Role of NMDA Receptor in High-Pressure Neurological Syndrome and Hyperbaric Oxygen Toxicity
Abstract
:1. Introduction
2. NMDAR Subtypes and Their Response to Pressure
3. The Mechanism of the NMDAR Hyperexcitation
3.1. Voltage-Dependent Mg2+ and Zn2+ Inhibition
3.2. NMDAR Characteristics: Affinity, Stoichiometry, Surface Expression
3.3. Structural Differences of the GluN1 Variants
3.4. Direct HP Effects: Molecular Dynamic Simulation (MDS)
3.5. Voltage-Independent Zn2+ Inhibition
4. Clinical Aspects and Considerations
5. Conclusions
- We generally assume that HPNS and HBOTx result from the dysfunction of neuronal network synaptic activity and that NMDAR plays a crucial (but not sole) role in provoking it.
- The augmented currents only in NMDAR containing GluN2A subunit increase glutamatergic synaptic activity and cause dendritic hyperexcitability and abnormal neuronal activity.
- Aggregate formation, modified stoichiometry, alterations in glutamate and glycine affinity, increase in receptor expression, and change in reversal potential cannot explain the increase in current of the GluN2A subunit.
- Voltage-dependent divalent ions inhibition has a limited role in the HP He and HBO effects.
- The preexisting structural modifications in GluN1 variants may slightly modulate the NMDARs response, which is determined using the GluN2 subtype.
- HP He-induced increased/decreased inward ionic currents (GluN2A included) can be sufficiently explained by observing the increase/decrease in input conductance (pore permeability) of the receptor.
- MDS suggests that hydrostatic pressure and compression with He may cause direct alterations in NMDAR protein conformation and cell membrane properties. However, they may have different impacts which are not fully understood.
- Removal of the resting Zn2+ voltage-independent inhibition exerted by GluN2A present in the NMDAR is the major candidate for the mechanism underlying the increase in the receptor conductance.
- The clinical aspects of HPNS and HBOTx should be reexamined in light of the new molecular and modeling findings dealing with compressed gases.
- New methods for neural protection should be explored in light of recent discoveries, especially the role of Zn2+ voltage-independent inhibition in the HP response.
- Despite immense technological progress and great computational capabilities advancement, we remain limited in reaching the ocean bottom. If we ever want to explore those areas, pressure susceptibility must be studied to remove restrictions that prevent us from entering the deep ocean frontiers.
Author Contributions
Funding
Conflicts of Interest
References
- Bennett, P.B.; McLeod, M. Probing the limits of human deep diving. Philos. Trans. R. Soc. Lond. B Biol. Sci. 1984, 304, 105–117. [Google Scholar] [CrossRef]
- Kindwall, E.P. Compressed air tunneling and caisson work decompression procedures: Development, problems, and solutions. Undersea Hyperb. Med. 1997, 24, 337–345. [Google Scholar]
- Hempleman, H.V.; Florio, J.T.; Garrard, M.P.; Harris, D.J.; Hayes, P.A.; Hennessy, T.R.; Nichols, G.; Török, Z.; Winsborough, M.M. U.K. Deep diving trials. Philos. Trans. R. Soc. Lond. B Biol. Sci. 1984, 304, 119–141. [Google Scholar] [CrossRef]
- Benjaminsen, T.; Christensen, I. The Natural History of the Bottlenose Whale, Hyperoodon ampullatus (Forster). In Behavior of Marine Animals: Current Perspectives in Research; Winn, H.E., Olla, B.L., Eds.; Springer: Boston, MA, USA, 1979; pp. 143–164. [Google Scholar]
- Norris, K.S.; Harvey, G.W. A Theory for the Function of the Spermaceti Organ of the Sperm Whale (Physeter catodon L.). 1972. Available online: https://ntrs.nasa.gov/citations/19720017437 (accessed on 6 September 2023).
