Applications of Genomics and Transcriptomics in Precision Medicine for Myopia Control or Prevention
Abstract
:1. Introduction
2. Significance of Genetic Analyses
3. Techniques of Genomics and Transcriptomics
3.1. Genomics
3.2. Transcriptomics
4. Molecular Technology Revolution
5. Similarity of Eye Structure and Cell Types between Species
6. Applications of New Technologies in Myopia Research
Publications | Research Techniques | Cohort Sizes | Findings |
---|---|---|---|
PMID: 35031440 Simcoe et al. (2022) [53] | Three-stage GWAS: discovery with three cohorts, replication with one cohort, meta-analysis with all four cohorts | 574 cases with pigment dispersion syndrome (PDS) or pigmentary glaucoma (PG) and 52,627 controls of European descent | GSAP and GRM5/TYR genes are associated risk factors for the development of PDS, PG, and myopia. |
PMID: 35841873 Xue et al. (2022) [54] | Cross-trait meta-analysis in age-related macular degeneration (AMD), diabetic retinopathy (DR), glaucoma, retinal detachment (RD), and myopia | 43,877 cases of five ocular diseases: AMD, DR, glaucoma, RD, and myopia, and 44,373 controls of European ancestry | Three pleiotropic loci and genes covered positively associated with all five diseases: rs7678123 (FGF5, C4orf22, BMP3, PRKG2), rs12570944 (STK32C, LRRC27, PWWP2B, DPYSL4), and rs9667489 (ME3, CCDC81, and PRSS23). |
PMID: 32231278 Hysi et al. (2020) [55] | Meta-analysis of GWASes from four cohorts. Mixed linear regressions, adjusting for age, sex, and the first 10 principal components | 542,934 European participants | Identified 336 novel genetic loci associated with refractive error, driven by genes participating in the development of every anatomical component of the eye, as well as in circadian rhythm and pigmentation. |
PMID: 25233373 Simpson et al. (2014) [56] | Meta-analysis of GWASes of myopia and hyperopia from nine cohorts | 16,830 individuals of European ancestry | One genome-wide significant region on 8q12 was associated with myopia age at onset [50] and associated to mean spherical-equivalent (MSE) refractive error [57]. Found replication of 10 additional loci associated with myopia as reported by Kiefer et al. [50]. |
PMID: 23933737 Khor et al. (2013) [58] | Meta-analysis of four GWASes | East Asian descent totaling 1603 cases and 3427 controls | rs13382811 and rs6469937 are associated with severe myopia. |
PMID: 27020472 Fan et al. (2016) [59] | Joint meta-analysis to test SNP main effects and SNP × education interaction effects on refractive error | 40,036 adults from 25 studies of European ancestry and 10,315 adults from nine studies of Asian ancestry. | In European ancestry individuals, six novel loci were identified: FAM150B-ACP1, LINC00340, FBN1, DIS3L-MAP2K1, ARID2-SNAT1, and SLC14A2; In Asian populations, three genome-wide significant loci AREG, GABRR1, and PDE10A also exhibit strong interactions with education. |
PMID: 24014484 Fan et al. (2014) [60] | Meta-analysis of the effects of education on 40 single nucleotide polymorphisms | 8461 adults from five studies including ethnic Chinese, Malay, and Indian residents of Singapore. | Three genetic loci SHISA6-DNAH9, GJD2, and ZMAT4-SFRP1 exhibited a strong association with myopic refractive error in individuals with higher secondary or university education. |
PMID: 23406873 Shi et al. (2013) [61] | GWAS to examine the associations between myopia and 286,031 SNPs, with additional replication and 2 validation cohorts | Discovery: Han Chinese cohort of 665 cases and 960 controls, replication: 850 cases and 1197 controls, validation: combined 1278 cases and 2486 controls | The most significant and validated SNPs are located in VIPR2 and SNTB1, which are expressed in the retina and RPE |
Publications | Research Techniques | Tissue Samples | Findings |
---|---|---|---|
PMID: 23322568 McClements et al. (2013) [68] | Long-range PCR; Quantitative PCR | Blood | BED is caused by a rare exon three haplotypes of OPN1LW. |
PMID: 15197065 Young et al. (2004) [69] | PCR; Haplotype analysis of X chromosome; Southern Blot | Lymphocyte | X-linked high myopia associated with cone dysfunction may involve a defect in chromosome Xq28. |
