Kinetics of Phosphate Ions and Phytase Activity Production for Lactic Acid-Producing Bacteria Utilizing Milling and Whitening Stages Rice Bran as Biopolymer Substrates
Abstract
:1. Introduction
2. Materials and Methods
2.1. Microorganisms
2.2. Rice Bran (RB)
2.3. Cultivation Media and Inoculum Preparation
2.3.1. Cultivation Media
2.3.2. Inoculum Preparation
2.4. Experimental Design for LAB Strains Cultivation
2.5. Analytical Methods
2.6. Determination of Kinetic Parameters
2.7. Score Weighting Strategy
2.8. Hypothesis Testing
3. Results
3.1. Comparison of Nutritional Contents, IP6, and [Pi] in MsRB and WsRB
3.2. Kinetic Data and Parameer Profiles of LAB Strains in Three Media
3.2.1. Comparison of Via-CD and Produced PEact
3.2.2. Comparison of [Glu] and Related Produced By-Products
3.2.3. Comparison of [IP6] and Produced [Pi]
3.2.4. Comparison of Kinetic Parameters and Summation Scores
4. Discussion
4.1. Comparison of Nutritional Contents and IP6 in MsRB and WsRB Powders
4.2. Kinetic Data and Parameter Profiles of LAB Strains in Three Media
4.2.1. Comparison of Via-CD and Produced PEact
4.2.2. Comparison of [Glu] and Produced By-Products
4.2.3. Comparison of [IP6] and Produced [Pi]
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations and Symbols
[ ] | concentration of chemical species being enclosed by square bracket |
µ | specific growth rate |
act | activity |
AOAC | Association of Official Analytical Chemists |
AR | analytical reagent |
CFU | colony forming unit |
DAD | diode array detector |
DB | dried biomass |
DSc | kinetic data score |
ExSp-PEact | extracellular specific PEact |
Ex-Tprot | extracellular total protein |
ExVol-PEact | extracellular volumetric PEact |
g | gram |
Glu | glucose |
HPLC | high-performance liquid chromatography |
InSp-PEact | intracellular specific PEact |
In-Tprot | intracellular total protein |
InVol-PEact | intracellular volumetric PEact |
IP6 | phytic acid/phytate |
[IP6]sol | soluble form of IP6 in MsRB or WsRB media |
[IP6]in-sol | insoluble form of IP6 in MsRB or WsRB media |
[IP6]overall | overall [IP6] equal to summation of [IP6]sol and [IP6]in-sol |
IP6-Na | sodium phytate |
LA | lactic acid |
LAB | lactic acid bacteria |
Log | common logarithm, decadic logarithm |
m | milli |
MRS | de Man, Rogosa, and Sharpe (Lactobacillus modified broth) |
MsRB | milling stage RB |
n.d. | not determined |
PE | phytase enzyme |
PEact | phytase enzyme activity |
Pi | phosphate ions |
PSc | kinetic parameter score |
qp,LA | specific LA production rate (g LA/L/Log(CFU/mL)/h) |
qp,Pi | specific Pi production rate (g Pi/L/Log(CFU/mL)/h) |
qs,Glu | specific Glu consumption rate (g Glu/L/Log(CFU/mL)/h) |
qs,IP6 | specific IP6 consumption rate (g IP6/L/Log(CFU/mL)/h) |
RB | rice bran |
RID | refractive index detector |
RT | retention time |
S | supplementary |
SE | standard error |
Sp-PEact | specific PEact |
SPSS | Statistical Product and Service Solutions |
TISTR | Thailand Institute of Scientific and Technological Research |
Tprot | total protein |
U | unit of PEact |
USA | United States of America |
UV-Vis | ultraviolet-visible |
via-CD | viable cells density |
Vol-PEact | volumetric PEact |
WsRB | whitening stage RB |
YLA/Glu | mass yield percentage of produced [LA] over consumed [Glu] |
References
- Seesuriyachan, P.; Kuntiya, A.; Kawee-ai, A.; Techapun, C.; Chaiyaso, T.; Leksawasdi, N. Improvement in efficiency of lignin degradation by Fenton reaction using synergistic catalytic action. Ecol. Eng. 2015, 85, 283–287. [Google Scholar] [CrossRef]
