
- Liu, S.; Wang, D.; Mei, Y.; Xia, T.; Xu, W.; Zhang, Y.; You, X.; Zhang, X.; Li, L.; Wang, N.N. Overexpression of GmAAP6a enhances tolerance to low nitrogen and improves seed nitrogen status by optimizing amino acid partitioning in soybean. Plant Biotechnol J. 2020, 18, 1749–1762. [Google Scholar] [CrossRef] [PubMed]
- Lu, K.; Wu, B.; Wang, J.; Zhu, W.; Nie, H.; Qian, J.; Huang, W.; Fang, Z. Blocking amino acid transporter OsAAP3 improves grain yield by promoting outgrowth buds and increasing tiller number in rice. Plant Biotechnol. J. 2018, 16, 1710–1722. [Google Scholar] [CrossRef]
- Wang, J.; Wu, B.; Lu, K.; Wei, Q.; Qian, J.; Chen, Y.; Fang, Z. The amino acid permease 5 (OsAAP5) regulates tiller number and grain yield in rice. Plant Physiol. 2019, 180, 1031–1045. [Google Scholar] [CrossRef] [PubMed]
- Weigelt, K.; Kuster, H.; Radchuk, R.; Muller, M.; Weichert, H.; Fait, A.; Fernie, A.R.; Saalbach, I.; Weber, H. Increasing amino acid supply in pea embryos reveals specific interactions of N and C metabolism, and highlights the importance of mitochondrial metabolism. Plant J. 2008, 55, 909–926. [Google Scholar] [CrossRef]
- Nakhooda, M.; Jain, S.M. A review of eucalyptus propagation and conservation. Propag. Ornam. Plants 2016, 16, 101–119. [Google Scholar]
- da Costa, C.T.; de Almeida, M.R.; Ruedell, C.M.; Schwambach, J.; Maraschin, F.S.; Fett-Neto, A.G. When stress and development go hand in hand: Main hormonal controls of adventitious rooting in cuttings. Front. Plant Sci. 2013, 4, 133. [Google Scholar] [CrossRef]
- Man, H.; Pollmann, S.; Weiler, E.W.; Kirby, E.G. Increased glutamine in leaves of poplar transgenic with pine GS1a caused greater anthranilate synthetase a-subunit (ASA1) transcript and protein abundances: An auxinrelated mechanism for enhanced growth in GS transgenics? J. Exp. Bot. 2011, 62, 4423–4431. [Google Scholar] [CrossRef]
- Maurya, J.P.; Triozzi, P.M.; Bhalerao, R.P.; Perales, M. Environmentally sensitive molecular switches drive poplar phenology. Front. Plant Sci. 2018, 9, 1873. [Google Scholar] [CrossRef]
- Li, J.; Xu, Y.; Niu, Q.; He, L.; Teng, Y.; Bai, S. Abscisic Acid (ABA) promotes the induction and maintenance of pear (Pyrus pyrifolia White Pear Group) flower bud endodormancy. Int. J. Mol. Sci. 2018, 19, 310. [Google Scholar] [CrossRef]
- Sah, S.K.; Reddy, K.R.; Li, J. Abscisic acid and abiotic stress tolerance in crop plants. Front. Plant Sci. 2016, 7, 571. [Google Scholar] [CrossRef] [PubMed]
- Brookbank, B.P.; Patel, J.; Gazzarrini, S.; Nambara, E. Role of basal ABA in plant growth and development. Genes. 2021, 12, 1936. [Google Scholar] [CrossRef] [PubMed]
- Ali, F.; Qanmber, G.; Li, F.; Wang, Z. Updated role of ABA in seed maturation, dormancy, and germination. J. Adv. Res. 2022, 35, 199–214. [Google Scholar] [CrossRef] [PubMed]
- De Barba, D.; Rossi, S.; Deslauriers, A.; Morin, H. Effects of soil warming and nitrogen foliar applications on bud burst of black spruce. Trees 2016, 30, 87–97. [Google Scholar] [CrossRef]
