Comparative Study of the Protective and Neurotrophic Effects of Neuronal and Glial Progenitor Cells-Derived Conditioned Media in a Model of Glutamate Toxicity In Vitro
Abstract
:1. Introduction
2. Materials and Methods
2.1. Preparation of Neuronal and Glial Progenitor Cells-Derived Conditioned Media
2.2. Model of Glutamate Toxicity
2.3. Cell Viability and Apoptosis Level Assays
2.4. Differentiation of Rat Pheochromocytoma (PC12) Cells and the Quantification of Neurite Growth
2.5. Dichlorofluorescein Assay for Reactive Oxygen Species
2.6. Immunocytochemistry
2.7. Western Blot
2.8. Quantitative Real-Time Polymerase Chain Reaction
2.9. Statistical Analysis
3. Results
3.1. Characterization of Obtained Cell Cultures
3.2. Cell Vitality and Apoptosis Level
3.3. Levels of Reactive Oxygen Species and NFE2L2 and HMOX1 Gene Expression
3.4. Neuronal Differentiation of the Rat Pheochromocytoma (PC12) Cell Line
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Adugna, D.G.; Aragie, H.; Kibret, A.A.; Belay, D.G. Therapeutic Application of Stem Cells in the Repair of Traumatic Brain Injury. Stem Cells Cloning Adv. Appl. 2022, 15, 53–61. [Google Scholar] [CrossRef]
- Li, J.; Luo, W.; Xiao, C.; Zhao, J.; Xiang, C.; Liu, W.; Gu, R. Recent Advances in Endogenous Neural Stem/Progenitor Cell Manipulation for Spinal Cord Injury Repair. Theranostics 2023, 13, 3966–3987. [Google Scholar] [CrossRef]
- Cooke, P.; Janowitz, H.; Dougherty, S.E. Neuronal Redevelopment and the Regeneration of Neuromodulatory Axons in the Adult Mammalian Central Nervous System. Front. Cell. Neurosci. 2022, 16, 872501. [Google Scholar] [CrossRef] [PubMed]
- Lui, S.K.; Nguyen, M.H. Elderly Stroke Rehabilitation: Overcoming the Complications and Its Associated Challenges. Curr. Gerontol. Geriatr. Res. 2018, 2018, 9853837. [Google Scholar] [CrossRef] [PubMed]
- Hussain, R.; Zubair, H.; Pursell, S.; Shahab, M. Neurodegenerative Diseases: Regenerative Mechanisms and Novel Therapeutic Approaches. Brain Sci. 2018, 8, 177. [Google Scholar] [CrossRef] [PubMed]
- Espay, A.J.; Aybek, S.; Carson, A.; Edwards, M.J.; Goldstein, L.H.; Hallett, M.; LaFaver, K.; LaFrance, W.C.; Lang, A.E.; Nicholson, T.; et al. Current Concepts in Diagnosis and Treatment of Functional Neurological Disorders. JAMA Neurol. 2018, 75, 1132–1141. [Google Scholar] [CrossRef]
- Masrori, P.; Van Damme, P. Amyotrophic Lateral Sclerosis: A Clinical Review. Eur. J. Neurol. 2020, 27, 1918–1929. [Google Scholar] [CrossRef]
- Passeri, E.; Elkhoury, K.; Morsink, M.; Broersen, K.; Linder, M.; Tamayol, A.; Malaplate, C.; Yen, F.T.; Arab-Tehrany, E. Alzheimer’s Disease: Treatment Strategies and Their Limitations. Int. J. Mol. Sci. 2022, 23, 13954. [Google Scholar] [CrossRef]
- Lopes, S.R.; Khan, S.; Chand, S. The Growing Role of Cognitive Behavior Therapy in the Treatment of Parkinson’s Disease. J. Geriatr. Psychiatry Neurol. 2021, 34, 310–320. [Google Scholar] [CrossRef]
- Clark, B.; Whitall, J.; Kwakkel, G.; Mehrholz, J.; Ewings, S.; Burridge, J. The Effect of Time Spent in Rehabilitation on Activity Limitation and Impairment after Stroke. Cochrane Database Syst. Rev. 2021, 2021, CD012612. [Google Scholar] [CrossRef]