- Nunta, R.; Techapun, C.; Jantanasakulwong, K.; Chaiyaso, T.; Seesuriyachan, P.; Khemacheewakul, J.; Mahakuntha, C.; Porninta, K.; Sommanee, S.; Trinh, N.T.; et al. Batch and continuous cultivation processes of Candida tropicalis TISTR 5306 for ethanol and pyruvate decarboxylase production in fresh longan juice with optimal carbon to nitrogen molar ratio. J. Food Process Eng. 2019, 42, e13227. [Google Scholar] [CrossRef]
- Nunta, R.; Techapun, C.; Kuntiya, A.; Hanmuangjai, P.; Moukamnerd, C.; Khemacheewakul, J.; Sommanee, S.; Reungsang, A.; Boonmee Kongkeitkajorn, M.; Leksawasdi, N. Ethanol and phenylacetylcarbinol production processes of Candida tropicalis TISTR 5306 and Saccharomyces cerevisiae TISTR 5606 in fresh juices from longan fruit of various sizes. J. Food Process. Preserv. 2018, 42, e13815. [Google Scholar] [CrossRef]
- Wattanapanom, S.; Muenseema, J.; Techapun, C.; Jantanasakulwong, K.; Sanguanchaipaiwong, V.; Chaiyaso, T.; Hanmoungjai, P.; Seesuriyachan, P.; Khemacheewakul, J.; Nunta, R.; et al. Kinetic parameters of Candida tropicalis TISTR 5306 for ethanol production process using an optimal enzymatic digestion strategy of assorted grade longan solid waste powder. Chiang Mai. J. Sci. 2019, 46, 1036–1054. [Google Scholar]
- Bodie, A.R.; Micciche, A.C.; Atungulu, G.G.; Rothrock, M.J., Jr.; Ricke, S.C. Current trends of rice milling byproducts for agricultural applications and alternative food production systems. Front. Sustain. Food Syst. 2019, 3, 47. [Google Scholar] [CrossRef]
- Sim, G.-Y.; Lee, S.-U.; Lee, J.-W. Enhanced extraction of phytic acid from rice hulls with enzymatic treatment and production of ethanol from reducing sugars in hydrolyzed rice hulls after extraction of phytic acid. LWT 2020, 133, 110111. [Google Scholar] [CrossRef]
- Zhuang, X.; Yin, T.; Han, W.; Zhang, X. Nutritional ingredients and active compositions of defatted rice bran. In Rice Bran and Rice Bran Oil; Elsevier: Amsterdam, The Netherlands, 2019; pp. 247–270. [Google Scholar]
- Shahbandeh, M. Top Countries Based on Production of Milled Rice 2019/20. 2021. Available online: https://www.statista.com (accessed on 20 February 2022).
- United States Department of Agriculture Foreign Agricultural Service. Grain: World Markets and Trade; United States Department of Agriculture Foreign Agricultural Service: Washington, DC, USA, 2020. [Google Scholar]
- Canan, C.; Cruz, F.T.L.; Delaroza, F.; Casagrande, R.; Sarmento, C.P.M.; Shimokomaki, M.; Ida, E.I. Studies on the extraction and purification of phytic acid from rice bran. J. Food Compos. Anal. 2011, 24, 1057–1063. [Google Scholar] [CrossRef]
- Watanabe, M.; Maeda, I.; Koyama, M.; Nakamura, K.; Sasano, K. Simultaneous recovery and purification of rice protein and phosphorus compounds from full-fat and defatted rice bran with organic solvent-free process. J. Biosci. Bioeng. 2015, 119, 206–211. [Google Scholar] [CrossRef]
- Watanabe, M.; Yamada, C.; Maeda, I.; Techapun, C.; Kuntiya, A.; Leksawasdi, N.; Seesuriyachan, P.; Chaiyaso, T.; Takenaka, S.; Shiono, T. Evaluating of quality of rice bran protein concentrate prepared by a combination of isoelectronic precipitation and electrolyzed water treatment. LWT 2019, 99, 262–267. [Google Scholar] [CrossRef]
- Saad, N.; Esa, N.M.; Ithnin, H.; Shafie, N.H. Optimization of optimum condition for phytic acid extraction from rice bran. Afr. J. Plant Sci. 2011, 5, 168–176. [Google Scholar]
- Schlemmer, U.; Frølich, W.; Prieto, R.M.; Grases, F. Phytate in foods and significance for humans: Food sources, intake, processing, bioavailability, protective role and analysis. Mol. Nutr. Food Res. 2009, 53, S330–S375. [Google Scholar] [CrossRef]
- Alves, N.M.; Guimarães, L.H.S.; Piccoli, R.H.; Cardoso, P.G. Production and partial characterization of an extracellular phytase produced by Muscodor sp. under submerged fermentation. Adv. Microbiol. 2016, 6, 23–32. [Google Scholar] [CrossRef]
