Circular RNAs in Ischemic Stroke: Biological Role and Experimental Models
Abstract
:1. Introduction
2. Article Search and Selection Results
3. Middle Cerebral Arterial Occlusion
4. OGD-Induced Neuron Injury
5. Biological Effects of circRNAs in IS, Potential Therapeutic Targets, and Future Perspectives
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Liu, X.; Wang, Q.; Zhao, J.; Chang, H.; Zhu, R. Inflammation-Related circRNA Polymorphism and Ischemic Stroke Prognosis. J. Mol. Neurosci. 2021, 71, 2126–2133. [Google Scholar] [CrossRef] [PubMed]
- George, P.M.; Steinberg, G.K. Novel Stroke Therapeutics: Unraveling Stroke Pathophysiology and Its Impact on Clinical Treatments. Neuron 2015, 87, 297–309. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lee, H.J.; Ryu, J.S.; Vig, P.J. Current strategies for therapeutic drug delivery after traumatic CNS injury. Ther. Deliv. 2019, 10, 251–263. [Google Scholar] [CrossRef] [PubMed]
- Liu, M.; Liu, X.; Zhou, M.; Guo, S.; Sun, K. Impact of CircRNAs on Ischemic Stroke. Aging Dis. 2022, 13, 329–339. [Google Scholar]
- Circulatory MicroRNAs as Potential Biomarkers for Stroke Risk|Stroke. Available online: https://www.ahajournals.org/doi/full/10.1161/STROKEAHA.120.031543 (accessed on 10 February 2021).
- Di Ieva, A.; Butz, H.; Niamah, M.; Rotondo, F.; De Rosa, S.; Sav, A.; Yousef, G.M.; Kovacs, K.; Cusimano, M.D. MicroRNAs as biomarkers in pituitary tumors. Neurosurgery 2014, 75, 181–189; discussion 188–189. [Google Scholar] [CrossRef]
- De Rosa, S.; Curcio, A.; Indolfi, C. Emerging role of microRNAs in cardiovascular diseases. Circ. J. 2014, 78, 567–575. [Google Scholar] [CrossRef] [Green Version]
- Jakubik, D.; Fitas, A.; Eyileten, C.; Jarosz-Popek, J.; Nowak, A.; Czajka, P.; Wicik, Z.; Sourij, H.; Siller-Matula, J.M.; De Rosa, S.; et al. MicroRNAs and long non-coding RNAs in the pathophysiological processes of diabetic cardiomyopathy: Emerging biomarkers and potential therapeutics. Cardiovasc. Diabetol. 2021, 20, 55. [Google Scholar] [CrossRef]
- Zareba, L.; Fitas, A.; Wolska, M.; Junger, E.; Eyileten, C.; Wicik, Z.; De Rosa, S.; Siller-Matula, J.M.; Postula, M. MicroRNAs and Long Noncoding RNAs in Coronary Artery Disease New and Potential Therapeutic Targets. Cardiol. Clin. 2020, 38, 601–617. [Google Scholar] [CrossRef]
- De Rosa, S.; Iaconetti, C.; Eyileten, C.; Yasuda, M.; Albanese, M.; Polimeni, A.; Sabatino, J.; Sorrentino, S.; Postula, M.; Indolfi, C. Flow-Responsive Noncoding RNAs in the Vascular System: Basic Mechanisms for the Clinician. J. Clin. Med. 2022, 11, 459. [Google Scholar] [CrossRef]
- Li, F.; Li, C.; Li, X.; Li, Y.; Zhong, Y.; Ling, L. Altered circular RNA expression profiles in the non-ischemic thalamus in focal cortical infarction mice. Aging 2020, 12, 13206–13219. [Google Scholar] [CrossRef]
- Liu, Y.; Li, Y.; Zang, J.; Zhang, T.; Li, Y.; Tan, Z.; Ma, D.; Zhang, T.; Wang, S.; Zhang, Y.; et al. CircOGDH Is a Penumbra Biomarker and Therapeutic Target in Acute Ischemic Stroke. Circ. Res. 2022, 130, 907–924. [Google Scholar] [CrossRef] [PubMed]
- Zuo, L.; Xie, J.; Liu, Y.; Leng, S.; Zhang, Z.; Yan, F. Down-regulation of circular RNA CDC14A peripherally ameliorates brain injury in acute phase of ischemic stroke. J. Neuroinflammation 2021, 18, 283. [Google Scholar] [CrossRef] [PubMed]
- Huo, H.; Hu, C.; Lu, Y.; Zhou, J.; Mai, Z. Silencing of circCDC14A prevents cerebral ischemia-reperfusion injury via miR-23a-3p/CXCL12 axis. J. Biochem. Mol. Toxicol. 2022, 36, e22982. [Google Scholar] [CrossRef]
- Huang, R.; Zhang, W.; Li, W.; Gao, Y.; Zheng, D.; Bi, G. Overexpressing circ_0000831 is sufficient to inhibit neuroinflammation and vertigo in cerebral ischemia through a miR-16-5p-dependent mechanism. Exp. Neurol. 2022, 353, 114047. [Google Scholar] [CrossRef]
- Wu, L.; Xu, H.; Zhang, W.; Chen, Z.; Li, W.; Ke, W. Circular RNA circCCDC9 alleviates ischaemic stroke ischaemia/reperfusion injury via the Notch pathway. J. Cell Mol. Med. 2020, 24, 14152–14159. [Google Scholar] [CrossRef]
- Zhang, H.; Zhang, B.; Chen, C.; Chen, J. Circular RNA circLIFR regulates the proliferation, migration, invasion and apoptosis of human vascular smooth muscle cells via the miR-1299/KDR axis. Metab. Brain Dis. 2022, 37, 253–263. [Google Scholar] [CrossRef]
