Towards a Better Understanding of Endometriosis-Related Infertility: A Review on How Endometriosis Affects Endometrial Receptivity
Abstract
:1. Introduction
2. Methods
3. Endometrial Molecular Differences in Endometriosis for Implantation
4. Dysregulation of Progesterone and Estrogen Signaling
4.1. Progesterone Resistance
4.2. Estrogen Dominance
5. Inflammation
6. Endometrial Immunoregulatory Dysfunction
6.1. Macrophages
6.2. NK Cells
6.3. T Cells
6.4. Dendritic Cells
7. Epigenetic Dysregulation
7.1. DNA Methylation
7.2. Histone Acetylation
8. Glycosylation
9. Metabolites and Metabolic Enzymes
9.1. Phospholipids
9.2. LPA-LPA Receptor (LPA3) Signaling
9.3. Glucose
10. MicroRNAs Dysregulation
11. Intervention Strategies to Improve Endometrial Receptivity
11.1. Surgery
11.2. Metformin
11.3. Aromatase Inhibitors
11.4. Immunomodulation Therapy
11.5. Others
12. Conclusions and Future Perspectives
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Barnhart, K.; Dunsmoor-Su, R.; Coutifaris, C. Effect of endometriosis on in vitro fertilization. Fertil. Steril. 2002, 77, 1148–1155. [Google Scholar] [CrossRef] [PubMed]
- Cakmak, H.; Taylor, H.S. Implantation failure: Molecular mechanisms and clinical treatment. Hum. Reprod. Update 2011, 17, 242–253. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Da Broi, M.G.; Meola, J.; Placa, J.R.; Peronni, K.C.; Rocha, C.V.; Silva, W.A.; Ferriani, R.A.; Navarro, P.A. Is the profile of transcripts altered in the eutopic endometrium of infertile women with endometriosis during the implantation window? Hum. Reprod. 2019, 34, 2381–2390. [Google Scholar] [CrossRef] [PubMed]
- Burney, R.O.; Talbi, S.; Hamilton, A.E.; Vo, K.C.; Nyegaard, M.; Nezhat, C.R.; Lessey, B.A.; Giudice, L.C. Gene expression analysis of endometrium reveals progesterone resistance and candidate susceptibility genes in women with endometriosis. Endocrinology 2007, 148, 3814–3826. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ahn, S.H.; Khalaj, K.; Young, S.L.; Lessey, B.A.; Koti, M.; Tayade, C. Immune-inflammation gene signatures in endometriosis patients. Fertil. Steril. 2016, 106, 1420–1431.e7. [Google Scholar] [CrossRef] [Green Version]
- Matsuzaki, S.; Canis, M.; Darcha, C.; Pouly, J.L.; Mage, G. HOXA-10 expression in the mid-secretory endometrium of infertile patients with either endometriosis, uterine fibromas or unexplained infertility. Hum. Reprod. 2009, 24, 3180–3187. [Google Scholar] [CrossRef]
- Ozcan, C.; Ozdamar, O.; Gokbayrak, M.E.; Doger, E.; Cakiroglu, Y.; Cine, N. HOXA-10 gene expression in ectopic and eutopic endometrium tissues: Does it differ between fertile and infertile women with endometriosis? Eur. J. Obstet. Gynecol. Reprod. Biol. 2019, 233, 43–48. [Google Scholar] [CrossRef]
- Yu, J.; Boicea, A.; Barrett, K.L.; James, C.O.; Bagchi, I.C.; Bagchi, M.K.; Nezhat, C.; Sidell, N.; Taylor, R.N. Reduced connexin 43 in eutopic endometrium and cultured endometrial stromal cells from subjects with endometriosis. Mol. Hum. Reprod. 2014, 20, 260–270. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Palomino, W.A.; Tayade, C.; Argandona, F.; Devoto, L.; Young, S.L.; Lessey, B.A. The endometria of women with endometriosis exhibit dysfunctional expression of complement regulatory proteins during the mid secretory phase. J. Reprod. Immunol. 2018, 125, 1–7. [Google Scholar] [CrossRef]
- Rai, P.; Kota, V.; Deendayal, M.; Shivaji, S. Differential proteome profiling of eutopic endometrium from women with endometriosis to understand etiology of endometriosis. J. Proteome Res. 2010, 9, 4407–4419. [Google Scholar] [CrossRef]
- Kao, L.; Germeyer, A.; Tulac, S.; Lobo, S.; Yang, J.; Taylor, R.; Osteen, K.; Lessey, B.; Giudice, L. Expression profiling of endometrium from women with endometriosis reveals candidate genes for disease-based implantation failure and infertility. Endocrinology 2003, 144, 2870–2881. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, Y.; Li, Y.; Yang, Z.; Liu, K.; Wang, D. Genome-Wide Microarray Analysis of Long Non-Coding RNAs in Eutopic Secretory Endometrium with Endometriosis. Cell. Physiol. Biochem. 2015, 37, 2231–2245. [Google Scholar] [CrossRef] [PubMed]
- Burney, R.O.; Hamilton, A.E.; Aghajanova, L.; Vo, K.C.; Nezhat, C.N.; Lessey, B.A.; Giudice, L.C. MicroRNA expression profiling of eutopic secretory endometrium in women with versus without endometriosis. Mol. Hum. Reprod. 2009, 15, 625–631. [Google Scholar] [CrossRef] [PubMed]