- Kanpiengjai, A.; Unban, K.; Pratanaphon, R.; Khanongnuch, C. Optimal medium and conditions for phytase production by thermophilic bacterium, Anoxybacillus sp. MHW14. Food Appl. Biosci. J. 2013, 1, 172–189. [Google Scholar]
- Kuwano, M.; Mimura, T.; Takaiwa, F.; Yoshida, K.T. Generation of stable ‘low phytic acid’ transgenic rice through antisense repression of the 1d-myo-inositol 3-phosphate synthase gene (RINO1) using the 18-kDa oleosin promoter. Plant Biotechnol. J. 2009, 7, 96–105. [Google Scholar] [CrossRef]
- Al-Garawi, Z.S.M.; Tomi, I.H.R.; Al-Daraji, A.H.R. Synthesis and characterization of new amino acid-schiff bases and studies their effects on the activity of ACP, PAP and NPA enzymes (In Vitro). J. Chem. 2012, 9, 962–969. [Google Scholar] [CrossRef]
- Quan, C.-S.; Fan, S.-D.; Zhang, L.-H.; Wang, Y.-J.; Ohta, Y. Purification and properties of a phytase from Candida krusei WZ-001. J. Biosci. Bioeng. 2002, 94, 419–425. [Google Scholar] [PubMed]
- De Angelis, M.; Gallo, G.; Corbo, M.R.; McSweeney, P.L.; Faccia, M.; Giovine, M.; Gobbetti, M. Phytase activity in sourdough lactic acid bacteria: Purification and characterization of a phytase from Lactobacillus sanfranciscensis CB1. Int. J. Food Microbiol. 2003, 87, 259–270. [Google Scholar] [CrossRef]
- Watanabe, M.; Techapun, C.; Kuntiya, A.; Leksawasdi, N.; Seesuriyachan, P.; Chaiyaso, T.; Takenaka, S.; Maeda, I.; Koyama, M.; Nakamura, K. Extracellular protease derived from lactic acid bacteria stimulates the fermentative lactic acid production from the by-products of rice as a biomass refinery function. J. Biosci. Bioeng. 2017, 123, 245–251. [Google Scholar] [CrossRef] [PubMed]
- Alauddin, M.; Rahman, S.; Islam, J.; Shirakawa, H.; Komai, M.; Howlader, M.Z.H. Development of rice bran functional food and evaluation of its healthful properties. In Rice Bran and Rice Bran Oil; Elsevier: Amsterdam, The Netherlands, 2019; pp. 183–206. [Google Scholar]
- Thakur, N.; Patel, S.K.; Kumar, P.; Singh, A.; Devi, N.; Sandeep, K.; Pandey, D.; Chand, D. Bioprocess for hyperactive thermotolerant Aspergillus fumigatus phytase and its application in dephytinization of wheat flour. Catal. Lett. 2022, 152, 3220–3232. [Google Scholar] [CrossRef]
- Bhavsar, K.; Khire, J. Current research and future perspectives of phytase bioprocessing. RSC Adv. 2014, 4, 26677–26691. [Google Scholar] [CrossRef]
- Dailin, D.J.; Hanapi, S.Z.; Elsayed, E.A.; Sukmawati, D.; Azelee, N.I.W.; Eyahmalay, J.; Siwapiragam, V.; El Enshasy, H. Fungal phytases: Biotechnological applications in food and feed industries. In Recent Advancement in White Biotechnology through Fungi: Volume 2: Perspective for Value-Added Products and Environments; Springer: Berlin/Heidelberg, Germany, 2019; pp. 65–99. [Google Scholar]
- Rizwanuddin, S.; Kumar, V.; Naik, B.; Singh, P.; Mishra, S.; Rustagi, S.; Kumar, V. Microbial phytase: Their sources, production, and role in the enhancement of nutritional aspects of food and feed additives. J. Agric. Food Res. 2023, 12, 100559. [Google Scholar] [CrossRef]
- Fischer, M.M.; Egli, I.M.; Aeberli, I.; Hurrell, R.F.; Meile, L. Phytic acid degrading lactic acid bacteria in tef-injera fermentation. Int. J. Food Microbiol. 2014, 190, 54–60. [Google Scholar] [CrossRef] [PubMed]
- Yildirim, R.M.; Arici, M. Effect of the fermentation temperature on the degradation of phytic acid in whole-wheat sourdough bread. LWT 2019, 112, 108224. [Google Scholar] [CrossRef]
- Sanders, M.; Lebeer, S. New Names for Important Probiotic Lactobacillus species. ISAPP Science Blog. 2020. Available online: https://isappscience.org/new-names-for-important-probiotic-lactobacillus-species/ (accessed on 6 January 2021).