- Zhou, D.; Huang, Z.; Zhu, X.; Hong, T.; Zhao, Y. Circular RNA 0025984 Ameliorates Ischemic Stroke Injury and Protects Astrocytes Through miR-143-3p/TET1/ORP150 Pathway. Mol. Neurobiol. 2021, 58, 5937–5953. [Google Scholar] [CrossRef] [PubMed]
- Bai, Y.; Zhang, Y.; Han, B.; Yang, L.; Chen, X.; Huang, R.; Wu, F.; Chao, J.; Hu, G.; Liu, P.; et al. Circular RNA DLGAP4 Ameliorates Ischemic Stroke Outcomes by Targeting miR-143 to Regulate Endothelial-Mesenchymal Transition Associated with Blood-Brain Barrier Integrity. J. Neurosci. 2018, 38, 32–50. [Google Scholar] [CrossRef]
- Chen, W.; Wang, H.; Feng, J.; Chen, L. Overexpression of circRNA circUCK2 Attenuates Cell Apoptosis in Cerebral Ischemia-Reperfusion Injury via miR-125b-5p/GDF11 Signaling. Mol. Ther. Nucleic Acids 2020, 22, 673–683. [Google Scholar] [CrossRef]
- Yang, B.; Zang, L.; Cui, J.; Wei, L. Circular RNA TTC3 regulates cerebral ischemia-reperfusion injury and neural stem cells by miR-372-3p/TLR4 axis in cerebral infarction. Stem Cell Res. Ther. 2021, 12, 125. [Google Scholar] [CrossRef]
- Mehta, S.L.; Pandi, G.; Vemuganti, R. Circular RNA Expression Profiles Alter Significantly in Mouse Brain After Transient Focal Ischemia. Stroke 2017, 48, 2541–2548. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.; Yang, Y.; Xu, M.; Mao, F.; Yang, P.; Yuan, S.; Gao, R.; Gan, S. Deep Sequencing of the Rat MCAO Cortexes Reveals Crucial circRNAs Involved in Early Stroke Events and Their Regulatory Networks. Neural. Plast. 2021, 2021, 9942537. [Google Scholar] [CrossRef]
- Duan, X.; Li, L.; Gan, J.; Peng, C.; Wang, X.; Chen, W.; Peng, D. Identification and functional analysis of circular RNAs induced in rats by middle cerebral artery occlusion. Gene 2019, 701, 139–145. [Google Scholar] [CrossRef]
- Chen, G.; Shan, X.; Li, L.; Dong, L.; Huang, G.; Tao, H. circHIPK3 regulates apoptosis and mitochondrial dysfunction induced by ischemic stroke in mice by sponging miR-148b-3p via CDK5R1/SIRT1. Exp. Neurol. 2022, 355, 114115. [Google Scholar] [CrossRef]
- Filippenkov, I.B.; Stavchansky, V.V.; Denisova, A.E.; Valieva, L.V.; Remizova, J.A.; Mozgovoy, I.V.; Zaytceva, E.I.; Gubsky, L.V.; Limborska, S.A.; Dergunova, L.V. Genome-Wide RNA-Sequencing Reveals Massive Circular RNA Expression Changes of the Neurotransmission Genes in the Rat Brain after Ischemia-Reperfusion. Genes 2021, 12, 1870. [Google Scholar] [CrossRef]
- Lu, D.; Ho, E.S.; Mai, H.; Zang, J.; Liu, Y.; Li, Y.; Yang, B.; Ding, Y.; Tsang, C.K.; Xu, A. Identification of Blood Circular RNAs as Potential Biomarkers for Acute Ischemic Stroke. Front. Neurosci. 2020, 14, 81. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kang, L.; Jia, H.; Huang, B.; Lu, S.; Chen, Z.; Shen, J.; Zou, Y.; Wang, C.; Sun, Y. Identification of Differently Expressed mRNAs in Atherosclerosis Reveals CDK6 Is Regulated by circHIPK3/miR-637 Axis and Promotes Cell Growth in Human Vascular Smooth Muscle Cells. Front. Genet. 2021, 12, 596169. [Google Scholar] [CrossRef]
- Wen, Y.; Chun, Y.; Lian, Z.Q.; Yong, Z.W.; Lan, Y.M.; Huan, L.; Xi, C.Y.; Juan, L.S.; Qing, Z.W.; Jia, C.; et al. circRNA-0006896-miR1264-DNMT1 axis plays an important role in carotid plaque destabilization by regulating the behavior of endothelial cells in atherosclerosis. Mol. Med. Rep. 2021, 23, 311. [Google Scholar] [CrossRef] [PubMed]
- He, Y.; Zhang, H.; Deng, J.; Cai, Z.; Gu, M.; Zhao, C.; Guo, Y. The functions of fluoxetine and identification of fluoxetine-mediated circular RNAs and messenger RNAs in cerebral ischemic stroke. Bioengineered 2021, 12, 2364–2376. [Google Scholar] [CrossRef]
- Chen, W.; Guo, S.; Li, X.; Song, N.; Wang, D.; Yu, R. The regulated profile of noncoding RNAs associated with inflammation by tanshinone IIA on atherosclerosis. J. Leukoc. Biol. 2020, 108, 243–252. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, G.; Han, B.; Shen, L.; Wu, S.; Yang, L.; Liao, J.; Wu, F.; Li, M.; Leng, S.; Zang, F.; et al. Silencing of circular RNA HIPK2 in neural stem cells enhances functional recovery following ischaemic stroke. EBioMedicine 2020, 52, 102660. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dai, Y.; Sheng, Y.; Deng, Y.; Wang, H.; Zhao, Z.; Yu, X.; Tao, X. Circ_0000647 promotes cell injury by modulating miR-126-5p/TRAF3 axis in oxygen-glucose deprivation and reperfusion-induced SK-N-SH cell model. Int. Immunopharmacol. 2022, 104, 108464. [Google Scholar] [CrossRef] [PubMed]