- Molina-Rueda, J.J.; Kirby, E.G. Transgenic poplar expressing the pine GS1a show alterations in nitrogen homeostasis during drought. Plant Physiol. Biochem. 2015, 94, 181–190. [Google Scholar] [CrossRef]
- Hynynen, J.; Niemisto, P.; Vihera-Aarnio, A.; Brunner, A.S.; Hein, S.; Velling, P. Silviculture of birch (Betula pendula Roth and Betula pubescens Ehrh.) in northern Europe. Forestry 2010, 83, 103–119. [Google Scholar] [CrossRef]
- Lebedev, V.G.; Schestibratov, K.A.; Shadrina, T.E.; Bulatova, I.V.; Abramochkin, D.G.; Miroshnikov, A.I. Cotransformation of aspen and birch with three T-DNA regions from two different replicons in one Agrobacterium tumefaciens strain. Russ. J. Genet. 2010, 46, 1282–1289. [Google Scholar] [CrossRef]
- Lebedev, V.G.; Kovalenko, N.P.; Shestibratov, K.A. Influence of nitrogen availability on growth of two transgenic birch species carrying the pine GS1a gene. Plants 2017, 6, 4. [Google Scholar] [CrossRef]
- Lebedev, V.G.; Lebedeva, T.N.; Shestibratov, K.A. Impact of transgenic birch with modified nitrogen metabolism on soil properties, microbial biomass and enzymes in 4-year study. Plant Soil. 2023, 484, 627–643. [Google Scholar] [CrossRef]
- Dayan, F.E.; Cantrell, C.L.; Duke, S.O. Natural products in crop protection. Bioorg. Med. Chem. 2009, 17, 4022–4034. [Google Scholar] [CrossRef]
- Murray, M.B.; Cannell, M.G.R.; Smith, R.I. Date of bud burst of fifteen tree species in Britain following climatic warming. J. Appl. Ecol. 1989, 26, 693–700. [Google Scholar] [CrossRef]
- Kudoyarova, G.R.; Melentiev, A.I.; Martynenko, E.V.; Arkhipova, T.N.; Shendel, G.V.; Kuz’mina, L.Y.; Dodd, I.C.; Veselov, S.Y. Cytokinin producing bacteria stimulate amino acid deposition by wheat root. Plant Physiol. Biochem. 2014, 83, 285–291. [Google Scholar] [CrossRef]
- Vysotskaya, L.B.; Korobova, A.V.; Kudoyarova, G.R. Abscisic acid accumulation in the roots of nutrient-limited plants: Its impact on the differential growth of roots and shoots. J. Plant Physiol. 2008, 165, 1274–1279. [Google Scholar] [CrossRef]
- Veselov, S.U.; Kudoyarova, G.R.; Egutkin, N.L.; Gyuli-Zade, V.G.; Mustafina, A.R.; Kof, E.K. Modified solvent partitioning scheme providing increased specificity and rapidity of immunoassay for indole 3-acetic acid. Physiol. Plant. 1992, 86, 93–96. [Google Scholar] [CrossRef]
- Li, S.-B.; Xie, Z.-Z.; Hu, C.-G.; Zhang, J.-Z. A review of auxin response factors (ARFs) in plants. Front. Plant Sci. 2016, 7, 47. [Google Scholar] [CrossRef]
- Paque, S.; Weijers, D. Q&A: Auxin: The plant molecule that influences almost anything. BMC Biol. 2016, 14, 67. [Google Scholar] [CrossRef]
- Herud-Sikimić, O.; Stiel, A.C.; Kolb, M.; Shanmugaratnam, S.; Berendzen, K.W.; Feldhaus, C.; Höcker, B.; Jürgens, G. A biosensor for the direct visualization of auxin. Nature 2021, 592, 768–772. [Google Scholar] [CrossRef]
- Fu, Y.-F.; Yang, X.-Y.; Zhang, Z.-W.; Yuan, S. Synergistic effects of nitrogen metabolites on auxin regulating plant growth and development. Front. Plant Sci. 2022, 13, 1098787. [Google Scholar] [CrossRef] [PubMed]
- Bernard, S.M.; Habash, D.Z. The importance of cytosolic glutamine synthetase in nitrogen assimilation and recycling. New Phytol. 2009, 182, 608–620. [Google Scholar] [CrossRef]