- Boeuf, B.J.L.; Costa, D.P.; Huntley, A.C.; Feldkamp, S.D. Continuous, deep diving in female northern elephant seals, Mirounga angustirostris. Can. J. Zool. 1988, 66, 446–458. [Google Scholar] [CrossRef]
- Ridgway, S.H.; Bowers, C.A.; Miller, D.; Schultz, M.L.; Jacobs, C.A.; Dooley, C.A. Diving and blood oxygen in the white whale. Can. J. Zool. 1984, 62, 2349–2351. [Google Scholar] [CrossRef]
- Bennett, P.B.; Rostain, C. High pressure nervous syndrome. In Bennett and Elliott’s Physiology and Medicine of Diving; Brubakk, A.O., Neuman, T.S., Eds.; Saunders: London, UK, 2003; pp. 323–357. [Google Scholar]
- Tibbles, P.M.; Edelsberg, J.S. Hyperbaric-oxygen therapy. N. Engl. J. Med. 1996, 334, 1642–1648. [Google Scholar] [CrossRef]
- Halsey, M.J. Effects of high pressure on the central nervous system. Physiol. Rev. 1982, 62, 1341–1377. [Google Scholar] [CrossRef]
- Daniels, S.; Grossman, Y. Pressure effects on cells. In Comparative High Pressure Biology; Sébert, P., Ed.; Taylor & Francis: Abingdon, UK, 2010; pp. 121–142. [Google Scholar]
- Darbin, O.; Risso, J.J.; Rostain, J.C. High pressure enhanced NMDA activity in the striatum and the globus pallidus: Relationships with myoclonia and locomotor and motor activity in rat. Brain Res. 2000, 852, 62–67. [Google Scholar] [CrossRef] [PubMed]
- Brauer, R.W. Hydrostatic pressure effects on the central nervous system: Perspectives and outlook. Philos. Trans. R. Soc. Lond. B Biol. Sci. 1984, 304, 17–30. [Google Scholar] [CrossRef] [PubMed]
- Abraini, J.H. Inert gas and raised pressure: Evidence that motor decrements are due to pressure per se and cognitive decrements due to narcotic action. Pflug. Arch. 1997, 433, 788–791. [Google Scholar] [CrossRef] [PubMed]
- Grossman, Y.; Aviner, B.; Mor, A. High Pressure effects on Mammalian Central Nervous System. In Comparative High Pressure Biology; Sébert, P., Ed.; Taylor & Francis: Abingdon, UK, 2010; pp. 161–186. [Google Scholar]
- Grønning, M.; Aarli, J.A. Neurological effects of deep diving. J. Neurol. Sci. 2011, 304, 17–21. [Google Scholar] [CrossRef] [PubMed]
- Fagni, L.; Soumireu-Mourat, B.; Carlier, E.; Hugon, M. A study of spontaneous and evoked activity in the rat hippocampus under helium-oxygen high pressure. Electroencephalogr. Clin. Neurophysiol. 1985, 60, 267–275. [Google Scholar] [CrossRef] [PubMed]
- Fagni, L.; Zinebi, F.; Hugon, M. Helium pressure potentiates the N-methyl-D-aspartate- and D,L-homocysteate-induced decreases of field potentials in the rat hippocampal slice preparation. Neurosci. Lett. 1987, 81, 285–290. [Google Scholar] [CrossRef] [PubMed]
- Zinebi, F.; Fagni, L.; Hugon, M. Decrease of recurrent and feed-forward inhibitions under high pressure of helium in rat hippocampal slices. Eur. J. Pharmacol. 1988, 153, 191–199. [Google Scholar] [CrossRef] [PubMed]
- Zinebi, F.; Fagni, L.; Hugon, M. Excitatory and inhibitory amino-acidergic determinants of the pressure-induced neuronal hyperexcitability in rat hippocampal slices. Undersea Biomed. Res. 1990, 17, 487–493. [Google Scholar]
- Daniels, S.; Grossman, Y. Biological effects of pressure. In Bennett and Elliott’s Physiology and Medicine of Diving; Brubakk, A.O., Neuman, T.S., Elliott, D.H., Eds.; Saunders: London, UK, 2003; pp. 265–299. [Google Scholar]
- Mor, A.; Grossman, Y. The efficacy of physiological and pharmacological N-methyl-D-aspartate receptor block is greatly reduced under hyperbaric conditions. Neuroscience 2010, 169, 1–7. [Google Scholar] [CrossRef]