- Zheng, J.; Wittouck, S.; Salvetti, E.; Franz, C.M.; Harris, H.M.; Mattarelli, P.; O’Toole, P.W.; Pot, B.; Vandamme, P.; Walter, J. A taxonomic note on the genus Lactobacillus: Description of 23 novel genera, emended description of the genus Lactobacillus Beijerinck 1901, and union of Lactobacillaceae and Leuconostocaceae. Int. J. Syst. Evol. Microbiol. 2020, 70, 2782–2858. [Google Scholar] [CrossRef]
- ASTM E11-20; Standard Specification for Woven Wire Test Sieve Cloth and Test Sieves. ASTM: West Conshohocken, PA, USA, 2020.
- HiMedia. Lactobacillus MRS Broth (MRS Broth) GM369; Technical Data; HiMedia: Maharashtra, India, 2023. [Google Scholar]
- Savedboworn, W.; Charoen, R.; Phattayakorn, K. Growth and survival rates of Lactobacillus plantarum in Thai cereal cultivars. Appl. Sci. Eng. Prog. 2014, 7, 49–61. [Google Scholar] [CrossRef]
- Horwitz, W.; Latimer, G. Crude Protein (991.20), Crude Fat (948.15), Ash (923.03 and 920.153), and Moisture Content (925.10 and 950.46); AOAC International: Rockville, MD, USA, 2012. [Google Scholar]
- Ebrahimian, M.; Motamedi, H. Utilization of wheat bran as a source for phytic acid production. Int. Food Res. J. 2016, 23, 2436. [Google Scholar]
- Maturin, L.; Peeler, J. Aerobic plate count. In Bacteriological Analytical Manual; US Food and Drug Administration: White Oak, MD, USA, 2001. [Google Scholar]
- Zaky, A.S.; Pensupa, N.; Andrade-Eiroa, Á.; Tucker, G.A.; Du, C. A new HPLC method for simultaneously measuring chloride, sugars, organic acids and alcohols in food samples. J. Food Compos. Anal. 2017, 56, 25–33. [Google Scholar] [CrossRef]
- Scherer, R.; Rybka, A.C.P.; Ballus, C.A.; Meinhart, A.D.; Teixeira Filho, J.; Godoy, H.T. Validation of a HPLC method for simultaneous determination of main organic acids in fruits and juices. Food Chem. 2012, 135, 150–154. [Google Scholar] [CrossRef]
- da Costa, M.P.; da Silva Frasao, B.; da Costa Lima, B.R.C.; Rodrigues, B.L.; Junior, C.A.C. Simultaneous analysis of carbohydrates and organic acids by HPLC-DAD-RI for monitoring goat’s milk yogurts fermentation. Talanta 2016, 152, 162–170. [Google Scholar] [CrossRef]
- Qamar, Z.; Hameed, A.; Ashraf, M.; Rizwan, M.; Akhtar, M. Development and molecular characterization of low phytate basmati rice through induced mutagenesis, hybridization, backcross, and marker assisted breeding. Front. Plant Sci. 2019, 10, 1525. [Google Scholar] [CrossRef]
- Marolt, G.; Kolar, M. Analytical methods for determination of phytic acid and other inositol phosphates: A review. Molecules 2020, 26, 174. [Google Scholar] [CrossRef]
- Cooper, J.R.; Gowing, H.S. A method for estimating phosphate in the presence of phytate and its application to the determination of phytase. Anal. Biochem. 1983, 132, 285–287. [Google Scholar] [CrossRef]
- Natikarn, W.; Sanguanchaipaiwong, V.; Pratanaphon, R.; Leksawasdi, N. The possibility of R-phenylacetylcarbinol and phosphate ions production utilizing the solid waste from feed production plant. J. Agro-Ind. Chiang Mai Univ. 2011, 4, 60–78. [Google Scholar]
- Haros, M.; Rosell, C.M.; Benedito, C. Fungal phytase as a potential breadmaking additive. Eur. Food Res. Technol. 2001, 213, 317–322. [Google Scholar] [CrossRef]