- Dai, Q.; Ma, Y.; Xu, Z.; Zhang, L.; Yang, H.; Liu, Q.; Wang, J. Downregulation of circular RNA HECTD1 induces neuroprotection against ischemic stroke through the microRNA-133b/TRAF3 pathway. Life Sci. 2021, 264, 118626. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Y.; Li, J.; Li, J.; Xu, L.; Lian, W. The decreased circular RNA hsa_circ_0072309 promotes cell apoptosis of ischemic stroke by sponging miR-100. Eur. Rev. Med. Pharmacol. Sci. 2020, 24, 4420–4429. [Google Scholar]
- Pei, L.; Xu, X.; Yuan, T. Circ_0101874 overexpression strengthens PDE4D expression by targeting miR-335-5p to promote neuronal injury in ischemic stroke. J. Stroke Cerebrovasc. Dis. 2022, 31, 106817. [Google Scholar] [CrossRef] [PubMed]
- Bai, X.; Liu, X.; Wu, H.; Feng, J.; Chen, H.; Zhou, D. CircFUNDC1 knockdown alleviates oxygen-glucose deprivation-induced human brain microvascular endothelial cell injuries by inhibiting PTEN via miR-375. Neurosci. Lett. 2022, 770, 136381. [Google Scholar] [CrossRef]
- Li, J.; Wang, J.; Wang, Z. Circ_0006768 upregulation attenuates oxygen-glucose deprivation/reoxygenation-induced human brain microvascular endothelial cell injuries by upregulating VEZF1 via miR-222-3p inhibition. Metab. Brain. Dis. 2021, 36, 2521–2534. [Google Scholar] [CrossRef]
- Liu, J.; Zhang, H.; Di, K.; Hou, L.; Yu, S. Circular noncoding RNA circ_0007865, serves as a competing endogenous RNA, targeting the miR-214-3p/FKBP5 axis to regulate oxygen-glucose deprivation-induced injury in brain microvascular endothelial cells. Neuroreport 2022, 33, 163–172. [Google Scholar] [CrossRef]
- Zhang, Z.-H.; Wang, Y.; Li, F.; Liu, X.; Zhang, H.; Zhu, Z.; Huang, H.; Xu, X. Circ-camk4 involved in cerebral ischemia/reperfusion induced neuronal injury. Sci. Rep. 2020, 10, 7012. [Google Scholar] [CrossRef] [Green Version]
- Qiu, L.; He, J.; Chen, H.; Xu, X.; Tao, Y. CircDLGAP4 overexpression relieves oxygen-glucose deprivation-induced neuronal injury by elevating NEGR1 through sponging miR-503-3p. J. Mol. Histol. 2021, 53, 321–332. [Google Scholar] [CrossRef]
- Zhang, Z.; He, J.; Wang, B. Circular RNA circ_HECTD1 regulates cell injury after cerebral infarction by miR-27a-3p/FSTL1 axis. Cell Cycle 2021, 20, 914–926. [Google Scholar] [CrossRef]
- Wang, F.; Liu, J.; Wang, D.; Yao, Y.; Jiao, X. Knockdown of circ_0007290 alleviates oxygen-glucose deprivation-induced neuronal injury by regulating miR-496/PDCD4 axis. Metab. Brain Dis. 2022, 37, 807–818. [Google Scholar] [CrossRef]
- Han, B.; Zhang, Y.; Zhang, Y.; Bai, Y.; Xufeng, C.; Huang, R.; Wu, F.; Leng, S.; Chao, J.; Zhang, J.H.; et al. Novel insight into circular RNA HECTD1 in astrocyte activation via autophagy by targeting MIR142-TIPARP: Implications for cerebral ischemic stroke. Autophagy 2018, 14, 1164–1184. [Google Scholar] [CrossRef] [Green Version]
- Xu, X.; Wu, Z.; Qiu, H.; Wu, J. Circular RNA circPHC3 Promotes Cell Death and Apoptosis in Human BMECs After Oxygen Glucose Deprivation via miR-455-5p/TRAF3 Axis in vitro. Neuropsychiatr. Dis. Treat. 2021, 17, 147–156. [Google Scholar] [CrossRef] [PubMed]
- Jiang, Q.; Su, D.; Wang, Z.; Liu, C.; Sun, Y.; Cheng, H.; Li, X.; Yan, B. Retina as a window to cerebral dysfunction following studies with circRNA signature during neurodegeneration. Theranostics 2021, 11, 1814–1827. [Google Scholar] [CrossRef]
- Chen, W.; Wang, H.; Zhu, Z.; Feng, J.; Chen, L. Exosome-Shuttled circSHOC2 from IPASs Regulates Neuronal Autophagy and Ameliorates Ischemic Brain Injury via the miR-7670-3p/SIRT1 Axis. Mol. Ther. Nucleic Acids 2020, 22, 657–672. [Google Scholar] [CrossRef] [PubMed]
- Yang, H.; Tu, Z.; Yang, D.; Hu, M.; Zhou, L.; Li, Q.; Yu, B.; Hou, S. Exosomes from hypoxic pre-treated ADSCs attenuate acute ischemic stroke-induced brain injury via delivery of circ-Rps5 and promote M2 microglia/macrophage polarization. Neurosci. Lett. 2022, 769, 136389. [Google Scholar] [CrossRef]
- Yang, X.; Li, X.; Zhong, C.; Peng, J.; Pang, J.; Peng, T.; Wan, W.; Li, X. Circular RNA circPHKA2 Relieves OGD-Induced Human Brain Microvascular Endothelial Cell Injuries through Competitively Binding miR-574-5p to Modulate SOD2. Oxid. Med. Cell Longev. 2021, 2021, 3823122. [Google Scholar] [CrossRef]
- Tang, C.; Ou, J.; Kou, L.; Deng, J.; Luo, S. Circ_016719 plays a critical role in neuron cell apoptosis induced by I/R via targeting miR-29c/Map2k6. Mol. Cell Probes. 2020, 49, 101478. [Google Scholar] [CrossRef] [PubMed]