- Pearce, P.C.; Maclean, C.J.; Shergill, H.K.; Ward, E.M.; Halsey, M.J.; Tindley, G.; Pearson, J.; Meldrum, B.S. Protection from high pressure induced hyperexcitability by the AMPA/kainate receptor antagonists GYKI 52466 and LY 293558. Neuropharmacology 1994, 33, 605–612. [Google Scholar] [CrossRef]
- Shelton, C.J.; Doyle, M.G.; Price, D.J.; Daniels, S.; Smith, E.B. The effect of high pressure on glycine- and kainate-sensitive receptor channels expressed in Xenopus oocytes. Proc. Biol. Sci. 1993, 254, 131–137. [Google Scholar] [CrossRef]
- Roberts, R.J.; Shelton, C.J.; Daniels, S.; Smith, E.B. Glycine activation of human homomeric α1 glycine receptors is sensitive to pressure in the range of the high-pressure nervous syndrome. Neurosci. Lett. 1996, 208, 125–128. [Google Scholar] [CrossRef]
- Butler, F.K.; Thalmann, E.D. Central nervous system oxygen toxicity in closed circuit scuba divers II. Undersea Biomed. Res. 1986, 13, 193–223. [Google Scholar]
- Acott, C. Oxygen toxicity. A brief history of oxygen in diving. SPUMS J. 1999, 29, 150–155. [Google Scholar]
- Clark, M.J.; Thom, S.R. Oxygen under pressure. In Bennett and Elliott’s Physiology and Medicine of Diving; Brubakk, A.O., Neuman, T., Saunders, S., Eds.; Saunders: London, UK, 2003; pp. 358–418. [Google Scholar]
- Dean, J.B.; Mulkey, D.K.; Garcia, A.J.; Putnam, R.W.; Henderson, R.A. Neuronal sensitivity to hyperoxia, hypercapnia, and inert gases at hyperbaric pressures. J. Appl. Physiol. (1985) 2003, 95, 883–909. [Google Scholar] [CrossRef]
- Bliznyuk, A.; Hollmann, M.; Grossman, Y. The Mechanism of NMDA Receptor Hyperexcitation in High Pressure Helium and Hyperbaric Oxygen. Front. Physiol. 2020, 11, 1057. [Google Scholar] [CrossRef] [PubMed]
- Hansen, K.B.; Yi, F.; Perszyk, R.E.; Menniti, F.S.; Traynelis, S.F. NMDA Receptors in the Central Nervous System. Methods Mol. Biol. 2017, 1677, 1–80. [Google Scholar] [CrossRef] [PubMed]
- Traynelis, S.F.; Wollmuth, L.P.; McBain, C.J.; Menniti, F.S.; Vance, K.M.; Ogden, K.K.; Hansen, K.B.; Yuan, H.; Myers, S.J.; Dingledine, R. Glutamate receptor ion channels: Structure, regulation, and function. Pharmacol. Rev. 2010, 62, 405–496. [Google Scholar] [CrossRef] [PubMed]
- Moriyoshi, K.; Masu, M.; Ishii, T.; Shigemoto, R.; Mizuno, N.; Nakanishi, S. Molecular cloning and characterization of the rat NMDA receptor. Nature 1991, 354, 31–37. [Google Scholar] [CrossRef]
- Monyer, H.; Sprengel, R.; Schoepfer, R.; Herb, A.; Higuchi, M.; Lomeli, H.; Burnashev, N.; Sakmann, B.; Seeburg, P.H. Heteromeric NMDA receptors: Molecular and functional distinction of subtypes. Science 1992, 256, 1217–1221. [Google Scholar] [CrossRef]
- Mori, H.; Mishina, M. Structure and function of the NMDA receptor channel. Neuropharmacology 1995, 34, 1219–1237. [Google Scholar] [CrossRef]
- Dingledine, R.; Borges, K.; Bowie, D.; Traynelis, S.F. The glutamate receptor ion channels. Pharmacol. Rev. 1999, 51, 7–61. [Google Scholar]
- Paoletti, P. Molecular basis of NMDA receptor functional diversity. Eur. J. Neurosci. 2011, 33, 1351–1365. [Google Scholar] [CrossRef]
- Cull-Candy, S.G.; Leszkiewicz, D.N. Role of distinct NMDA receptor subtypes at central synapses. Sci. STKE 2004, 2004, re16. [Google Scholar] [CrossRef] [PubMed]
- Paoletti, P.; Bellone, C.; Zhou, Q. NMDA receptor subunit diversity: Impact on receptor properties, synaptic plasticity and disease. Nat. Rev. Neurosci. 2013, 14, 383–400. [Google Scholar] [CrossRef] [PubMed]
- Laurie, D.J.; Seeburg, P.H. Regional and developmental heterogeneity in splicing of the rat brain NMDAR1 mRNA. J. Neurosci. 1994, 14, 3180–3194. [Google Scholar] [CrossRef]