- Marquardt, R.M.; Kim, T.H.; Shin, J.H.; Jeong, J.W. Progesterone and Estrogen Signaling in the Endometrium: What Goes Wrong in Endometriosis? Int. J. Mol. Sci. 2019, 20, 3822. [Google Scholar] [CrossRef] [Green Version]
- Fernandez-Valdivia, R.; Jeong, J.; Mukherjee, A.; Soyal, S.; Li, J.; Ying, Y.; Demayo, F.; Lydon, J. A mouse model to dissect progesterone signaling in the female reproductive tract and mammary gland. Genesis 2010, 48, 106–113. [Google Scholar] [CrossRef] [Green Version]
- McKinnon, B.; Mueller, M.; Montgomery, G. Progesterone Resistance in Endometriosis: An Acquired Property? Trends Endocrinol. Metab. 2018, 29, 535–548. [Google Scholar] [CrossRef]
- Kim, H.; Kim, T.; Yoo, J.; Young, S.; Lessey, B.; Ku, B.; Jeong, J. ARID1A and PGR proteins interact in the endometrium and reveal a positive correlation in endometriosis. Biochem. Biophys. Res. Commun. 2021, 550, 151–157. [Google Scholar] [CrossRef]
- Zhou, Y.; Peng, Y.; Xia, Q.; Yan, D.; Zhang, H.; Zhang, L.; Chen, Y.; Zhao, X.; Li, J. Decreased Indian hedgehog signaling activates autophagy in endometriosis and adenomyosis. Reproduction 2021, 161, 99–109. [Google Scholar] [CrossRef]
- Yoo, J.; Kim, T.; Fazleabas, A.; Palomino, W.; Ahn, S.; Tayade, C.; Schammel, D.; Young, S.; Jeong, J.; Lessey, B. KRAS Activation and over-expression of SIRT1/BCL6 Contributes to the Pathogenesis of Endometriosis and Progesterone Resistance. Sci. Rep. 2017, 7, 6765. [Google Scholar] [CrossRef]
- Li, Q.; Kannan, A.; DeMayo, F.; Lydon, J.; Cooke, P.; Yamagishi, H.; Srivastava, D.; Bagchi, M.; Bagchi, I. The antiproliferative action of progesterone in uterine epithelium is mediated by Hand2. Science 2011, 331, 912–916. [Google Scholar] [CrossRef] [Green Version]
- Yoo, J.; Kim, T.; Shin, J.; Marquardt, R.; Müller, U.; Fazleabas, A.; Young, S.; Lessey, B.; Yoon, H.; Jeong, J. Loss of MIG-6 results in endometrial progesterone resistance via ERBB2. Nat. Commun. 2022, 13, 1101. [Google Scholar] [CrossRef]
- Zhang, L.; Patterson, A.; Zhang, L.; Teixeira, J.; Pru, J. Endometrial stromal beta-catenin is required for steroid-dependent mesenchymal-epithelial cross talk and decidualization. Reprod. Biol. Endocrinol. 2012, 10, 75. [Google Scholar] [CrossRef] [Green Version]
- Liang, Y.; Li, Y.; Liu, K.; Chen, P.; Wang, D. Expression and Significance of WNT4 in Ectopic and Eutopic Endometrium of Human Endometriosis. Reprod. Sci. 2016, 23, 379–385. [Google Scholar] [CrossRef]
- Vasquez, Y.; Mazur, E.; Li, X.; Kommagani, R.; Jiang, L.; Chen, R.; Lanz, R.; Kovanci, E.; Gibbons, W.; DeMayo, F. FOXO1 is required for binding of PR on IRF4, novel transcriptional regulator of endometrial stromal decidualization. Mol. Endocrinol. 2015, 29, 421–433. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yin, X.; Pavone, M.; Lu, Z.; Wei, J.; Kim, J. Increased activation of the PI3K/AKT pathway compromises decidualization of stromal cells from endometriosis. J. Clin. Endocrinol. Metab. 2012, 97, E35–E43. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ma, W.; Song, H.; Das, S.; Paria, B.; Dey, S. Estrogen is a critical determinant that specifies the duration of the window of uterine receptivity for implantation. Proc. Natl. Acad. Sci. USA 2003, 100, 2963–2968. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Anupa, G.; Sharma, J.; Roy, K.; Sengupta, J.; Ghosh, D. An assessment of the multifactorial profile of steroid-metabolizing enzymes and steroid receptors in the eutopic endometrium during moderate to severe ovarian endometriosis. Reprod. Biol. Endocrinol. 2019, 17, 111. [Google Scholar] [CrossRef] [Green Version]
- Hamilton, K.; Hewitt, S.; Arao, Y.; Korach, K. Estrogen Hormone Biology. Curr. Top. Dev. Biol. 2017, 125, 109–146. [Google Scholar] [PubMed]
- Lessey, B.; Palomino, W.; Apparao, K.; Young, S.; Lininger, R. Estrogen receptor-alpha (ER-alpha) and defects in uterine receptivity in women. Reprod. Biol. Endocrinol. 2006, 4, S9. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Paskulin, D.; Cunha-Filho, J.; Paskulin, L.; Souza, C.; Ashton-Prolla, P. ESR1 rs9340799 is associated with endometriosis-related infertility and in vitro fertilization failure. Dis. Markers 2013, 35, 907–913. [Google Scholar] [CrossRef] [Green Version]
- Osiński, M.; Wirstlein, P.; Wender-Ożegowska, E.; Mikołajczyk, M.; Jagodziński, P.; Szczepańska, M. HSD3B2, HSD17B1, HSD17B2, ESR1, ESR2 and AR expression in infertile women with endometriosis. Ginekol. Pol. 2018, 89, 125–134. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kalu, E.; Sumar, N.; Giannopoulos, T.; Patel, P.; Croucher, C.; Sherriff, E.; Bansal, A. Cytokine profiles in serum and peritoneal fluid from infertile women with and without endometriosis. J. Obstet. Gynaecol. Res. 2007, 33, 490–495. [Google Scholar] [CrossRef] [PubMed]