- Brunharo, C.A.C.G.; Takano, H.K.; Mallory-Smith, C.A.; Dayan, F.E.; Hanson, B.D. Role of glutamine synthetase isogenes and herbicide metabolism in the mechanism of resistance to glufosinate in Lolium perenne L. spp. multiflorum biotypes from Oregon. J. Agric. Food Chem. 2019, 67, 8431–8440. [Google Scholar] [CrossRef] [PubMed]
- Forde, B.G.; Walch-Liu, P. Nitrate and glutamate as environmental cues for behavioural responses in plant roots. Plant Cell Environ. 2009, 32, 682–693. [Google Scholar] [CrossRef] [PubMed]
- Zhang, W.; Ni, K.; Long, L.; Ruan, J. Nitrogen transport and assimilation in tea plant (Camellia sinensis): A review. Front. Plant Sci. 2023, 14, 1249202. [Google Scholar] [CrossRef]
- Pascual, M.B.; Jing, Z.P.; Kirby, E.G.; Caґnovas, F.M.; Gallardo, F. Response of transgenic poplar overexpressing cytosolic glutamine synthetase to phosphinothricin. Phytochem. 2008, 69, 382–389. [Google Scholar] [CrossRef]
- Cai, H.; Zhou, Y.; Xiao, J.; Li, X.; Zhang, Q.; Lian, X. Overexpressed glutamine synthetase gene modifies nitrogen metabolism and abiotic stress responses in rice. Plant Cell Rep. 2009, 28, 527–537. [Google Scholar] [CrossRef] [PubMed]
- Lebedev, V.G.; Krutovsky, K.V.; Shestibratov, K.A. Effect of phosphinothricin on transgenic downy birch (Betula pubescens Ehrh.) containing bar or GS1 genes. Forests 2019, 10, 1067. [Google Scholar] [CrossRef]
- Zhang, C.; Yu, Q.; Han, H.; Yu, C.; Nyporko, A.; Tian, X.; Beckie, H.; Powles, S. A naturally evolved mutation (Ser59Gly) in glutamine synthetase confers glufosinate resistance in plants. J. Exp. Bot. 2022, 73, 2251–2262. [Google Scholar] [CrossRef]
- Noguera, M.M.; Porri, A.; Werle, I.S.; Heiser, J.; Brandle, F.; Lerchl, J.; Murphy, B.; Betz, M.; Gatzmann, F.; Penkert, M.; et al. Involvement of glutamine synthetase 2 (GS2) amplification and overexpression in Amaranthus palmeri resistance to glufosinate. Planta 2022, 256, 57. [Google Scholar] [CrossRef]
- Zhang, H.; Chuine, I.; Regnier, P.; Ciais, P.; Yuan, W. Deciphering the multiple effects of climate warming on the temporal shift of leaf unfolding. Nat. Clim. Chang. 2022, 12, 193–199. [Google Scholar] [CrossRef]
- Possen, B.J.H.M.; Rousi, M.; Keski-Saari, S.; Silfver, T.; Kontunen-Soppela, S.; Oksanen, E.; Mikola, J. New evidence for the importance of soil nitrogen on the survival and adaptation of silver birch to climate warming. Ecosphere 2021, 12, e03520. [Google Scholar] [CrossRef]
- Fuentes, S.I.; Allen, D.J.; Ortiz-Lopez, A.; Hernández, G. Over-expression of cytosolic glutamine synthetase increases photosynthesis and growth at low nitrogen concentrations. J. Exp. Bot. 2001, 52, 1071–1081. [Google Scholar] [CrossRef]
- Good, A.G.; Johnson, S.J.; De Pauw, M.A.; Carrol, R.T.; Savidov, N.; Vidmar, J.; Lu, Z.; Taylor, G.; Stroeher, V. Engineering nitrogen use efficiency with alanine aminotransferase. Can. J. Bot. 2007, 85, 252–262. [Google Scholar] [CrossRef]
- Zhao, Y.; Liu, Z.; Duan, F.; An, X.; Liu, X.; Hao, D.; Gu, R.; Wang, Z.; Chen, F.; Yuan, L. Overexpression of the maize ZmAMT1;1a gene enhances root ammonium uptake efficiency under low ammonium nutrition. Plant Biotechnol. Rep. 2018, 12, 47–56. [Google Scholar] [CrossRef]