PMID: 31254532 Hagen et al. (2019) [70] | ERG; PCR; SNP genotyping | Saliva | The L:M cone ratio, combined with milder versions of OPN1LW polymorphisms, may play a role in non-syndromic myopia. |
PMID: 33833231 Zhu et al. (2021) [71] | Gene expression microarray; qPCR; ChIP-qPCR; | Lens | The dysregulation of the MAF-TGF-β1-crystallin axis may be an underlying mechanism that leads to the development of high myopia. |
7. Limitations
8. Conclusions
Funding
Acknowledgments
Conflicts of Interest
Nomenclature
Abbreviation | Definition |
α-SMA | alpha-smooth muscle actin |
AHD2 | Aldehyde dehydrogenase 2 |
AL | Axial Length |
AMD | Age-related Macular Degeneration |
BED | Bornholm Eye Disease |
bFGF | basic fibroblast growth factor |
BMP2 | Bone morphogenetic protein 2 |
cAMP | Cyclic adenosine monophosphate |
ChIP | Chromatin Immunoprecipitation |
COL2A1 | Collagen type II alpha 1 |
CREAM | Consortium for Refractive Error and Myopia |
D | Diopter |
ddPCR | Digital droplet polymerase chain reaction |
DR | Diabetic Retinopathy |
eIF2 | eukaryotic Initiation Factor 2 |
ELISA | Enzyme-linked immunosorbent assay |
EP2 | Prostaglandin E2 receptor 2 |
ERG | Electroretinogram |
ETB | Endothelin receptor type B |
FDA | Food and Drug Administration |
FDM | Form Deprivation Myopia |
FSK | Forskolin |
GABA | Gamma-aminobutyric acid |
GAG | Glycosaminoglycan |
GO | Gene Ontology |
GRM5 | Glutamate metabotropic receptor 5 |
GSAP | Gamma secretase activator protein |
GSEA | Gene Set Enrichment Analysis |
GWAS | Genome-wide association study |
HAS2 | Hyaluronan synthase 2 |
HIF-1α | Hypoxia-inducible factor-1α |
HM | High myopia |
HPLC | High-Performance Liquid Chromatography |
IF | Immunofluorescence |
IGF-1 | Insulin-like growth factor-1 |
IHC | Immunohistochemistry |
IL-18 | Interleukin 18 |
IL-1β | Interleukin 1 beta |
IL-6 | Interleukin 6 |
IPA | Ingenuity Pathway Analysis |
ipRGCs | intrinsically photosensitive retinal ganglion cells |
KEGG | Kyoto Encyclopedia of Genes and Genomes |
KO | Knockout |
LIM | Lens induced myopia |
M1 to M4 | Muscarinic receptor subtype 1 to 4 |
mAChR | Muscarinic acetylcholine receptor |
miRNA | Micro-RNA |
MKP2 | Mitogen-activated protein kinase phosphatase 2 |
MMP | Matrix Metallopeptidase |
MRTF-A | Myocardin-related transcription factor-A |
MSE | Mean spherical-equivalent |
mTOR | mammalian target of rapamycin |
NGS | Next Generation Sequencing |
NOV | Nephroblastoma overexpressed |
PCR | Polymerase Chain Reaction |
PDS | Pigment Dispersion Syndrome |
PG | Pigmentary Glaucoma |
PPZ | Peripapillary zone |
qPCR | Quantitative polymerase chain reaction / Real-time polymerase chain reaction |
QTL | Quantitative trait loci |
RA | Retinoic acid |
RD | Retinal Detachment |
RhoA | Ras homolog gene family member A |
RNA-seq | RNA sequencing |
ROCK2 | Rho-associated protein kinase-2 |
RPE | Retinal Pigment Epithelium |
RT-PCR | Reverse Transcription polymerase chain reaction |
scRNA-seq | Single-cell RNA-sequencing |
SE | Spherical Equivalent |
SNP | Single Nucleotide Polymorphism |
SNTB1 | Syntrophin Beta 1 |
sqRT-PCR | semi-quantitative real-time reverse transcription polymerase chain reaction |
SRF | serum response factor |
TGF-β2 | Transforming growth factor beta 2 |
TH | Tyrosinse Hydrolase |
TNF-α | Tumor Necrosis Factor-alpha |
TYR | Tyrosinase |
URP2 | Urotentsin II–related peptide |
VIP | Vasoactive intestinal peptide |
VIPR2 | Vasoactive intestinal peptide receptor type 2 |
WB | Western Blot |
References
- Holden, B.A.; Wilson, D.A.; Jong, M.; Sankaridurg, P.; Fricke, T.R.; Smith, E.L., III; Resnikoff, S. Myopia: A growing global problem with sight-threatening complications. Community Eye Health 2015, 28, 35. [Google Scholar] [PubMed]
- Lin, L.L.; Shih, Y.F.; Hsiao, C.K.; Chen, C.J. Prevalence of myopia in Taiwanese schoolchildren: 1983 to 2000. Ann. Acad. Med. Singap. 2004, 33, 27–33. [Google Scholar] [PubMed]