- Skrzypczak, J.; Szczepańska, M.; Puk, E.; Kamieniczna, M.; Kurpisz, M. Peritoneal fluid cytokines and sICAM-1 in minimal endometriosis: Search for discriminating factors between infertility and/or endometriosis. Eur. J. Obstet. Gynecol. Reprod. Biol. 2005, 122, 95–103. [Google Scholar] [CrossRef] [PubMed]
- Banerjee, P.; Jana, S.; Pasricha, P.; Ghosh, S.; Chakravarty, B.; Chaudhury, K. Proinflammatory cytokines induced altered expression of cyclooxygenase-2 gene results in unreceptive endometrium in women with idiopathic recurrent spontaneous miscarriage. Fertil. Steril. 2013, 99, 179–187.e2. [Google Scholar] [CrossRef]
- Raghupathy, R. Th1-type immunity is incompatible with successful pregnancy. Immunol. Today 1997, 18, 478–482. [Google Scholar] [CrossRef] [PubMed]
- Matteo, M.; Cicinelli, E.; Neri, M.; Carrubba, R.; Carpagnano, F.; Romeo, F.; Scutiero, G.; Greco, P.; Garlanda, C.; Vendemiale, G.; et al. Pro-inflammatory M1/Th1 type immune network and increased expression of TSG-6 in the eutopic endometrium from women with endometriosis. Eur. J. Obstet. Gynecol. Reprod. Biol. 2017, 218, 99–105. [Google Scholar] [CrossRef]
- Wang, X.; Ma, Z.; Song, N. Inflammatory cytokines IL-6, IL-10, IL-13, TNF-α and peritoneal fluid flora were associated with infertility in patients with endometriosis. Eur. Rev. Med. Pharmacol. Sci. 2018, 22, 2513–2518. [Google Scholar]
- Illera, M.; Juan, L.; Stewart, C.; Cullinan, E.; Ruman, J.; Lessey, B. Effect of peritoneal fluid from women with endometriosis on implantation in the mouse model. Fertil. Steril. 2000, 74, 41–48. [Google Scholar] [CrossRef]
- Llarena, N.; Richards, E.; Priyadarshini, A.; Fletcher, D.; Bonfield, T.; Flyckt, R. Characterizing the endometrial fluid cytokine profile in women with endometriosis. J. Assist. Reprod. Genet. 2020, 37, 2999–3006. [Google Scholar] [CrossRef]
- Nicola, N.; Babon, J. Leukemia inhibitory factor (LIF). Cytokine Growth Factor Rev. 2015, 26, 533–544. [Google Scholar] [CrossRef] [Green Version]
- Aghajanova, L. Leukemia inhibitory factor and human embryo implantation. Ann. N. Y. Acad. Sci. 2004, 1034, 176–183. [Google Scholar] [CrossRef] [PubMed]
- Dimitriadis, E.; Stoikos, C.; Stafford-Bell, M.; Clark, I.; Paiva, P.; Kovacs, G.; Salamonsen, L. Interleukin-11, IL-11 receptoralpha and leukemia inhibitory factor are dysregulated in endometrium of infertile women with endometriosis during the implantation window. J. Reprod. Immunol. 2006, 69, 53–64. [Google Scholar] [CrossRef] [PubMed]
- Lambert, S.; Santulli, P.; Chouzenoux, S.; Marcellin, L.; Borghese, B.; de Ziegler, D.; Batteux, F.; Chapron, C. Endometriosis: Increasing concentrations of serum interleukin-1β and interleukin-1sRII is associated with the deep form of this pathology. J. Gynecol. Obstet. Biol. Reprod. 2014, 43, 735–743. [Google Scholar] [CrossRef]
- Sikora, J.; Mielczarek-Palacz, A.; Kondera-Anasz, Z. Imbalance in cytokines from interleukin-1 family—Role in pathogenesis of endometriosis. Am. J. Reprod. Immunol. 2012, 68, 138–145. [Google Scholar] [CrossRef] [PubMed]
- Boomsma, C.; Kavelaars, A.; Eijkemans, M.; Lentjes, E.; Fauser, B.; Heijnen, C.; Macklon, N. Endometrial secretion analysis identifies a cytokine profile predictive of pregnancy in IVF. Hum. Reprod. 2009, 24, 1427–1435. [Google Scholar] [CrossRef] [Green Version]
- Yu, J.; Berga, S.; Zou, W.; Yook, D.; Pan, J.; Andrade, A.; Zhao, L.; Sidell, N.; Bagchi, I.; Bagchi, M.; et al. IL-1β Inhibits Connexin 43 and Disrupts Decidualization of Human Endometrial Stromal Cells Through ERK1/2 and p38 MAP Kinase. Endocrinology 2017, 158, 4270–4285. [Google Scholar] [CrossRef] [Green Version]
- Strakova, Z.; Srisuparp, S.; Fazleabas, A. Interleukin-1beta induces the expression of insulin-like growth factor binding protein-1 during decidualization in the primate. Endocrinology 2000, 141, 4664–4670. [Google Scholar] [CrossRef]
- Berkkanoglu, M.; Arici, A. Immunology and endometriosis. Am. J. Reprod. Immunol. 2003, 50, 48–59. [Google Scholar] [CrossRef] [Green Version]
- Martínez, S.; Garrido, N.; Coperias, J.; Pardo, F.; Desco, J.; García-Velasco, J.; Simón, C.; Pellicer, A. Serum interleukin-6 levels are elevated in women with minimal-mild endometriosis. Hum. Reprod. 2007, 22, 836–842. [Google Scholar] [CrossRef] [Green Version]