- Cherkashova, E.A.; Leonov, G.E.; Namestnikova, D.D.; Solov’eva, A.A.; Gubskii, I.L.; Bukharova, T.B.; Gubskii, L.V.; Goldstein, D.V.; Yarygin, K.N. Methods of Generation of Induced Pluripotent Stem Cells and Their Application for the Therapy of Central Nervous System Diseases. Bull. Exp. Biol. Med. 2020, 168, 566–573. [Google Scholar] [CrossRef]
- Wang, G.; Heimendinger, P.; Ramelmeier, R.A.; Wang, W. Pluripotent Stem Cell-Based Cell Therapies: Current Applications and Future Prospects. Curr. Opin. Biomed. Eng. 2022, 22, 100390. [Google Scholar] [CrossRef]
- Yamaguchi, S.; Yoshida, M.; Horie, N.; Satoh, K.; Fukuda, Y.; Ishizaka, S.; Ogawa, K.; Morofuji, Y.; Hiu, T.; Izumo, T.; et al. Stem Cell Therapy for Acute/Subacute Ischemic Stroke with a Focus on Intraarterial Stem Cell Transplantation: From Basic Research to Clinical Trials. Bioengineering 2023, 10, 33. [Google Scholar] [CrossRef] [PubMed]
- Chrostek, M.R.; Fellows, E.G.; Crane, A.T.; Grande, A.W.; Low, W.C. Efficacy of Stem Cell-Based Therapies for Stroke. Brain Res. 2019, 1722, 146362. [Google Scholar] [CrossRef] [PubMed]
- Veneruso, V.; Rossi, F.; Villella, A.; Bena, A.; Forloni, G.; Veglianese, P. Review Article—Stem Cell Paracrine Effect and Delivery Strategies for Spinal Cord Injury Regeneration. J. Control. Release 2019, 300, 141–153. [Google Scholar] [CrossRef] [PubMed]
- Yamanaka, S. Pluripotent Stem Cell-Based Cell Therapy-Promise and Challenges. Cell Stem Cell 2020, 27, 523–531. [Google Scholar] [CrossRef] [PubMed]
- Soares, M.B.P.; Gonçalves, R.G.J.; Vasques, J.F.; da Silva-Junior, A.J.; Gubert, F.; Santos, G.C.; de Santana, T.A.; Almeida Sampaio, G.L.; Silva, D.N.; Dominici, M.; et al. Current Status of Mesenchymal Stem/Stromal Cells for Treatment of Neurological Diseases. Front. Mol. Neurosci. 2022, 15, 883378. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.-T.; Tsai, M.-J.; Hsieh, N.; Lo, M.-J.; Lee, M.-J.; Cheng, H.; Huang, W.-C. The Superiority of Conditioned Medium Derived from Rapidly Expanded Mesenchymal Stem Cells for Neural Repair. Stem Cell Res. Ther. 2019, 10, 390. [Google Scholar] [CrossRef]
- Hur, H.-J.; Lee, J.Y.; Kim, D.-H.; Cho, M.S.; Lee, S.; Kim, H.-S.; Kim, D.-W. Conditioned Medium of Human Pluripotent Stem Cell-Derived Neural Precursor Cells Exerts Neurorestorative Effects against Ischemic Stroke Model. Int. J. Mol. Sci. 2022, 23, 7787. [Google Scholar] [CrossRef]
- Singh, A.; Kukreti, R.; Saso, L.; Kukreti, S. Oxidative Stress: A Key Modulator in Neurodegenerative Diseases. Molecules 2019, 24, 1583. [Google Scholar] [CrossRef]
- Anwar, M.M. Oxidative Stress-A Direct Bridge to Central Nervous System Homeostatic Dysfunction and Alzheimer’s Disease. Cell Biochem. Funct. 2022, 40, 17–27. [Google Scholar] [CrossRef]
- Olufunmilayo, E.O.; Gerke-Duncan, M.B.; Holsinger, R.M.D. Oxidative Stress and Antioxidants in Neurodegenerative Disorders. Antioxidants 2023, 12, 517. [Google Scholar] [CrossRef]