- Yang, L.; Han, B.; Zhang, Z.; Wang, S.; Bai, Y.; Zhang, Y.; Tang, Y.; Du, L.; Xu, L.; Wu, F.; et al. Extracellular Vesicle-Mediated Delivery of Circular RNA SCMH1 Promotes Functional Recovery in Rodent and Nonhuman Primate Ischemic Stroke Models. Circulation 2020, 142, 556–574. [Google Scholar] [CrossRef] [PubMed]
- Wu, R.; Yun, Q.; Zhang, J.; Wang, Z.; Zhang, X.; Bao, J. Knockdown of circular RNA tousled-like kinase 1 relieves ischemic stroke in middle cerebral artery occlusion mice and oxygen-glucose deprivation and reoxygenation-induced N2a cell damage. Bioengineered 2022, 13, 3434–3449. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.; He, J.; Wang, B. Circ_TLK1 knockdown alleviates oxygen-glucose deprivation/reoxygenation-induced PC12 cell injury by regulating microRNA-136-5p/follistatin like-1 axis. Eur. J. Neurosci. 2022, 56, 4304–4316. [Google Scholar] [CrossRef] [PubMed]
- He, G.-H.; Wang, Z.; Xu, W.; Song, K.-P.; Xiao, H. Knockdown of circHECTD1 inhibits oxygen-glucose deprivation and reperfusion induced endothelial-mesenchymal transition. Metab. Brain Dis. 2022, 37, 427–437. [Google Scholar] [CrossRef]
- Ren, X.; Jing, Y.-X.; Zhou, Z.-W.; Yang, J.-W. Knockdown of circRNA-Memo1 Reduces Hypoxia/Reoxygenation Injury in Human Brain Endothelial Cells Through miRNA-17-5p/SOS1 Axis. Mol. Neurobiol. 2022, 59, 2085–2097. [Google Scholar] [CrossRef]
- Cao, S.; Zeng, Y.; Chen, M.; Ouyang, W. Integrated Analysis of Immune-Related circRNA-miRNA-mRNA Regulatory Network in Ischemic Stroke. Front. Neurol. 2022, 13, 889855. [Google Scholar] [CrossRef]
- Lin, S.-P.; Ye, S.; Long, Y.; Fan, Y.; Mao, H.; Chen, M.; Ma, Q. Circular RNA expression alterations are involved in OGD/R-induced neuron injury. Biochem. Biophys. Res. Commun. 2016, 471, 52–56. [Google Scholar] [CrossRef]
- Eyileten, C.; Jakubik, D.; Shahzadi, A.; Gasecka, A.; Van der pol, E.; De Rosa, S.; Siwik, D.; Gajewska, M.; Mirowska-Guzel, D.; Kurkowska-Jastrzebska, I.; et al. Diagnostic Performance of Circulating miRNAs and Extracellular Vesicles in Acute Ischemic Stroke. Int. J. Mol. Sci. 2022, 23, 4530. [Google Scholar] [CrossRef] [PubMed]
- Iaconetti, C.; Sorrentino, S.; De Rosa, S.; Indolfi, C. Exosomal miRNAs in Heart Disease. Physiology 2016, 31, 16–24. [Google Scholar] [CrossRef] [Green Version]
- Indolfi, C.; Iaconetti, C.; Gareri, C.; Polimeni, A.; De Rosa, S. Non-coding RNAs in vascular remodeling and restenosis. Vascul. Pharmacol. 2019, 114, 49–63. [Google Scholar] [CrossRef]
- De Rosa, S.; Eposito, F.; Carella, C.; Strangio, A.; Ammirati, G.; Sabatino, J.; Abbate, F.G.; Iaconetti, C.; Liguori, V.; Pergola, V.; et al. Transcoronary concentration gradients of circulating microRNAs in heart failure. Eur J. Heart Fail. 2018, 20, 1000–1010. [Google Scholar] [CrossRef]
- Carino, A.; De Rosa, S.; Sorrentino, S.; Polimeni, A.; Sabatino, J.; Caiazzo, G.; Torella, D.; Spaccarotella, C.; Mongiardo, A.; Strangio, A.; et al. Modulation of Circulating MicroRNAs Levels during the Switch from Clopidogrel to Ticagrelor. Biomed. Res. Int 2016, 2016, 3968206. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Eyileten, C.; Wicik, Z.; Fitas, A.; Marszalek, M.; Simon, J.E.; De Rosa, S.; Wiecha, S.; Palatini, J.; Postula, M.; Malek, L.A. Altered Circulating MicroRNA Profiles After Endurance Training: A Cohort Study of Ultramarathon Runners. Front. Physiol. 2022, 12, 792931. [Google Scholar] [CrossRef] [PubMed]
- Eyileten, C.; Fitas, A.; Jakubik, D.; Czajka, P.; Mroz, A.; Czajkowska, A.; Witek, K.; Bakalarski, W.; De Rosa, S.; Postula, M.; et al. Alterations in Circulating MicroRNAs and the Relation of MicroRNAs to Maximal Oxygen Consumption and Intima–Media Thickness in Ultra-Marathon Runners. Int. J. Environ. Res. Public Health 2021, 18, 7234. [Google Scholar] [CrossRef]
- Pordzik, J.; Eyileten-Postula, C.; Jakubik, D.; Czajka, P.; Nowak, A.; De Rosa, S.; Gąsecka, A.; Cieślicka-Kapłon, A.; Sulikowki, P.; Filipiak, K.J.; et al. MiR-126 Is an Independent Predictor of Long-Term All-Cause Mortality in Patients with Type 2 Diabetes Mellitus. J. Clin. Med. 2021, 10, 2371. [Google Scholar] [CrossRef]
- Pordzik, J.; Pisarz, K.; De Rosa, S.; Jones, A.D.; Eyileten, C.; Indolfi, C.; Malek, L.; Postula, M. The Potential Role of Platelet-Related microRNAs in the Development of Cardiovascular Events in High-Risk Populations, Including Diabetic Patients: A Review. Front. Endocrinol. 2018, 9, 74. [Google Scholar] [CrossRef] [Green Version]