- Velasco, I.; Acién, P.; Campos, A.; Acién, M.I.; Ruiz-Maciá, E. Interleukin-6 and other soluble factors in peritoneal fluid and endometriomas and their relation to pain and aromatase expression. J. Reprod. Immunol. 2010, 84, 199–205. [Google Scholar] [CrossRef]
- Patel, B.; Lenk, E.; Lebovic, D.; Shu, Y.; Yu, J.; Taylor, R. Pathogenesis of endometriosis: Interaction between Endocrine and inflammatory pathways. Best Pract. Res. Clin. Obstet. Gynaecol. 2018, 50, 50–60. [Google Scholar] [CrossRef] [PubMed]
- Lessey, B.; Lebovic, D.; Taylor, R. Eutopic endometrium in women with endometriosis: Ground zero for the study of implantation defects. Semin. Reprod. Med. 2013, 31, 109–124. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Poli-Neto, O.; Meola, J.; Rosa-E-Silva, J.; Tiezzi, D. Transcriptome meta-analysis reveals differences of immune profile between eutopic endometrium from stage I-II and III-IV endometriosis independently of hormonal milieu. Sci. Rep. 2020, 10, 313. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ono, Y.; Yoshino, O.; Hiraoka, T.; Sato, E.; Fukui, Y.; Ushijima, A.; Nawaz, A.; Hirota, Y.; Wada, S.; Tobe, K.; et al. CD206+ M2-Like Macrophages Are Essential for Successful Implantation. Front. Immunol. 2020, 11, 557184. [Google Scholar] [CrossRef]
- Ding, J.; Yang, C.; Zhang, Y.; Wang, J.; Zhang, S.; Guo, D.; Yin, T.; Yang, J. M2 macrophage-derived G-CSF promotes trophoblasts EMT, invasion and migration via activating PI3K/Akt/Erk1/2 pathway to mediate normal pregnancy. J. Cell. Mol. Med. 2021, 25, 2136–2147. [Google Scholar] [CrossRef] [PubMed]
- Care, A.; Diener, K.; Jasper, M.; Brown, H.; Ingman, W.; Robertson, S. Macrophages regulate corpus luteum development during embryo implantation in mice. J. Clin. Investig. 2013, 123, 3472–3487. [Google Scholar] [CrossRef] [Green Version]
- Khan, K.; Masuzaki, H.; Fujishita, A.; Kitajima, M.; Sekine, I.; Ishimaru, T. Differential macrophage infiltration in early and advanced endometriosis and adjacent peritoneum. Fertil. Steril. 2004, 81, 652–661. [Google Scholar] [CrossRef]
- Takebayashi, A.; Kimura, F.; Kishi, Y.; Ishida, M.; Takahashi, A.; Yamanaka, A.; Wu, D.; Zheng, L.; Takahashi, K.; Suginami, H.; et al. Subpopulations of macrophages within eutopic endometrium of endometriosis patients. Am. J. Reprod. Immunol. 2015, 73, 221–231. [Google Scholar] [CrossRef]
- Vallvé-Juanico, J.; Santamaria, X.; Vo, K.; Houshdaran, S.; Giudice, L. Macrophages display proinflammatory phenotypes in the eutopic endometrium of women with endometriosis with relevance to an infectious etiology of the disease. Fertil. Steril. 2019, 112, 1118–1128. [Google Scholar] [CrossRef]
- Kong, C.; Ordoñez, A.; Turner, S.; Tremaine, T.; Muter, J.; Lucas, E.; Salisbury, E.; Vassena, R.; Tiscornia, G.; Fouladi-Nashta, A.; et al. Embryo biosensing by uterine natural killer cells determines endometrial fate decisions at implantation. FASEB J. 2021, 35, e21336. [Google Scholar] [CrossRef]
- Giuliani, E.; Parkin, K.; Lessey, B.; Young, S.; Fazleabas, A. Characterization of uterine NK cells in women with infertility or recurrent pregnancy loss and associated endometriosis. Am. J. Reprod. Immunol. 2014, 72, 262–269. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Drury, J.; Parkin, K.; Coyne, L.; Giuliani, E.; Fazleabas, A.; Hapangama, D. The dynamic changes in the number of uterine natural killer cells are specific to the eutopic but not to the ectopic endometrium in women and in a baboon model of endometriosis. Reprod. Biol. Endocrinol. 2018, 16, 67. [Google Scholar] [CrossRef] [PubMed]
- Binici, J.; Koch, J. BAG-6, a jack of all trades in health and disease. Cell. Mol. Life Sci. 2014, 71, 1829–1837. [Google Scholar] [CrossRef]
- Chen, S.; Zhang, J.; Huang, C.; Lu, W.; Liang, Y.; Wan, X. Expression of the T regulatory cell transcription factor FoxP3 in peri-implantation phase endometrium in infertile women with endometriosis. Reprod. Biol. Endocrinol. 2012, 10, 34. [Google Scholar] [CrossRef] [Green Version]
- Hey-Cunningham, A.; Riaz, A.; Fromm, P.; Kupresanin, F.; Markham, R.; McGuire, H. Circulating and Endometrial Regulatory T Cell and Related Populations in Endometriosis and Infertility: Endometriosis Is Associated with Blunting of Endometrial Cyclical Effects and Reduced Proportions in Moderate-Severe Disease. Reprod. Sci. 2022, 29, 229–242. [Google Scholar] [CrossRef]