- Piao, M.; Wang, Y.; Liu, N.; Wang, X.; Chen, R.; Qin, J.; Ge, P.; Feng, C. Sevoflurane Exposure Induces Neuronal Cell Parthanatos Initiated by DNA Damage in the Developing Brain via an Increase of Intracellular Reactive Oxygen Species. Front. Cell. Neurosci. 2020, 14, 583782. [Google Scholar] [CrossRef]
- Pregnolato, S.; Chakkarapani, E.; Isles, A.R.; Luyt, K. Glutamate Transport and Preterm Brain Injury. Front. Physiol. 2019, 10, 417. [Google Scholar] [CrossRef]
- Oprea, D.; Sanz, C.G.; Barsan, M.M.; Enache, T.A. PC-12 Cell Line as a Neuronal Cell Model for Biosensing Applications. Biosensors 2022, 12, 500. [Google Scholar] [CrossRef]
- Li, N.; Wen, L.; Wang, F.; Li, T.; Zheng, H.; Wang, T.; Qiao, M.; Huang, X.; Song, L.; Bukyei, E.; et al. Alleviating Effects of Pea Peptide on Oxidative Stress Injury Induced by Lead in PC12 Cells via Keap1/Nrf2/TXNIP Signaling Pathway. Front. Nutr. 2022, 9, 964938. [Google Scholar] [CrossRef]
- Xie, D.; Deng, T.; Zhai, Z.; Sun, T.; Xu, Y. The Cellular Model for Alzheimer’s Disease Research: PC12 Cells. Front. Mol. Neurosci. 2023, 15, 1016559. [Google Scholar] [CrossRef]
- Chua, P.; Lim, W.K. Optimisation of a PC12 Cell-Based in Vitro Stroke Model for Screening Neuroprotective Agents. Sci. Rep. 2021, 11, 8096. [Google Scholar] [CrossRef]
- Anderson, C.J.; Kahl, A.; Qian, L.; Stepanova, A.; Starkov, A.; Manfredi, G.; Iadecola, C.; Zhou, P. Prohibitin Is a Positive Modulator of Mitochondrial Function in PC12 Cells under Oxidative Stress. J. Neurochem. 2018, 146, 235–250. [Google Scholar] [CrossRef]
- Wang, J.; Xiao, S.; Cai, Q.; Miao, J.; Li, J. Antioxidant Capacity and Protective Effects on H2O2-Induced Oxidative Damage in PC12 Cells of the Active Fraction of Brassica rapa L. Foods 2023, 12, 2075. [Google Scholar] [CrossRef]
- Salikhova, D.; Bukharova, T.; Cherkashova, E.; Namestnikova, D.; Leonov, G.; Nikitina, M.; Gubskiy, I.; Akopyan, G.; Elchaninov, A.; Midiber, K.; et al. Therapeutic Effects of HiPSC-Derived Glial and Neuronal Progenitor Cells-Conditioned Medium in Experimental Ischemic Stroke in Rats. Int. J. Mol. Sci. 2021, 22, 4694. [Google Scholar] [CrossRef]
- Hu, R.; Cao, Q.; Sun, Z.; Chen, J.; Zheng, Q.; Xiao, F. A Novel Method of Neural Differentiation of PC12 Cells by Using Opti-MEM as a Basic Induction Medium. Int. J. Mol. Med. 2018, 41, 195–201. [Google Scholar] [CrossRef]
- Chaurasiya, N.D.; Shukla, S.; Tekwani, B.L. A Combined In Vitro Assay for Evaluation of Neurotrophic Activity and Cytotoxicity. SLAS Discov. 2017, 22, 667–675. [Google Scholar] [CrossRef]
- Hong, H.; Liu, G.-Q. Scutellarin Attenuates Oxidative Glutamate Toxicity in PC12 Cells. Planta Med. 2004, 70, 427–431. [Google Scholar] [CrossRef]
- Wang, S.; Zheng, L.; Zhao, T.; Zhang, Q.; Su, G.; Zhao, M. The Neuroprotective Effect of Walnut-Derived Peptides against Glutamate-Induced Damage in PC12 Cells: Mechanism and Bioavailability. Food Sci. Hum. Wellness 2022, 11, 933–942. [Google Scholar] [CrossRef]
- Belov Kirdajova, D.; Kriska, J.; Tureckova, J.; Anderova, M. Ischemia-Triggered Glutamate Excitotoxicity From the Perspective of Glial Cells. Front. Cell. Neurosci. 2020, 14, 51. [Google Scholar] [CrossRef]