- Haros, M.; Bielecka, M.; Honke, J.; Sanz, Y. Phytate-degrading activity in lactic acid bacteria. Pol. J. Food Nutr. Sci. 2008, 58, 33–40. [Google Scholar]
- Leksawasdi, N.; Breuer, M.; Hauer, B.; Rosche, B.; Rogers, P.L. Kinetics of pyruvate decarboxylase deactivation by benzaldehyde. Biocatal. Biotransformation 2003, 21, 315–320. [Google Scholar] [CrossRef]
- Leksawasdi, N.; Chow, Y.Y.; Breuer, M.; Hauer, B.; Rosche, B.; Rogers, P.L. Kinetic analysis and modelling of enzymatic (R)-phenylacetylcarbinol batch biotransformation process. J. Biotechnol. 2004, 111, 179–189. [Google Scholar] [CrossRef]
- Mahakuntha, C.; Reungsang, A.; Nunta, R.; Leksawasdi, N. Kinetics of whole cells and ethanol production from Candida tropicalis TISTR 5306 cultivation in batch and fed-batch modes using assorted grade fresh longan juice. An. Acad. Bras. Ciências 2021, 93, e20200220. [Google Scholar] [CrossRef]
- Mohammadi, F.; Marti, A.; Nayebzadeh, K.; Hosseini, S.M.; Tajdar-Oranj, B.; Jazaeri, S. Effect of washing, soaking and pH in combination with ultrasound on enzymatic rancidity, phytic acid, heavy metals and coliforms of rice bran. Food Chem. 2021, 334, 127583. [Google Scholar] [CrossRef]
- Singh, B. Rice Husk Ash; Woodhead Publishing: Sawston, UK, 2018. [Google Scholar]
- Lim, J.S.; Manan, Z.A.; Hashim, H.; Alwi, S.R.W. Towards an integrated, resource-efficient rice mill complex. Resour. Conserv. Recycl. 2013, 75, 41–51. [Google Scholar] [CrossRef]
- Huang, S.; Benchamas, G.; Huang, G. Whole processing and use of rice polishings. Innov. Food Sci. Emerg. Technol. 2020, 63, 102373. [Google Scholar] [CrossRef]
- Piekarska-Radzik, L.; Klewicka, E. Mutual influence of polyphenols and Lactobacillus spp. bacteria in food: A review. Eur. Food Res. Technol. 2021, 247, 9–24. [Google Scholar] [CrossRef]
- Kortekangas, A.; Silventoinen, P.; Nordlund, E.; Ercili-Cura, D. Phytase treatment of a protein-enriched rice bran fraction improves heat-induced gelation properties at alkaline conditions. Food Hydrocoll. 2020, 105, 105787. [Google Scholar] [CrossRef]
- Yu, R.; Wu, X.; Liu, J.; Howitt, C.A.; Bird, A.R.; Liu, C.-M.; Larkin, P.J. Rice with multilayer aleurone: A larger sink for multiple micronutrients. Rice 2021, 14, 102. [Google Scholar] [CrossRef] [PubMed]
- Rollán, G.C.; Gerez, C.L.; LeBlanc, J.G. Lactic fermentation as a strategy to improve the nutritional and functional values of pseudocereals. Front. Nutr. 2019, 6, 98. [Google Scholar] [CrossRef] [PubMed]
- Kumar, V.; Sinha, A.K.; Makkar, H.P.; Becker, K. Dietary roles of phytate and phytase in human nutrition: A review. Food Chem. 2010, 120, 945–959. [Google Scholar] [CrossRef]
- Karaman, K.; Sagdic, O.; Durak, M.Z. Use of phytase active yeasts and lactic acid bacteria isolated from sourdough in the production of whole wheat bread. LWT 2018, 91, 557–567. [Google Scholar] [CrossRef]
- Palacios, M.C.; Haros, M.; Sanz, Y.; Rosell, C.M. Selection of lactic acid bacteria with high phytate degrading activity for application in whole wheat breadmaking. LWT-Food Sci. Technol. 2008, 41, 82–92. [Google Scholar] [CrossRef]