- Chavda, V.; Madhwani, K.; Chaurasia, B. PiWi RNA in Neurodevelopment and Neurodegenerative Disorders. Curr. Mol. Pharmacol. 2022, 15, 517–531. [Google Scholar] [CrossRef] [PubMed]
- Chavda, V.; Madhwani, K. Coding and non-coding nucleotides’: The future of stroke gene therapeutics. Genomics 2021, 113, 1291–1307. [Google Scholar] [CrossRef] [PubMed]
Authors | Topics | Experiment Models | Type of Study | Aim | Pathways |
---|---|---|---|---|---|
Li et al. [11] | Focal cortical infarction | Adult male C57BL/6J mice subjected to permanent distal middle cerebral artery occlusion (MCAO) | In vivo | Expression and roles of circRNAs in non-ischemic remote regions after ischemic stroke | Profile the circRNA expression in the mouse ipsilateral thalamus at 7 and 14 d after MCAO |
Liu et al. [12] | Acute ischemic stroke (AIS) | Middle cerebral artery occlusion mice; the plasma of 45 patients with AIS | In vivo | Investigate whether the circOGDH is a potential biomarker for penumbra in patients with AIS and its role in ischemic neuronal damage | Sequestering of microRNA-5112 by circOGDH enhanced COL4A4 expression to elevate neuron damage |
Zuo et al. [13] | Ischemic stroke (IS) | tMCAO mice | In vivo | Seek out the regulatory mechanism of circCDC14A in neuroinflammatory injury in tMCAO mice | The expression level of circCDC14A in the peri-infarct cortex and plasma of mice |
Huo et al. [14] | Ischemic stroke (IS) | Middle cerebral artery occlusion (MCAO) model and oxygen and glucose deprivation/reoxygenation (OGD/R)-treated HT22 cells | In vivo/in vitro | Role of circCDC14A in cerebral ischemia-reperfusion (CI/R) injury in vivo e in vitro | CircCDC14A acted as a sponge for miR-23a-3p and promoted the expression of chemokine stromal-derived factor-1 (CXCL12) by negatively regulating miR23a-3p |
Huang et al. [15] | Ischemic stroke (IS) | Middle cerebral artery occlusion (MCAO) model | In vivo | Role of circ_0000831 in the pathogenesis of stroke | circ_0000831 bound to miR-16-5p and downregulated miR-16-5p, and AdipoR2 was targeted by miR-16-5p and increased PPARγ expression in microglia. |
Wu et al. [16] | Ischemic stroke (IS) | tMCAO mice model | In vivo | Role of circCCDC9 in the pathogenesis of stroke | Overexpression of circCCDC9 inhibited the expression of Caspase-3, Bax/Bcl-2 ratio, and the expression of Notch1, NICD, and Hes1 in tMCAO mice. |
Zhang et al. [17] | Intracranial aneurysm (IA) | Human umbilical artery smooth muscle cells (HUASMCs) | In vitro | Role and mechanism of circRNA LIF receptor subunit alpha (circLIFR, circ_0072309) | CircLIFR directly targeted miR-1299, and miR-1299 as a downstream mediator of circLIFR in regulating the proliferation, migration, invasion, and apoptosis of HUASMCs |
Zhou et al. [18] | Ischemic stroke (IS) | MCAO mice model | In vivo | Treatment with miR-143-3p inhibitor or circ_0025984 significantly decreased astrocyte apoptosis and autophagy, as well as cerebral injury and neuron loss | Circ_0025984 and TET1 as a sponge and target of miR-143-3p |
Bai et al. [19] | Ischemic stroke (IS) | The plasma of acute ischemic stroke patients (13 females and 13 males); mouse stroke model | In vivo | Role of circRNAs in stroke | CircRNA DLGAP4 functions as an endogenous microRNA-143 sponge to inhibit miR-143 activity, resulting in the inhibition of homologous to the E6-AP C-terminal domain E3 ubiquitin-protein ligase 1 expression |
Chen et al. [20] | Ischemic stroke (IS) | HT22 cells; MCAO model mice | In vivo/in vitro | Role of circRNA UCK2 in ischemic stroke-associated neuronal injury | CircUCK2/miR-125b-5p/GDF11 axis is an essential signaling pathway during ischemia stroke |
Yang et al. [21] | Cerebral infarction | Middle cerebral artery occlusion/repression (MCAO/R) model in C57BL/6J mice; neural stem cell (NSCs) | In vivo/in vitro | Explore the impact of circTTC3 on CIR injury and NSCs | CircTTC3 regulates CIR injury and NSCs by the miR-372-3p/TLR4 axis in cerebral infarction |
Mehta et al. [22] | Ischemic stroke (IS) | Male C57BL/6J mice subjected to transient middle cerebral artery occlusion | In vivo | Stroke changes the circRNAs expression profile in the mouse brain | Levels of 14 236 circRNAs in the cerebral cortex of adult mice as a function of reperfusion time after transient focal ischemia |