- DeGiosio, R.A.; Grubisha, M.J.; MacDonald, M.L.; McKinney, B.C.; Camacho, C.J.; Sweet, R.A. More than a Marker: Potential Pathogenic Functions of MAP2. Front. Mol. Neurosci. 2022, 15, 974890. [Google Scholar] [CrossRef]
- He, L.; He, T.; Farrar, S.; Ji, L.; Liu, T.; Ma, X. Antioxidants Maintain Cellular Redox Homeostasis by Elimination of Reactive Oxygen Species|Cellular Physiology and Biochemistry|Karger Publishers. Cell. Physiol. Biochem. 2017, 44, 532–553. [Google Scholar] [CrossRef]
- Aghaei, Z.; Karbalaei, N.; Namavar, M.R.; Haghani, M.; Razmkhah, M.; Ghaffari, M.K.; Nemati, M. Neuroprotective Effect of Wharton’s Jelly-Derived Mesenchymal Stem Cell-Conditioned Medium (WJMSC-CM) on Diabetes-Associated Cognitive Impairment by Improving Oxidative Stress, Neuroinflammation, and Apoptosis. Stem Cells Int. 2023, 2023, e7852394. [Google Scholar] [CrossRef]
- Borhani-Haghighi, M.; Mohamadi, Y. The Protective Effects of Neural Stem Cells and Neural Stem Cells-Conditioned Medium against Inflammation-Induced Prenatal Brain Injury. J. Neuroimmunol. 2021, 360, 577707. [Google Scholar] [CrossRef]
- Li, L.; Ngo, H.T.T.; Hwang, E.; Wei, X.; Liu, Y.; Liu, J.; Yi, T.-H. Conditioned Medium from Human Adipose-Derived Mesenchymal Stem Cell Culture Prevents UVB-Induced Skin Aging in Human Keratinocytes and Dermal Fibroblasts. Int. J. Mol. Sci. 2020, 21, 49. [Google Scholar] [CrossRef]
- Lu, G.; Su, X.; Wang, L.; Leung, C.-K.; Zhou, J.; Xiong, Z.; Wang, W.; Liu, H.; Chan, W.-Y. Neuroprotective Effects of Human-Induced Pluripotent Stem Cell-Derived Mesenchymal Stem Cell Extracellular Vesicles in Ischemic Stroke Models. Biomedicines 2023, 11, 2550. [Google Scholar] [CrossRef]
- Sultan, N.; Amin, L.E.; Zaher, A.R.; Grawish, M.E.; Scheven, B.A. Dental Pulp Stem Cells Stimulate Neuronal Differentiation of PC12 Cells. Neural Regen. Res. 2021, 16, 1821. [Google Scholar] [CrossRef]
- Červenka, J.; Tylečková, J.; Kupcová Skalníková, H.; Vodičková Kepková, K.; Poliakh, I.; Valeková, I.; Pfeiferová, L.; Kolář, M.; Vaškovičová, M.; Pánková, T.; et al. Proteomic Characterization of Human Neural Stem Cells and Their Secretome During in Vitro Differentiation. Front. Cell. Neurosci. 2021, 14, 612560. [Google Scholar] [CrossRef]
- Budiariati, V.; Rinendyaputri, R.; Noviantari, A.; Budiono, D.; Fahrudin, M.; Juliandi, B.; Boediono, A. Heterogeneity of Cells Population and Secretome Profile of Differentiated Cells from E17 Rat Neural Progenitor Cells. J. Stem Cells Regen. Med. 2019, 15, 35–44. [Google Scholar]
Gene | Sequence (5′ to 3′) | Annealing Temperature, °C | Product Length, bp |
---|---|---|---|
GAP43 | for-AAGGATGATGCTCCCGTTGC rev-CGGCCTTTTCCTCTGAAGGG | 64 | 175 |
βIII-tubulin | for-GGCAACTATGTGGGGGACTC rev-GCACCACTCTGACCGAAGATA | 60.5 | 223 |
SYN1 | for-AGCTCAACAAATCCCAGTCTCT rev-CCAGGAGAGAGGGGTTCTCA | 60 | 249 |
MAP2 | for-CACTTTCCGTGCCCAGATTTT rev-GCTGGTGGTATGTTCTGGCT | 60 | 157 |
BAX | for-TTGTGGCTGGAGTCCTCACT rev-TTTCCCCGTTCCCCATTCATC | 61 | 131 |
BCL2 | for-GGGCTACGAGTGGGTACT rev-GACGGTAGCGACGAGAGAAG | 55.6 | 148 |
NFE2L2 | for-TGTAGATGACCATGAGTCGC rev-TCCTGCCAAACTTGCTCCAT | 57.2 | 197 |
HMOX1 | for-CCAGAGTTTCCGCCTCCAAC rev-CTGGGACATGCTGTCGAGC | 63 | 179 |