- Schulke, L.; Berbic, M.; Manconi, F.; Tokushige, N.; Markham, R.; Fraser, I. Dendritic cell populations in the eutopic and ectopic endometrium of women with endometriosis. Hum. Reprod. 2009, 24, 1695–1703. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hey-Cunningham, A.; Wong, C.; Hsu, J.; Fromm, P.; Clark, G.; Kupresanin, F.; Miller, E.; Markham, R.; McGuire, H. Comprehensive analysis utilizing flow cytometry and immunohistochemistry reveals inflammatory changes in local endometrial and systemic dendritic cell populations in endometriosis. Hum. Reprod. 2021, 36, 415–428. [Google Scholar] [CrossRef]
- Tirado-González, I.; Muñoz-Fernández, R.; Blanco, O.; Leno-Durán, E.; Abadía-Molina, A.; Olivares, E. Reduced proportion of decidual DC-SIGN+ cells in human spontaneous abortion. Placenta 2010, 31, 1019–1022. [Google Scholar] [CrossRef]
- Liu, S.; Wei, H.; Li, Y.; Huang, C.; Lian, R.; Xu, J.; Chen, L.; Zeng, Y. Downregulation of ILT4+ dendritic cells in recurrent miscarriage and recurrent implantation failure. Am. J. Reprod. Immunol. 2018, 80, e12998. [Google Scholar] [CrossRef] [PubMed]
- Wan, Y.; Bramson, J. Role of dendritic cell-derived cytokines in immune regulation. Curr. Pharm. Des. 2001, 7, 977–992. [Google Scholar] [CrossRef]
- Horsthemke, B.; Ludwig, M. Assisted reproduction: The epigenetic perspective. Hum. Reprod. Update 2005, 11, 473–482. [Google Scholar] [CrossRef] [PubMed]
- Samadieh, Y.; Favaedi, R.; Ramezanali, F.; Afsharian, P.; Aflatoonian, R.; Shahhoseini, M. Epigenetic Dynamics of HOXA10 Gene in Infertile Women With Endometriosis. Reprod. Sci. 2019, 26, 88–96. [Google Scholar] [CrossRef] [PubMed]
- Izawa, M.; Taniguchi, F.; Terakawa, N.; Harada, T. Epigenetic aberration of gene expression in endometriosis. Front. Biosci. Elite 2013, 5, 900–910. [Google Scholar] [CrossRef] [PubMed]
- Rahnama, F.; Thompson, B.; Steiner, M.; Shafiei, F.; Lobie, P.; Mitchell, M. Epigenetic regulation of E-cadherin controls endometrial receptivity. Endocrinology 2009, 150, 1466–1472. [Google Scholar] [CrossRef] [Green Version]
- Wu, Y.; Halverson, G.; Basir, Z.; Strawn, E.; Yan, P.; Guo, S.W. Aberrant methylation at HOXA10 may be responsible for its aberrant expression in the endometrium of patients with endometriosis. Am. J. Obstet. Gynecol. 2005, 193, 371–380. [Google Scholar] [CrossRef]
- Rocha-Junior, C.; Da Broi, M.; Miranda-Furtado, C.; Navarro, P.; Ferriani, R.; Meola, J. Progesterone Receptor B (PGR-B) Is Partially Methylated in Eutopic Endometrium from Infertile Women with Endometriosis. Reprod. Sci. 2019, 26, 1568–1574. [Google Scholar] [CrossRef]
- Kim, T.; Yoo, J.; Choi, K.; Shin, J.; Leach, R.; Fazleabas, A.; Young, S.; Lessey, B.; Yoon, H.; Jeong, J. Loss of HDAC3 results in nonreceptive endometrium and female infertility. Sci. Transl. Med. 2019, 11, eaaf7533. [Google Scholar] [CrossRef]
- Jones, C.; Aplin, J. Glycosylation at the fetomaternal interface: Does the glycocode play a critical role in implantation? Glycoconj. J. 2009, 26, 359–366. [Google Scholar] [CrossRef]
- Focarelli, R.; Luddi, A.; De Leo, V.; Capaldo, A.; Stendardi, A.; Pavone, V.; Benincasa, L.; Belmonte, G.; Petraglia, F.; Piomboni, P. Dysregulation of GdA Expression in Endometrium of Women With Endometriosis: Implication for Endometrial Receptivity. Reprod. Sci. 2018, 25, 579–586. [Google Scholar] [CrossRef]
- Miller, D.L.; Jones, C.J.; Aplin, J.D.; Nardo, L.G. Altered glycosylation in peri-implantation phase endometrium in women with stages III and IV endometriosis. Hum. Reprod. 2010, 25, 406–411. [Google Scholar] [CrossRef] [Green Version]
- Ponnampalam, A.P.; Rogers, P.A. Expression and regulation of fucosyltransferase 4 in human endometrium. Reproduction 2008, 136, 117–123. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yu, M.; Wang, H.; Liu, J.; Qin, H.; Liu, S.; Yan, Q. The sialyltransferase ST3Gal3 facilitates the receptivity of the uterine endometrium in vitro and in vivo. FEBS Lett. 2018, 592, 3696–3707. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dharmesh, S.; Baenziger, J. Estrogen modulates expression of the glycosyltransferases that synthesize sulfated oligosaccharides on lutropin. Proc. Natl. Acad. Sci. USA 1993, 90, 11127–11131. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Borowski, S.; Tirado-Gonzalez, I.; Freitag, N.; Garcia, M.; Barrientos, G.; Blois, S. Altered Glycosylation Contributes to Placental Dysfunction Upon Early Disruption of the NK Cell-DC Dynamics. Front. Immunol. 2020, 11, 1316. [Google Scholar] [CrossRef] [PubMed]