Wang et al. [23] | Ischemic stroke (IS) | Middle cerebral artery occlusion (MCAO) in rats | In vivo | circRNAs participate in the complex regulatory networks involved in stroke pathogenesis | 15 key potential circRNAs were predicted to be involved in the post-transcriptional regulation of a series of downstream target genes, which are widely implicated in post-stroke processes, such as oxidative stress, apoptosis, inflammatory response, and nerve regeneration, through the competing endogenous RNA mechanism |
Duan et al. [24] | Ischemic stroke (IS) | MCAO in rats | In vivo | Explore the relationship between circRNAs and ischemic stroke induced by middle cerebral artery occlusion (MCAO) in rats | Expression profile of circRNA in brain tissues |
Chen et al. [25] | Ischemic stroke (IS) | tMCAO | In vivo | the involvement of the circHIPK3/miR-148b-3p/CDK5R1/SIRT1 axis in the development of IS in a model of tMCAO | circHIPK3 functions as an endogenous sponge of miR-148b-3p to decrease its activity and subsequent apoptosis and mitochondrial dysfunction |
Filippenkov et al. [26] | Ischemic stroke (IS) | tMCAO | In vivo | Regulation of neurotransmission in the rat brain after ischemia by the action of circRNAs | CircRNAs can persist as potential miRNA sponges for the protection of mRNAs of neurotransmitter gene |
Dan Lu et al. [27] | Acute Ischemic stroke (AIS) | Blood samples from mice and patients; mice’s tissue | In vivo | Examine whether the blood-borne circRNA could be promising candidates as adjunctive diagnostic biomarkers and their pathophysiological roles after stroke | An increasing number of circRNA were significantly altered after different time points after IS. The circRNA-targeted gene was associated with the Hippo signaling pathway, extracellular matrix receptor interaction, and fatty acid metabolism. CircBBS2 and circPHKA2 were differentially expressed in the blood of AIS patients |
Kang et al. [28] | Atherosclerosis | HUASMC cells | In vitro | Identify differently expressed mRNAs in atherosclerosis by analyzing the GSE6088 database | CircHIPK3 regulates the proliferation and apoptosis of VSMCs by influencing the miR-637/CDK6 axis |
Wen et al. [29] | Atherosclerosis | Human umbilical vein endothelial cell (HUVEC); patients with SA or UA | In vitro | Evaluate the effect of circular RNA molecules in serum exosomes from patients with stable plaque atherosclerosis (SA) and unstable plaque atherosclerosis (UA) | circRNA_0006896, miR-1264-DNMT1 axis |
He et al. [30] | Cerebral ischemic stroke | Middle cerebral artery occlusion (MCAO) rat models | In vivo | Investigate the functions of fluoxetine and identification of fluoxetine-mediated circRNAs and mRNAs in cerebral ischemic stroke | CircMap2k1/miR-135b-5p/Pidd1 axis involved in cerebral ischemic stroke |
Chen et al. [31] | Atherosclerosis (AS) | ApoE-/-mice; RAW264.7 cells | In vivo/in vitro | Characterize ncRNA profile and signal pathways to attenuate AS | 22 long non-coding RNAs, 74 microRNAs, 13 circular RNAs, and 1359 mRNA in AS plaque were more significantly regulated from TAN mice |
Wang et al. [32] | Ischemic stroke (IS) | Middle cerebral artery occlusion (tMCAO) mice; NCSs were transducted with circHIPK2 siRNA | In vivo/in vitro | Role of circHIPK2 in neural stem cell (NSC) differentiation and the treatment of IS | Si-circHIPK2 regulates NSC differentiation, and microinjection of si-circHIPK2-NSCs exhibits a promising therapeutic strategy for neuroprotection and functional recovery after stroke |
Dai et al. [33] | Ischemic stroke (IS) | Human neuroblastoma cell line (SK-N-SH) | In vitro | The function of circ_0000647 in the pathogenesis of IS | Level of circ0000647, microRNA-126-5p, and TNF receptor-associated factor 3 (TRAF3) |
Dai et al. [34] | Ischemic stroke (IS) | Mouse middle cerebral artery occlusion (MCAO) model and oxygen-glucose deprivation (OGD) model in HT22 cells | In vivo/in vitro | Explored the functional role of circRNA-HECTD1 and its underlying mechanism in cerebral ischemia/reperfusion injury | Circ-HECTD1 knockdown inhibited the expression of TRAF3 by targeting miR-133b, thereby attenuating neuronal injury caused by cerebral ischemia |