- Fløistad, I.S.; Kohmann, K. Influence of nutrient supply on spring frost hardiness and time of bud break in Norway spruce (Picea abies (L.) Karst.) seedlings. New For. 2004, 27, 1–11. [Google Scholar] [CrossRef]
- Kula, E.; Pešlová, A.; Martinek, P. Effects of nitrogen on growth properties and phenology of silver birch (Betula pendula Roth). J. For. Sci. 2012, 58, 391–399. [Google Scholar] [CrossRef]
- Koenig, W.D.; Pesendorfer, M.B.; Pearse, I.S.; Carmen, W.J.; Knops, J.M.H. Budburst timing of valley oaks at Hastings reservation, central coastal California. Madroño 2021, 68, 434–442. [Google Scholar] [CrossRef]
- Yang, Q.; Gao, Y.; Wu, X.; Moriguchi, T.; Bai, S.; Teng, Y. Bud endodormancy in deciduous fruit trees: Advances and prospects. Hortic. Res. 2021, 8, 139. [Google Scholar] [CrossRef] [PubMed]
- Li, C.; Junttila, O.; Heino, P.; Palva, E.T. Low temperature sensing in silver birch (Betula pendula Roth) ecotypes. Plant Sci. 2004, 167, 165–171. [Google Scholar] [CrossRef]
- Ruonala, R.; Rinne, P.L.H.; Baghour, M.; Moritz, T.; Tuominen, H.; Kangasjärvi, J. Transitions in the functioning of the shoot apical meristem in birch (Betula pendula) involve ethylene. Plant J. 2006, 46, 628–640. [Google Scholar] [CrossRef]
- Wang, D.; Gao, Z.; Du, P.; Xiao, W.; Tan, Q.; Chen, X.; Li, L.; Gao, D. Expression of ABA metabolism-related genes suggests similarities and differences between seed dormancy and bud dormancy of peach (Prunus persica). Front. Plant Sci. 2015, 6, 1248. [Google Scholar] [CrossRef]
- Qiu, Z.; Wan, L.; Chen, T.; Wan, Y.; He, X.; Lu, S.; Wang, Y.; Lin, J. The regulation of cambial activity in Chinese fir (Cunninghamia lanceolata) involves extensive transcriptome remodeling. New Phytol. 2013, 199, 708–719. [Google Scholar] [CrossRef] [PubMed]
- Yamane, H.; Wada, M.; Honda, C.; Matsuura, T.; Ikeda, Y.; Hirayama, T.; Osako, Y.; Gao-Takai, M.; Kojima, M.; Sakakibara, H.; et al. Overexpression of Prunus DAM6 inhibits growth, represses bud break competency of dormant buds and delays bud outgrowth in apple plants. PLoS ONE 2019, 14, e0214788. [Google Scholar] [CrossRef]
- Bound, S.A.; Foo, E.; Gélinas-Marion, A.; Nichols, D.S.; Nissen, R. The impact of dormancy breakers on hormone profiles, fruit growth and quality in sweet cherry. Agriculture 2022, 12, 270. [Google Scholar] [CrossRef]
- Rinne, P.; Saarelainen, A.; Junttila, O. Seasonal changes in bud dormancy in relation to ABA level in seedling and coppice shoots of Betula pubescens as affected by short photoperiod, water stress and chilling. Physiol. Plant. 1994, 90, 451–458. [Google Scholar] [CrossRef]
- Teichmann, T.; Muhr, M. Shaping plant architecture. Front. Plant Sci. 2015, 6, 233. [Google Scholar] [CrossRef] [PubMed]
- Balla, J.; Medveďová, Z.; Kalousek, P.; Matiješčuková, N.; Friml, J.; Reinöhl, V.; Procházka, S. Auxin flow-mediated competition between axillary buds to restore apical dominance. Sci. Rep. 2016, 6, 35955. [Google Scholar] [CrossRef] [PubMed]