- Nuobariene, L.; Cizeikiene, D.; Gradzeviciute, E.; Hansen, Å.S.; Rasmussen, S.K.; Juodeikiene, G.; Vogensen, F.K. Phytase-active lactic acid bacteria from sourdoughs: Isolation and identification. LWT-Food Sci. Technol. 2015, 63, 766–772. [Google Scholar] [CrossRef]
- Mohammadi-Kouchesfahani, M.; Hamidi-Esfahani, Z.; Azizi, M.H. Isolation and identification of lactic acid bacteria with phytase activity from sourdough. Food Sci. Nutr. 2019, 7, 3700–3708. [Google Scholar] [CrossRef]
- García-Mantrana, I.; Yebra, M.J.; Haros, M.; Monedero, V. Expression of bifidobacterial phytases in Lactobacillus casei and their application in a food model of whole-grain sourdough bread. Int. J. Food Microbiol. 2016, 216, 18–24. [Google Scholar] [CrossRef] [PubMed]
- Hashemi, S.M.B.; Gholamhosseinpour, A.; Khaneghah, A.M. Fermentation of acorn dough by lactobacilli strains: Phytic acid degradation and antioxidant activity. LWT 2019, 100, 144–149. [Google Scholar] [CrossRef]
- Songré-Ouattara, L.; Mouquet-Rivier, C.; Icard-Vernière, C.; Humblot, C.; Diawara, B.; Guyot, J. Enzyme activities of lactic acid bacteria from a pearl millet fermented gruel (ben-saalga) of functional interest in nutrition. Int. J. Food Microbiol. 2008, 128, 395–400. [Google Scholar] [CrossRef]
- Wang, Y.; Wu, J.; Lv, M.; Shao, Z.; Hungwe, M.; Wang, J.; Bai, X.; Xie, J.; Wang, Y.; Geng, W. Metabolism characteristics of lactic acid bacteria and the expanding applications in food industry. Front. Bioeng. Biotechnol. 2021, 9, 612285. [Google Scholar] [CrossRef] [PubMed]
- Abedi, E.; Hashemi, S.M.B. Lactic acid production–producing microorganisms and substrates sources-state of art. Heliyon 2020, 6, e04974. [Google Scholar] [CrossRef] [PubMed]
- Rooke, J.A.; Hatfield, R.D. Biochemistry of ensiling. Silage Sci. Technol. 2003, 42, 95–139. [Google Scholar]
- Lim, S.B.; Tingirikari, J.M.R.; Seo, J.S.; Li, L.; Shim, S.; Seo, J.-H.; Han, N.S. Isolation of lactic acid bacteria starters from Jeung-pyun for sourdough fermentation. Food Sci. Biotechnol. 2018, 27, 73–78. [Google Scholar] [CrossRef]
- Marko, A.; Rakická, M.; Mikušová, L.; Valík, L.; Šturdík, E. Lactic acid fermentation of cereal substrates in nutritional perspective. Int. J. Res. Chem. Environ. 2014, 4, 80–92. [Google Scholar]
- Reale, A.; Konietzny, U.; Coppola, R.; Sorrentino, E.; Greiner, R. The importance of lactic acid bacteria for phytate degradation during cereal dough fermentation. J. Agric. Food Chem. 2007, 55, 2993–2997. [Google Scholar] [CrossRef]
- Leenhardt, F.; Levrat-Verny, M.-A.; Chanliaud, E.; Rémésy, C. Moderate decrease of pH by sourdough fermentation is sufficient to reduce phytate content of whole wheat flour through endogenous phytase activity. J. Agric. Food Chem. 2005, 53, 98–102. [Google Scholar] [CrossRef]
- Shirai, K.; Revah-Moiseev, S.; García-Garibay, M.; Marshall, V.M. Ability of some strains of lactic acid bacteria to degrade phytic acid. Lett. Appl. Microbiol. 1994, 19, 366–369. [Google Scholar] [CrossRef]
- Lopez, H.W.; Ouvry, A.; Bervas, E.; Guy, C.; Messager, A.; Demigne, C.; Remesy, C. Strains of lactic acid bacteria isolated from sour doughs degrade phytic acid and improve calcium and magnesium solubility from whole wheat flour. J. Agric. Food Chem. 2000, 48, 2281–2285. [Google Scholar] [CrossRef] [PubMed]