- Monyer, H.; Burnashev, N.; Laurie, D.J.; Sakmann, B.; Seeburg, P.H. Developmental and regional expression in the rat brain and functional properties of four NMDA receptors. Neuron 1994, 12, 529–540. [Google Scholar] [CrossRef] [PubMed]
- Takai, H.; Katayama, K.; Uetsuka, K.; Nakayama, H.; Doi, K. Distribution of N-methyl-D-aspartate receptors (NMDARs) in the developing rat brain. Exp. Mol. Pathol. 2003, 75, 89–94. [Google Scholar] [CrossRef]
- Watanabe, M.; Inoue, Y.; Sakimura, K.; Mishina, M. Developmental changes in distribution of NMDA receptor channel subunit mRNAs. Neuroreport 1992, 3, 1138–1140. [Google Scholar] [CrossRef] [PubMed]
- Akazawa, C.; Shigemoto, R.; Bessho, Y.; Nakanishi, S.; Mizuno, N. Differential expression of five N-methyl-D-aspartate receptor subunit mRNAs in the cerebellum of developing and adult rats. J. Comp. Neurol. 1994, 347, 150–160. [Google Scholar] [CrossRef]
- Al-Hallaq, R.A.; Conrads, T.P.; Veenstra, T.D.; Wenthold, R.J. NMDA di-heteromeric receptor populations and associated proteins in rat hippocampus. J. Neurosci. 2007, 27, 8334–8343. [Google Scholar] [CrossRef]
- Gray, J.A.; Shi, Y.; Usui, H.; During, M.J.; Sakimura, K.; Nicoll, R.A. Distinct modes of AMPA receptor suppression at developing synapses by GluN2A and GluN2B: Single-cell NMDA receptor subunit deletion in vivo. Neuron 2011, 71, 1085–1101. [Google Scholar] [CrossRef]
- Rauner, C.; Köhr, G. Triheteromeric NR1/NR2A/NR2B receptors constitute the major N-methyl-D-aspartate receptor population in adult hippocampal synapses. J. Biol. Chem. 2011, 286, 7558–7566. [Google Scholar] [CrossRef]
- Mor, A.; Grossman, Y. Modulation of isolated N-methyl-d-aspartate receptor response under hyperbaric conditions. Eur. J. Neurosci. 2006, 24, 3453–3462. [Google Scholar] [CrossRef]
- Mor, A.; Grossman, Y. High pressure modulation of NMDA receptor dependent excitability. Eur. J. Neurosci. 2007, 25, 2045–2052. [Google Scholar] [CrossRef]
- Mor, A.; Kuttner, Y.Y.; Levy, S.; Mor, M.; Hollmann, M.; Grossman, Y. Pressure-selective modulation of NMDA receptor subtypes may reflect 3D structural differences. Front. Cell. Neurosci. 2012, 6, 37. [Google Scholar] [CrossRef]
- Bliznyuk, A.; Aviner, B.; Golan, H.; Hollmann, M.; Grossman, Y. The N-methyl-D-aspartate receptor’s neglected subunit—GluN1 matters under normal and hyperbaric conditions. Eur. J. Neurosci. 2015, 42, 2577–2584. [Google Scholar] [CrossRef]
- Bliznyuk, A.; Gradwohl, G.; Hollmann, M.; Grossman, Y. The Enigma of the Dichotomic Pressure Response of GluN1-4a/b Splice Variants of NMDA Receptor: Experimental and Statistical Analyses. Front. Mol. Neurosci. 2016, 9, 40. [Google Scholar] [CrossRef]
- Wollmuth, L.P.; Kuner, T.; Sakmann, B. Adjacent asparagines in the NR2-subunit of the NMDA receptor channel control the voltage-dependent block by extracellular Mg2+. J. Physiol. 1998, 506 Pt 1, 13–32. [Google Scholar] [CrossRef]
- Tu, Y.; Kuo, C. The differential contribution of GluN1 and GluN2 to the gating operation of the NMDA receptor channel. Pflug. Arch. 2015, 467, 1899–1917. [Google Scholar] [CrossRef]
- Siegler Retchless, B.; Gao, W.; Johnson, J.W. A single GluN2 subunit residue controls NMDA receptor channel properties via intersubunit interaction. Nat. Neurosci. 2012, 15, 406–413. [Google Scholar] [CrossRef]
- Mayer, M.L.; Vyklicky, L. The action of zinc on synaptic transmission and neuronal excitability in cultures of mouse hippocampus. J. Physiol. 1989, 415, 351–365. [Google Scholar] [CrossRef] [PubMed]
- Christine, C.W.; Choi, D.W. Effect of zinc on NMDA receptor-mediated channel currents in cortical neurons. J. Neurosci. 1990, 10, 108–116. [Google Scholar] [CrossRef] [PubMed]