GAPDH | for-GCGAGATCCCGCTAACATCA rev-GCTACGGGCTTGTCACTCG | 62 | 215 |
Biological Processes | Neuronal Progenitor Cells-Condition Medium | Glial Progenitor Cells-Condition Medium |
---|---|---|
Regulation of apoptosis and cell survival | Tissue inhibitor of metalloproteinases 2 (TIMP2) Secretogranin-2 (chromogranin C, SCG2) Wnt family member 5a (WNT5A) Neuropilin-1 (NRP1) Ras homolog family member A (RHOA) Platelet-derived growth factor D (PDGFD | Heat shock 70 kDa protein 4 (HSPA4) Heat shock protein 105 kDa (HSPH1) Hsc70-interacting protein (ST13) Leukemia inhibitory factor (LIF) Growth arrest-specific protein 6 (GAS6) Gremlin 1 (GREM1) Tetranectin (TETN) |
Antioxidant protection | Catalase (CAT) Glyoxylate and hydroxypyruvate reductase (GRHPR) Peptidylglycine alpha-amidating monooxygenase (PAM) | Lysyl oxidase homolog 1 (LOXL1) Peptidylglycine alpha-amidating monooxygenase (PAM) Peroxiredoxin 4 (PRDX4) Superoxide Dismutase 1 (SOD1) Thioredoxin domain-containing protein 5 (TXNDC5) Glutathione S Transferase Omega 1 (GSTo1) |
Neurogenesis and regulation of neurite growth | Ataxin 10 (ATXN10) Ephrin B1 (EFNB1) Ezrin (EZR) Fibroblast Growth Factor 8 (FGF8) Glypican 1 (GPC1) Netrin 1 (Ntn1) Neuroserpin 1 (Serpini1) Semaphorin-3C (SEMA3C) Neuronal Pentraxin II (NPTX2) Basigin (BSG) Endophilin-A2 (SH3GL1) Growth Differentiation Factor 11 (GDF11) Neurosecretory protein VGF | Dynactin (DCTN2) Thrombospondin 2 (THBS2) Prosaposin (PSAP) Sorting Nexin 3 (SNX3) Twinfilin 2 (TWF2) Cysteine and Glycine Rich Protein 1 (CSRP1) Olfactomedin Like Protein 3 (OLFML3) Ras-related Protein Rab-11A (RAB11A) Neuroblast differentiation-associated protein AHNAK |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Leonov, G.; Salikhova, D.; Shedenkova, M.; Bukharova, T.; Fatkhudinov, T.; Goldshtein, D. Comparative Study of the Protective and Neurotrophic Effects of Neuronal and Glial Progenitor Cells-Derived Conditioned Media in a Model of Glutamate Toxicity In Vitro. Biomolecules 2023, 13, 1784. https://doi.org/10.3390/biom13121784
Leonov G, Salikhova D, Shedenkova M, Bukharova T, Fatkhudinov T, Goldshtein D. Comparative Study of the Protective and Neurotrophic Effects of Neuronal and Glial Progenitor Cells-Derived Conditioned Media in a Model of Glutamate Toxicity In Vitro. Biomolecules. 2023; 13(12):1784. https://doi.org/10.3390/biom13121784
Chicago/Turabian StyleLeonov, Georgy, Diana Salikhova, Margarita Shedenkova, Tatiana Bukharova, Timur Fatkhudinov, and Dmitry Goldshtein. 2023. "Comparative Study of the Protective and Neurotrophic Effects of Neuronal and Glial Progenitor Cells-Derived Conditioned Media in a Model of Glutamate Toxicity In Vitro" Biomolecules 13, no. 12: 1784. https://doi.org/10.3390/biom13121784
APA StyleLeonov, G., Salikhova, D., Shedenkova, M., Bukharova, T., Fatkhudinov, T., & Goldshtein, D. (2023). Comparative Study of the Protective and Neurotrophic Effects of Neuronal and Glial Progenitor Cells-Derived Conditioned Media in a Model of Glutamate Toxicity In Vitro. Biomolecules, 13(12), 1784. https://doi.org/10.3390/biom13121784