- Adamyan, L.V.; Starodubtseva, N.; Borisova, A.; Stepanian, A.A.; Chagovets, V.; Salimova, D.; Wang, Z.; Kononikhin, A.; Popov, I.; Bugrova, A.; et al. Direct Mass Spectrometry Differentiation of Ectopic and Eutopic Endometrium in Patients with Endometriosis. J. Minim. Invasive Gynecol. 2018, 25, 426–433. [Google Scholar] [CrossRef]
- Dominguez, F.; Ferrando, M.; Diaz-Gimeno, P.; Quintana, F.; Fernandez, G.; Castells, I.; Simon, C. Lipidomic profiling of endometrial fluid in women with ovarian endometriosisdagger. Biol. Reprod. 2017, 96, 772–779. [Google Scholar] [CrossRef] [PubMed]
- Dutta, M.; Singh, B.; Joshi, M.; Das, D.; Subramani, E.; Maan, M.; Jana, S.K.; Sharma, U.; Das, S.; Dasgupta, S.; et al. Metabolomics reveals perturbations in endometrium and serum of minimal and mild endometriosis. Sci. Rep. 2018, 8, 6466. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, J.; Guan, L.; Zhang, H.; Gao, Y.; Sun, J.; Gong, X.; Li, D.; Chen, P.; Liang, X.; Huang, M.; et al. Endometrium metabolomic profiling reveals potential biomarkers for diagnosis of endometriosis at minimal-mild stages. Reprod. Biol. Endocrinol. 2018, 16, 42. [Google Scholar] [CrossRef]
- Lee, Y.; Tan, C.; Venkatratnam, A.; Tan, C.; Cui, L.; Loh, S.; Griffith, L.; Tannenbaum, S.; Chan, J. Dysregulated sphingolipid metabolism in endometriosis. J. Clin. Endocrinol. Metab. 2014, 99, E1913–E1921. [Google Scholar] [CrossRef] [Green Version]
- Li, J.; Gao, Y.; Guan, L.; Zhang, H.; Sun, J.; Gong, X.; Li, D.; Chen, P.; Ma, Z.; Liang, X.; et al. Discovery of Phosphatidic Acid, Phosphatidylcholine, and Phosphatidylserine as Biomarkers for Early Diagnosis of Endometriosis. Front. Physiol. 2018, 9, 14. [Google Scholar] [CrossRef] [Green Version]
- Hama, K.; Aoki, J.; Inoue, A.; Endo, T.; Amano, T.; Motoki, R.; Kanai, M.; Ye, X.; Chun, J.; Matsuki, N.; et al. Embryo spacing and implantation timing are differentially regulated by LPA3-mediated lysophosphatidic acid signaling in mice. Biol. Reprod. 2007, 77, 954–959. [Google Scholar] [CrossRef]
- Sordelli, M.; Beltrame, J.; Zotta, E.; Gomez, N.; Dmytrenko, G.; Sales, M.; Blois, S.; Davio, C.; Martinez, S.; Franchi, A.; et al. Endogenous lysophosphatidic acid participates in vascularisation and decidualisation at the maternal-fetal interface in the rat. Reprod. Fertil. Dev. 2017, 29, 2112–2126. [Google Scholar] [CrossRef] [PubMed]
- Wei, Q.; St Clair, J.; Fu, T.; Stratton, P.; Nieman, L. Reduced expression of biomarkers associated with the implantation window in women with endometriosis. Fertil. Steril. 2009, 91, 1686–1691. [Google Scholar] [CrossRef] [Green Version]
- McKinnon, B.; Bertschi, D.; Wotzkow, C.; Bersinger, N.; Evers, J.; Mueller, M. Glucose transporter expression in eutopic endometrial tissue and ectopic endometriotic lesions. J. Mol. Endocrinol. 2014, 52, 169–179. [Google Scholar] [CrossRef] [Green Version]
- Smolinska, N.; Szeszko, K.; Dobrzyn, K.; Kiezun, M.; Rytelewska, E.; Kisielewska, K.; Gudelska, M.; Bors, K.; Wyrebek, J.; Kopij, G.; et al. Transcriptomic Analysis of Porcine Endometrium during Implantation after In Vitro Stimulation by Adiponectin. Int. J. Mol. Sci. 2019, 20, 1335. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Atkins, H.M.; Bharadwaj, M.S.; O’Brien Cox, A.; Furdui, C.M.; Appt, S.E.; Caudell, D.L. Endometrium and endometriosis tissue mitochondrial energy metabolism in a nonhuman primate model. Reprod. Biol. Endocrinol. 2019, 17, 70. [Google Scholar] [CrossRef] [PubMed]
- Kuokkanen, S.; Chen, B.; Ojalvo, L.; Benard, L.; Santoro, N.; Pollard, J. Genomic profiling of microRNAs and messenger RNAs reveals hormonal regulation in microRNA expression in human endometrium. Biol. Reprod. 2010, 82, 791–801. [Google Scholar] [CrossRef] [Green Version]
- Shekibi, M.; Heng, S.; Nie, G. MicroRNAs in the Regulation of Endometrial Receptivity for Embryo Implantation. Int. J. Mol. Sci. 2022, 23, 6210. [Google Scholar] [CrossRef]
- Yang, P.; Wu, Z.; Ma, C.; Pan, N.; Wang, Y.; Yan, L. Endometrial miR-543 Is Downregulated During the Implantation Window in Women With Endometriosis-Related Infertility. Reprod. Sci. 2019, 26, 900–908. [Google Scholar] [CrossRef]
- Petracco, R.; Grechukhina, O.; Popkhadze, S.; Massasa, E.; Zhou, Y.; Taylor, H. MicroRNA 135 regulates HOXA10 expression in endometriosis. J. Clin. Endocrinol. Metab. 2011, 96, E1925–E1933. [Google Scholar] [CrossRef] [Green Version]