Zhao et al. [35] | Ischemic stroke (IS) | Serum of patients with IS; LIFR humanized mice with middle cerebral artery occlusion (MCAO) | In vivo | Investigate the expression of circ_0072309 in patients with ischemic stroke and LIFR humanized mice with MCAO | Circ_0072309- miR-100- mTOR regulatory axis could alleviate IS |
Pei et al. [36] | Ischemic stroke (IS) | SK-N-SH cells with oxygen-glucose deprivation (OGD) treatment | In vitro | Role of circ_0101874 in the pathogenesis of IS | Circ_0101874 knockdown alleviated OGD-induced neuronal cell injury by suppressing PDE4D via regulating miR-335-5p |
Bai et al. [37] | Ischemic stroke (IS) | Human brain microvascular endothelial cells (HBMECs) | In vitro | Investigate the role of circRNA FUN14 domain containing 1 (circFUNDC1) in oxygen-glucose deprivation (OGD)-treated HBMECs | Expression of circFUNDC1, microRNA-375, and phosphatase and tensin homolog (PTEN) |
Li et al. [38] | Ischemic stroke (IS) | Human brain microvascular endothelial cells (HBMECs) | In vitro | Explore the function and functional mechanism of circ_0006768 in oxygen-glucose deprivation/reoxygenation (OGD/R)-induced brain injury models of ischemic stroke | Expression of circ0006768, microRNA-222-3p, and vascular endothelial zinc finger 1 (VEZF1) |
Liu et al. [39] | Acute ischemic stroke (AIS) | Human brain microvascular endothelial cells (HBMECs) | In vitro | Explore the role and mechanism of circ_0007865 in the oxygen-glucose deprivation (OGD)-induced cell damage in AIS | Circ_0007865 acted as a sponge of miR-214-3p to regulate FKBP5 |
Zhang et al. [40] | Ischemic stroke (IS) | MCAO rats; neuron cells exposed to oxygen-glucose deprivation/reperfusion (OGD/R) | In vivo/in vitro | Examine the role of circRNAs in cerebral I/R injury | Pathways that involve circcamk4 included the glutamatergic synapse pathway, MAPK signaling pathway, and apoptosis signaling pathways, all of which are known to be involved in brain injury after I/R |
Qui et al. [41] | Ischemic stroke (IS) | Human cortical neuronal cells-2 (HCN-2) | In vitro | Explore the functions and mechanisms of circRNA DLG-associated protein 4 (circDLGAP4) in IS development | Expression of circDLGAP4, microRNA-503-3p, and NEGR1 in OGD-induced IS cell model |
Zhang et al. [42] | Cerebral infarction | Mouse hippocampal cells (HT22) | In vitro | Explore the role and mechanism of circ_HECTD1 in OGD/R-induced cell injury in cerebral ischemia | Circ_HECTD1/miR-27a-3p/FSTL1 axis |
Wang et al. [43] | Ischemic stroke (IS) | HCN-2 cells | In vitro | Investigate the role and mechanism of circ_0007290 in ischemic stroke | Knockdown of circ_0007290 alleviated OGD-induced neuronal injury by regulating the miR-496/PDCD4 axis, providing a novel insight into the pathology of IS |
Han et al. [44] | Ischemic stroke (IS) | tMCAO mice; plasma samples from AIS patients | In vivo | Role of circHECTD1 in stroke | CircHECTD1 functions as an endogenous miR-142 sponge to inhibit miR-142 activity, resulting in the inhibition of TIPARP |
Xu et al. [45] | Ischemic stroke (IS) | Brain microvascular endothelial cells (BMECs) | In vitro | Investigate profile circRNAs in human BMECs after oxygen-glucose deprivation (OGD), and find promising biomarkers in ischemic stroke | CircPHC3 acted as a miR-455-5p sponge to activate TRAF3 to promote cell death and apoptosis in human BMECs after OGD |
Jiang et al. [46] | Ischemic stroke (IS) | C57BL/6J mice were subjected to transient middle cerebral artery occlusion | In vivo | circRNAs as regulators and diagnostic markers for cerebral neurodegeneration and retinal neurodegeneration | cGLIS3 regulated neuronal cell injury by acting as a miR-203 sponge and its level was controlled by EIF4A3 |
Chen et al. [47] | Ischemic stroke (IS) | Middle cerebral artery occlusion (MCAO) mouse model; model based on oxygen-glucose deprivation (OGD) and isolated resultant exosomes from astrocytes | In vivo/in vitro | Investigate the neuroprotective roles and mechanisms of circSHOC2 in ischemic-preconditioned astrocyte-derived exosomes (IPAS-EXOs) against ischemic stroke | CircSHOC2 in IPAS-EXOs suppressed neuronal apoptosis and ameliorated neuronal damage by regulating autophagy and acting on the miR-7670-3p/SIRT1 axis |