- Chabikwa, T.G.; Brewer, P.B.; Beveridge, C.A. Initial bud outgrowth ocurs independent of auxin flow from out of buds. Plant Physiol. 2019, 179, 55–65. [Google Scholar] [CrossRef] [PubMed]
- Kang, J.; Turano, F.J. The putative glutamate receptor 1.1 (AtGLR1.1) functions as a regulator of carbon and nitrogen metabolism in Arabidopsis thaliana. Proc. Nat.L Acad. Sci. USA 2003, 100, 6872–6877. [Google Scholar] [CrossRef]
- Mazur, E.; Benkova, E.; Friml, J. Vascular cambium regeneration and vessel formation in wounded inflorescence stems of Arabidopsis. Sci. Rep. 2016, 6, e33754. [Google Scholar] [CrossRef]
- Zakari, S.A.; Asad, M.-A.; Han, Z.; Zhao, Q.; Cheng, F. Relationship of nitrogen deficiency-induced leaf senescence with ROS generation and ABA concentration in rice flag leaves. J. Plant Growth. Regul. 2020, 39, 1503–1517. [Google Scholar] [CrossRef]
Amino Acids | WT | GS 8b | ||
---|---|---|---|---|
0 PPT | 0.1 PPT | 0 PPT | 0.1 PPT | |
Lysine | 13.6 | 4.3 | 6.1 | 7.7 |
Histidine | 10.2 | 8.9 | 8.1 | 8.8 |
Arginine | 70.0 | 46.2 | 48.4 | 129.5 |
Aspartic acid | 79.1 | 91.3 | 102.5 | 101.5 |
Threonine | 13.0 | 13.3 | 14.8 | 11.4 |
Serine | 64.0 | 53.7 | 50.4 | 53.6 |
Glutamic acid | 208.0 | 180.3 | 233.2 | 251.4 |
Glycine | 10.2 | 12.8 | 8.4 | 9.5 |
Alanine | 59.6 | 42.4 | 48.2 | 31.2 |
Valine | 8.0 | 4.7 | 6.5 | 10.4 |
Methionine | 3.0 | 4.1 | 3.5 | 3.6 |
Isoleucine | 5.7 | 4.1 | 5.5 | 4.8 |
Leucine | 7.6 | 5.6 | 6.6 | 6.0 |
Tyrosine | 16.0 | 13.2 | 18.4 | 15.9 |
Phenylalanine | 11.5 | 14.4 | 14.5 | 9.5 |
Asparagine | 38.3 | 24.7 | 26.0 | 27.9 |
Glutamine | 70.0 | 43.9 | 102.6 | 84.8 |
α-Amino butyric acid | 17.1 | 19.2 | 20.8 | 68.5 |
Total amino acids | 704.9 | 587.0 | 724.5 | 836.1 |
Genotype | Height, cm | Stem Base Diameter, mm | Stem Volume, cm3 | |||
---|---|---|---|---|---|---|
N-0 | N-10 | N-0 | N-10 | N-0 | N-10 | |
WT | 140.3 * | 185.3 ns | 13.7 ** | 18.1 ns | 68.6 * | 157.6 ns |
GS 8b | 161.0 | 190.7 | 14.8 | 17.8 | 92.9 | 158.8 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lebedev, V.G.; Korobova, A.V.; Shendel, G.V.; Shestibratov, K.A. Hormonal Status of Transgenic Birch with a Pine Glutamine Synthetase Gene during Rooting In Vitro and Budburst Outdoors. Biomolecules 2023, 13, 1734. https://doi.org/10.3390/biom13121734
Lebedev VG, Korobova AV, Shendel GV, Shestibratov KA. Hormonal Status of Transgenic Birch with a Pine Glutamine Synthetase Gene during Rooting In Vitro and Budburst Outdoors. Biomolecules. 2023; 13(12):1734. https://doi.org/10.3390/biom13121734
Chicago/Turabian StyleLebedev, Vadim G., Alla V. Korobova, Galina V. Shendel, and Konstantin A. Shestibratov. 2023. "Hormonal Status of Transgenic Birch with a Pine Glutamine Synthetase Gene during Rooting In Vitro and Budburst Outdoors" Biomolecules 13, no. 12: 1734. https://doi.org/10.3390/biom13121734
APA StyleLebedev, V. G., Korobova, A. V., Shendel, G. V., & Shestibratov, K. A. (2023). Hormonal Status of Transgenic Birch with a Pine Glutamine Synthetase Gene during Rooting In Vitro and Budburst Outdoors. Biomolecules, 13(12), 1734. https://doi.org/10.3390/biom13121734