Components | Nutritional Contents (g/100 g) | |
---|---|---|
MsRB | WsRB | |
Total carbohydrate | 64.68A ± 0.20 | 47.65B ± 0.16 |
Crude fat | 2.55B ± 0.02 | 19.64A ± 0.12 |
Crude protein | 7.90B ± 0.17 | 14.40A ± 0.02 |
Ash | 16.11A ± 0.02 | 9.97B ± 0.03 |
Moisture | 8.76A ± 0.01 | 8.34B ± 0.01 |
IP6 (fully digested) - Pi (% w/w) in IP6 - non-Pi in IP6 (% w/w) | 2.50B ± 0.05 1.54B ± 0.03 (61.68%) 0.96B ± 0.06 (38.32%) | 7.17A ± 0.17 4.42A ± 0.10 (61.68%) 2.75A ± 0.20 (38.32%) |
Type of Medium | Best Score Combination and Subtotal DSc Values with Corresponding TISTR Number of LAB Strain and Cultivation Time | ||||||
---|---|---|---|---|---|---|---|
Type of Score Combination | Score Combination Value | TISTR | Cited Table | Subtotal DSc Value | Cultivation Time (h) | Cited Table | |
IP6 | DSc + PSc | 472 ns1 ± 6 462 ns1 ± 6 | 1500 055 | S1.7 S1.7 | 99.1ns2 ± 1.0 98.9 ns2 ± 1.0 87.3 ns3 ± 1.0 88.3 ns3 ± 0.9 | 48 72 48 72 | S1.5 S1.5 |
2DSc + PSc | 776 ± 7 | 1500 | S1.7 | 99.1 ± 1.0 | 48 | S1.5 | |
MsRB | DSc + PSc | 433 ± 7 | 877 | S2.7 | 100.0 ± 1.4 | 72 | S2.5 |
2DSc + PSc | 731 ± 8 | 877 | S2.7 | 100.0 ± 1.4 | 72 | S2.5 | |
WsRB | DSc + PSc | 396 ± 4 | 877 | S3.7 | 100.0 ± 1.0 | 72 | S3.5 |
2DSc + PSc | 678 ± 5 | 877 | S3.7 | 100.0 ± 1.0 | 72 | S3.5 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nunta, R.; Khemacheewakul, J.; Techapun, C.; Sommanee, S.; Feng, J.; Htike, S.L.; Mahakuntha, C.; Porninta, K.; Phimolsiripol, Y.; Jantanasakulwong, K.; et al. Kinetics of Phosphate Ions and Phytase Activity Production for Lactic Acid-Producing Bacteria Utilizing Milling and Whitening Stages Rice Bran as Biopolymer Substrates. Biomolecules 2023, 13, 1770. https://doi.org/10.3390/biom13121770
Nunta R, Khemacheewakul J, Techapun C, Sommanee S, Feng J, Htike SL, Mahakuntha C, Porninta K, Phimolsiripol Y, Jantanasakulwong K, et al. Kinetics of Phosphate Ions and Phytase Activity Production for Lactic Acid-Producing Bacteria Utilizing Milling and Whitening Stages Rice Bran as Biopolymer Substrates. Biomolecules. 2023; 13(12):1770. https://doi.org/10.3390/biom13121770
Chicago/Turabian StyleNunta, Rojarej, Julaluk Khemacheewakul, Charin Techapun, Sumeth Sommanee, Juan Feng, Su Lwin Htike, Chatchadaporn Mahakuntha, Kritsadaporn Porninta, Yuthana Phimolsiripol, Kittisak Jantanasakulwong, and et al. 2023. "Kinetics of Phosphate Ions and Phytase Activity Production for Lactic Acid-Producing Bacteria Utilizing Milling and Whitening Stages Rice Bran as Biopolymer Substrates" Biomolecules 13, no. 12: 1770. https://doi.org/10.3390/biom13121770
APA StyleNunta, R., Khemacheewakul, J., Techapun, C., Sommanee, S., Feng, J., Htike, S. L., Mahakuntha, C., Porninta, K., Phimolsiripol, Y., Jantanasakulwong, K., Moukamnerd, C., Watanabe, M., Kumar, A., & Leksawasdi, N. (2023). Kinetics of Phosphate Ions and Phytase Activity Production for Lactic Acid-Producing Bacteria Utilizing Milling and Whitening Stages Rice Bran as Biopolymer Substrates. Biomolecules, 13(12), 1770. https://doi.org/10.3390/biom13121770