- Joshi, N.; Miyadahira, E.; Afshar, Y.; Jeong, J.; Young, S.; Lessey, B.; Serafini, P.; Fazleabas, A. Progesterone Resistance in Endometriosis Is Modulated by the Altered Expression of MicroRNA-29c and FKBP4. J. Clin. Endocrinol. Metab. 2017, 102, 141–149. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pei, T.; Liu, C.; Liu, T.; Xiao, L.; Luo, B.; Tan, J.; Li, X.; Zhou, G.; Duan, C.; Huang, W. miR-194-3p Represses the Progesterone Receptor and Decidualization in Eutopic Endometrium From Women with Endometriosis. Endocrinology 2018, 159, 2554–2562. [Google Scholar] [CrossRef] [PubMed]
- Mikhaleva, L.; Solomatina, A.; Milovanov, A.; Beeraka, N.; Khovanskaya, T.; Chabieva, L.; Mikhalev, S.; Gracheva, N.; Chigray, L.; Beylerli, O.; et al. Histomorphological and Functional Features of the Eutopic Endometrium in Patients with Ovarian Endometriosis After Surgery—A Clinical Study. Reprod. Sci. 2021, 28, 2350–2358. [Google Scholar] [CrossRef]
- Foda, A.A.; Aal, I.A.A. Metformin as a new therapy for endometriosis, its effects on both clinical picture and cytokines profile. Middle East Fertil. Soc. J. 2012, 17, 262–267. [Google Scholar] [CrossRef]
- Zhou, Y.; Xu, J.; Zeng, C.; Li, X.; Zhou, Y.; Qi, Y.; Xue, Q. Metformin Suppresses Prostaglandin E2-Induced Cytochrome P450 Aromatase Gene Expression and Activity via Stimulation of AMP-Activated Protein Kinase in Human Endometriotic Stromal Cells. Reprod. Sci. 2015, 22, 1162–1170. [Google Scholar] [CrossRef]
- Cheng, J.; Li, C.; Ying, Y.; Lv, J.; Qu, X.; McGowan, E.; Lin, Y.; Zhu, X. viaMetformin Alleviates Endometriosis and Potentiates Endometrial Receptivity Decreasing VEGF and MMP9 and Increasing Leukemia Inhibitor Factor and HOXA10. Front. Pharmacol. 2022, 13, 750208. [Google Scholar] [CrossRef] [PubMed]
- Sapmaz, T.; Coskun, G.; Saker, D.; Pence, H.H.; Keles, P.; Hayretdag, C.; Kuras, S.; Topkaraoglu, S.; Erdem, E.; Efendic, F.; et al. Effects of metformin, letrozole and atorvastatin on inflammation and apoptosis in experimental peritoneal and ovarian endometriosis in the rat. Pathol. Res. Pract. 2022, 235, 153951. [Google Scholar] [CrossRef]
- Dheenadayalu, K.; Mak, I.; Gordts, S.; Campo, R.; Higham, J.; Puttemans, P.; White, J.; Christian, M.; Fusi, L.; Brosens, J. Aromatase P450 messenger RNA expression in eutopic endometrium is not a specific marker for pelvic endometriosis. Fertil. Steril. 2002, 78, 825–829. [Google Scholar] [CrossRef]
- Zhang, J.; Wang, L.; Li, C.; Zhang, H.; Li, R.; Li, M. Letrozole promotes the expression of integrin αvβ3 and HOXA10 in endometrium of endometriosis. Syst. Biol. Reprod. Med. 2022, 68, 121–128. [Google Scholar] [CrossRef]
- Abu Hashim, H. Aromatase Inhibitors for Endometriosis-Associated Infertility; Do We Have Sufficient Evidence? Int. J. Fertil. Steril. 2016, 10, 270–277. [Google Scholar]
- Perelló, M.; González-Foruria, I.; Castillo, P.; Martínez-Florensa, M.; Lozano, F.; Balasch, J.; Carmona, F. Oral Administration of Pentoxifylline Reduces Endometriosis-Like Lesions in a Nude Mouse Model. Reprod. Sci. 2017, 24, 911–918. [Google Scholar] [CrossRef] [PubMed]
- Grammatis, A.; Georgiou, E.; Becker, C. Pentoxifylline for the treatment of endometriosis-associated pain and infertility. Cochrane Database Syst. Rev. 2021, 1, CD007677. [Google Scholar]
- D’Antonio, M.; Martelli, F.; Peano, S.; Papoian, R.; Borrelli, F. Ability of recombinant human TNF binding protein-1 (r-hTBP-1) to inhibit the development of experimentally-induced endometriosis in rats. J. Reprod. Immunol. 2000, 48, 81–98. [Google Scholar] [CrossRef] [PubMed]
- Lu, D.; Song, H.; Shi, G. Anti-TNF-α treatment for pelvic pain associated with endometriosis. Cochrane Database Syst. Rev. 2013, CD008088. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gurung, S.; Deane, J.; Masuda, H.; Maruyama, T.; Gargett, C. Stem Cells in Endometrial Physiology. Semin. Reprod. Med. 2015, 33, 326–332. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Lin, X.; Dai, Y.; Hu, X.; Zhu, H.; Jiang, Y.; Zhang, S. Endometrial stem cells repair injured endometrium and induce angiogenesis via AKT and ERK pathways. Reproduction 2016, 152, 389–402. [Google Scholar] [CrossRef] [Green Version]
- Lai, Z.; Yang, H.; Shi, J.; Shen, H.; Wang, Y.; Chang, K.; Zhang, T.; Ye, J.; Sun, J.; Qiu, X.; et al. Protopanaxadiol improves endometriosis associated infertility and miscarriage in sex hormones receptors-dependent and independent manners. Int. J. Biol. Sci. 2021, 17, 1878–1894. [Google Scholar] [CrossRef]
Reference | Sample Number | Analysis Platform | Main Findings |
---|---|---|---|