Yang et al. [48] | Ischemic stroke (IS) | Adipose-derived stem cells (ADSCs) | In vitro | CircRNA expression between exosomes and hypoxic pre-treated ADSC exosomes | Exosomes from hypoxic pre-treated ADSCs attenuated acute ischemic stroke-induced brain injury via delivery of circ-Rps5 and promoted M2 microglia/macrophage polarization |
Yang et al. [49] | Acute ischemic stroke (AIS) | Human brain microvascular endothelial cells (HBMEC) | In vitro | Investigate the role and mechanism of circPHKA2 in oxygen-glucose-deprivation (OGD)-induced stoke model in human brain microvascular endothelial cells (HBMEC) | CircPHKA2 could protect HBMEC against OGD-induced cerebral stroke model via the miR-574-5p/SOD2 axis |
Tang et al. [50] | Ischemic stroke (IS) | I/R injury models; HT22 cells | In vitro | The role played by Map2k6 in stroke injury and the mechanism of action | Expression of circ016719, microRNA-29c, and Map2k6, and roles in cell proliferation and apoptosis |
Yang et al. [51] | Ischemic stroke (IS) | The plasma of patients with acute ischemic stroke; rodent and nonhuman primate IS model | In vivo | Role of circRNA in ischemic brain injury | CircSCMH1 mechanistically binds to the transcription factor MeCP2 (methyl-CpG binding protein 2), thereby releasing repression of MeCP2 target gene transcription |
Wu et al. [52] | Ischemic stroke (IS) | Middle cerebral artery occlusion (MCAO) mouse models in vivo and oxygen-glucose deprivation and reoxygenation (OGD/R) cell models in vitro | In vivo/in vitro | Explore the mechanism of circTLK1 in IS | CircTLK1 knockdown relieved IS via the miR-26a-5p/PTEN/IGF-1 R/GLUT1 axis |
Zhang et al. [53] | Ischemic stroke (IS) | Rat adrenal pheochromocytoma cell line (PC-12) | In vitro | Role of Circ_TLK1 in the pathogenesis of IS | Circ_TLK1 acts as miR-136-5p sponge promoting upregulation of FSTL resulting in activation of apoptosis in PC12 cells |
He et al. [54] | Ischemic stroke (IS) | Human cerebral microvascular endothelial cells (HCMEC); MCAO mice | In vivo/in vitro | Role of circHECTD1 in IS | CircHECTD1 knockdown significantly alleviated the EndoMT process in HCMECs via the mediation of the miR-335/Notch2 axis |
Ren et al. [55] | Ischemic stroke (IS) | Human brain microvascular endothelial cells (HBMVECs) | In vitro | Role of circ-Memo1 in cerebral hypoxia/reoxygenation | Relationships between circ-Memo1, miR-17-5p, and SOS1 |
CircRNA | Target | Impact of circRNA | Therapeutic Effects |
---|---|---|---|
circUCK2 | miR-125-5b/GDF11 | Inhibit neuronal damage | Reduce infarct volumes |
circHECTD1 | miR-133b/TRAF332 | Inhibit apoptosis | Reduce infarct volumes and improve neurological deficits |
circFUNDC1 | miR-375/PTEN | Reduce neurological deficits | Promote the ability of migration and recovery of angiogenesis |
circDLGAP4 | miR-503-3p/NEGR1 | Inhibit apoptosis and neuroinflammation | Promote cell viability |
circHECTD1 | miR-27a-3p/FSTL1 | Inhibit oxidative stress | Mitigate neuronal damage by regulating autophagy |
circSHOC2 | miR-7670-3p/SIRT1 | Inhibit apoptosis | Promote neuroprotective effects by regulating autophagy |
circGLIS3 | miR-203/EIF4A3 | Inhibit neuroinflammation | Alleviate retinal neurodegeneration |
circPHKA2 | miR-574-5p/SOD2 | Inhibit apoptosis and oxidative stress | Improve cell proliferation and neovascularization |
circ-Memo1 | miR-17-5p/SOS1 | Inhibit oxidative stress | Reduce the inflammatory response |
circTLK1 | miR-26a-5p/PTEN | Inhibit apoptosis | Reduce infarction volume and neurological damage |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Siracusa, C.; Sabatino, J.; Leo, I.; Eyileten, C.; Postuła, M.; De Rosa, S. Circular RNAs in Ischemic Stroke: Biological Role and Experimental Models. Biomolecules 2023, 13, 214. https://doi.org/10.3390/biom13020214
Siracusa C, Sabatino J, Leo I, Eyileten C, Postuła M, De Rosa S. Circular RNAs in Ischemic Stroke: Biological Role and Experimental Models. Biomolecules. 2023; 13(2):214. https://doi.org/10.3390/biom13020214
Chicago/Turabian StyleSiracusa, Chiara, Jolanda Sabatino, Isabella Leo, Ceren Eyileten, Marek Postuła, and Salvatore De Rosa. 2023. "Circular RNAs in Ischemic Stroke: Biological Role and Experimental Models" Biomolecules 13, no. 2: 214. https://doi.org/10.3390/biom13020214
APA StyleSiracusa, C., Sabatino, J., Leo, I., Eyileten, C., Postuła, M., & De Rosa, S. (2023). Circular RNAs in Ischemic Stroke: Biological Role and Experimental Models. Biomolecules, 13(2), 214. https://doi.org/10.3390/biom13020214