- Legendre, P.; Westbrook, G.L. The inhibition of single N-methyl-D-aspartate-activated channels by zinc ions on cultured rat neurones. J. Physiol. 1990, 429, 429–449. [Google Scholar] [CrossRef]
- Kawajiri, S.; Dingledine, R. Multiple structural determinants of voltage-dependent magnesium block in recombinant NMDA receptors. Neuropharmacology 1993, 32, 1203–1211. [Google Scholar] [CrossRef]
- Sakurada, K.; Masu, M.; Nakanishi, S. Alteration of Ca2+ permeability and sensitivity to Mg2+ and channel blockers by a single amino acid substitution in the N-methyl-D-aspartate receptor. J. Biol. Chem. 1993, 268, 410–415. [Google Scholar] [CrossRef]
- Daniels, S.; Roberts, R.; Williams, N. Effects of high pressure on postsynaptic ionotropic receptors. In High Pressure Biology and Medicine; Bennett, P.B., Demchenko, I., Marquis, R.E., Eds.; University of Rochester Press: Rochester, NY, USA, 1998; pp. 22–31. [Google Scholar]
- Bliznyuk, A.; Golan, H.; Grossman, Y. Marine Mammals’ NMDA Receptor Structure: Possible Adaptation to High Pressure Environment. Front. Physiol. 2018, 9, 1633. [Google Scholar] [CrossRef]
- Bliznyuk, A.; Hollmann, M.; Grossman, Y. High Pressure Stress Response: Involvement of NMDA Receptor Subtypes and Molecular Markers. Front. Physiol. 2019, 10, 1234. [Google Scholar] [CrossRef] [PubMed]
- Bliznyuk, A.; Grossman, Y.; Moskovitz, Y. The effect of high pressure on the NMDA receptor: Molecular dynamics simulations. Sci. Rep. 2019, 9, 10814. [Google Scholar] [CrossRef] [PubMed]
- Collingridge, G.L.; Isaac, J.T.R.; Wang, Y.T. Receptor trafficking and synaptic plasticity. Nat. Rev. Neurosci. 2004, 5, 952–962. [Google Scholar] [CrossRef] [PubMed]
- Hollmann, M.; Boulter, J.; Maron, C.; Beasley, L.; Sullivan, J.; Pecht, G.; Heinemann, S. Zinc potentiates agonist-induced currents at certain splice variants of the NMDA receptor. Neuron 1993, 10, 943–954. [Google Scholar] [CrossRef]
- Orrenius, S.; Zhivotovsky, B.; Nicotera, P. Regulation of cell death: The calcium-apoptosis link. Nat. Rev. Mol. Cell Biol. 2003, 4, 552–565. [Google Scholar] [CrossRef]
- Liu, N.I.; Kay, R.L. Redetermination of the pressure dependence of the lipid bilayer phase transition. Biochemistry 1977, 16, 3484–3486. [Google Scholar] [CrossRef]
GluN1 Splice Variant | GluN2A | GluN2B | GluN2C | GluN2D |
---|---|---|---|---|
GluN1-1a | ↑ (63%) | = | ↓ (−25%) | = |
GluN1-1b | ↑ (25%) | = | ↓ (−47%) | ↓ (−24%) |
GluN1-2a | ↑ (45%) | NT | NT | NT |
GluN1-2b | ↑ (32%) | NT | NT | NT |
GluN1-3a | ↑ (28%) | NT | NT | NT |
GluN1-3b | ↑ (42%) | NT | NT | NT |
GluN1-4a | ↕ (26%) (−26%) | ↕ (8%) (−14%) | NT | NT |
GluN1-4b | ↕ (39%) (−43%) | NT | NT | NT |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bliznyuk, A.; Grossman, Y. Role of NMDA Receptor in High-Pressure Neurological Syndrome and Hyperbaric Oxygen Toxicity. Biomolecules 2023, 13, 1786. https://doi.org/10.3390/biom13121786
Bliznyuk A, Grossman Y. Role of NMDA Receptor in High-Pressure Neurological Syndrome and Hyperbaric Oxygen Toxicity. Biomolecules. 2023; 13(12):1786. https://doi.org/10.3390/biom13121786
Chicago/Turabian StyleBliznyuk, Alice, and Yoram Grossman. 2023. "Role of NMDA Receptor in High-Pressure Neurological Syndrome and Hyperbaric Oxygen Toxicity" Biomolecules 13, no. 12: 1786. https://doi.org/10.3390/biom13121786
APA StyleBliznyuk, A., & Grossman, Y. (2023). Role of NMDA Receptor in High-Pressure Neurological Syndrome and Hyperbaric Oxygen Toxicity. Biomolecules, 13(12), 1786. https://doi.org/10.3390/biom13121786