[10] | n = 36: EMS II (n = 6); EMS III (n = 6); EMS IV (n = 6); Controls (n = 18) | proteomic analysis | The differentially expressed proteins involved in stress response, protein-folding and protein-turnover, immunity, energy production, signal transduction, RNA biogenesis, and protein biosynthesis. |
[11] | n = 20: mild-moderate EMS (n = 8); Controls (n = 12) | Affymetrix Genechip, microarray analysis | Dysregulation of selected genes involved in embryonic attachment, embryotoxicity, immune dysfunction, and apoptotic responses, aromatase, progesterone receptor, angiogenic factors. |
[12] | n = 6: EMS (n = 3); Controls (n = 3) | lncRNA microarray; DNA microarray | Differently expressed lncRNAs associated with cell cycle and immune regulation. |
[13] | n = 7: moderate-severe EMS (n = 4); Controls (n = 3) | miRNA microarray analysis | Differentially expressed mRNA genes associated with the biological processes of cell death, cell cycle, and cellular assembly and organization. |
[4] | n = 37: mild-moderate EMS (n = 21); Controls (n = 16) | microarray analysis | Up-regulated genes are involved in the immune (GZMA, C4BPA) or inflammatory responses. |
[5] | n = 16: EMS III-IV (n = 8); Controls (n = 8) | immune and inflammation transcriptomic analysis | Significantly different genes involved in the regulation of cell apoptosis and decidualization. |
Reference | Sample Number | The Phase of the Menstrual Cycle | Analysis Method | Sample Source | Main Findings |
---|---|---|---|---|---|
[86] | n = 35: EMS (n = 12); Controls (n = 13) | the window of implantation | ultrahigh performance liquid chromatography coupled to mass spectrometry (UPLC-MS) | Endometrial fluid (EF) | Glycerolipids and glycerophospholipids were overrepresented in the EF of women with EMS. The sphingolipids CMH and ceramidesin levels were lower in the EF of women with EMS. |
[88] | n = 66: EMS (n = 29); infertile women (n = 37) | on the third to fifth day after menstrual cessation | ultra-high-performance liquid chromatography coupled with electrospray ionization high-resolution mass spectrometry (UHPLC-ESI-HRMS) | Eutopic endometrium | The eutopic endometrium metabolomic profile of the EMS patients was characterized by a significant increase in the concentration of hypoxanthine, L-arginine, L-tyrosine, leucine, lysine, inosine, omega-3 arachidonic acid, guanosine, xanthosine, lysophosphatidylethanolamine, and asparagine. |
[87] | n = 119: EMS I (n = 20); EMS II (n = 13); EMS III (n = 17); EMS IV (n = 45); Controls (n = 24) | not clear | 1H NMR spectra | Eutopic endometrium and Blood | A number of amino acids, including alanine, lysine, phenylalanine, and leucine, showed significantly lower levels in the endometrial tissue of women with EMS relative to healthy controls. |
[89] | n = 12: EMS (n = 6); Controls (n = 6) | proliferative and secretory | LC-MS/MS | Eutopic endometrium | Upregulation of specific sphingolipid enzymes, namely sphingomyelin synthase 1 (SMS1), sphingomyelinase 3 (SMPD3), and glucosylceramide synthase (GCS) in the endometrium of EMS women with corresponding increased GlcCer levels and decreased sphingomyelin levels. |
[90] | n = 41: EMS I-II (n = 21); infertile women (n = 20) | not clear | UHPLC-ESI-HRMS | Eutopic endometrium | Lipid profiles of early-stage (I–II) EMS patients were characterized by a decreased concentration of phosphatidylcholine and phosphatidylserine and an increased concentration of phosphatidic acid compared with the control sample. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shan, J.; Li, D.-J.; Wang, X.-Q. Towards a Better Understanding of Endometriosis-Related Infertility: A Review on How Endometriosis Affects Endometrial Receptivity. Biomolecules 2023, 13, 430. https://doi.org/10.3390/biom13030430
Shan J, Li D-J, Wang X-Q. Towards a Better Understanding of Endometriosis-Related Infertility: A Review on How Endometriosis Affects Endometrial Receptivity. Biomolecules. 2023; 13(3):430. https://doi.org/10.3390/biom13030430
Chicago/Turabian StyleShan, Jing, Da-Jin Li, and Xiao-Qiu Wang. 2023. "Towards a Better Understanding of Endometriosis-Related Infertility: A Review on How Endometriosis Affects Endometrial Receptivity" Biomolecules 13, no. 3: 430. https://doi.org/10.3390/biom13030430
APA StyleShan, J., Li, D. -J., & Wang, X. -Q. (2023). Towards a Better Understanding of Endometriosis-Related Infertility: A Review on How Endometriosis Affects Endometrial Receptivity. Biomolecules, 13(3), 430. https://doi.org/10.3390/biom13030430