- Williams, K.M.; Bertelsen, G.; Cumberland, P.; Wolfram, C.; Verhoeven, V.J.; Anastasopoulos, E.; Buitendijk, G.H.; Cougnard-Gregoire, A.; Creuzot-Garcher, C.; Erke, M.G.; et al. Increasing Prevalence of Myopia in Europe and the Impact of Education. Ophthalmology 2015, 122, 1489–1497. [Google Scholar] [CrossRef] [Green Version]
- Flitcroft, D.I.; He, M.; Jonas, J.B.; Jong, M.; Naidoo, K.; Ohno-Matsui, K.; Rahi, J.; Resnikoff, S.; Vitale, S.; Yannuzzi, L. IMI—Defining and Classifying Myopia: A Proposed Set of Standards for Clinical and Epidemiologic Studies. Investig. Ophthalmol. Vis. Sci. 2019, 60, M20–M30. [Google Scholar] [CrossRef] [Green Version]
- Leveziel, N.; Marillet, S.; Dufour, Q.; Lichtwitz, O.; Bentaleb, Y.; Pelen, F.; Ingrand, P.; Bourne, R. Prevalence of macular complications related to myopia—Results of a multicenter evaluation of myopic patients in eye clinics in France. Acta. Ophthalmol. 2020, 98, e245–e251. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Flitcroft, D.I.; Loughman, J.; Wildsoet, C.F.; Williams, C.; Guggenheim, J.A.; Consortium, C. Novel Myopia Genes and Pathways Identified From Syndromic Forms of Myopia. Investig. Ophthalmol. Vis. Sci. 2018, 59, 338–348. [Google Scholar] [CrossRef] [Green Version]
- Hepsen, I.F.; Evereklioglu, C.; Bayramlar, H. The effect of reading and near-work on the development of myopia in emmetropic boys: A prospective, controlled, three-year follow-up study. Vis. Res. 2001, 41, 2511–2520. [Google Scholar] [CrossRef] [Green Version]
- Huang, H.M.; Chang, D.S.; Wu, P.C. The Association between Near Work Activities and Myopia in Children-A Systematic Review and Meta-Analysis. PLoS ONE 2015, 10, e0140419. [Google Scholar] [CrossRef] [Green Version]
- Rong, S.S.; Chen, L.J.; Pang, C.P. Myopia Genetics-The Asia-Pacific Perspective. Asia Pac. J. Ophthalmol. Phila. 2016, 5, 236–244. [Google Scholar] [CrossRef]
- Wang, Y.M.; Lu, S.Y.; Zhang, X.J.; Chen, L.J.; Pang, C.P.; Yam, J.C. Myopia Genetics and Heredity. Children 2022, 9, 382. [Google Scholar] [CrossRef]
- Morgan, I.G.; French, A.N.; Ashby, R.S.; Guo, X.; Ding, X.; He, M.; Rose, K.A. The epidemics of myopia: Aetiology and prevention. Prog. Retin. Eye Res. 2018, 62, 134–149. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wilmet, B.; Callebert, J.; Duvoisin, R.; Goulet, R.; Tourain, C.; Michiels, C.; Frederiksen, H.; Schaeffel, F.; Marre, O.; Sahel, J.A.; et al. Mice Lacking Gpr179 with Complete Congenital Stationary Night Blindness Are a Good Model for Myopia. Int. J. Mol. Sci. 2022, 24, 219. [Google Scholar] [CrossRef] [PubMed]
- Gwiazda, J. Treatment options for myopia. Optom. Vis. Sci. 2009, 86, 624–628. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kaymak, H.; Graff, B.; Schaeffel, F.; Langenbucher, A.; Seitz, B.; Schwahn, H. A retrospective analysis of the therapeutic effects of 0.01% atropine on axial length growth in children in a real-life clinical setting. Graefes Arch. Clin. Exp. Ophthalmol. 2021, 259, 3083–3092. [Google Scholar] [CrossRef] [PubMed]
- Cascella, R.; Strafella, C.; Caputo, V.; Errichiello, V.; Zampatti, S.; Milano, F.; Potenza, S.; Mauriello, S.; Novelli, G.; Ricci, F.; et al. Towards the application of precision medicine in Age-Related Macular Degeneration. Prog. Retin. Eye Res. 2018, 63, 132–146. [Google Scholar] [CrossRef] [PubMed]
- Rappon, J.; Chung, C.; Young, G.; Hunt, C.; Neitz, J.; Neitz, M.; Chalberg, T. Control of myopia using diffusion optics spectacle lenses: 12-month results of a randomised controlled, efficacy and safety study (CYPRESS). Br. J. Ophthalmol. 2022, 321005. [Google Scholar] [CrossRef]
- Schaeffel, F.; Simon, P.; Feldkaemper, M.; Ohngemach, S.; Williams, R.W. Molecular biology of myopia. Clin. Exp. Optom. 2003, 86, 295–307. [Google Scholar] [CrossRef]
- Faluyi, O.O.; Rotimi, O. Molecular biology and medicine: A review of developments. Niger. J. Med. 2005, 14, 368–373. [Google Scholar] [CrossRef]
- Tedja, M.S.; Haarman, A.E.G.; Meester-Smoor, M.A.; Kaprio, J.; Mackey, D.A.; Guggenheim, J.A.; Hammond, C.J.; Verhoeven, V.J.M.; Klaver, C.C.W.; Consortium, C. IMI—Myopia Genetics Report. Investig. Ophthalmol. Vis. Sci. 2019, 60, M89–M105. [Google Scholar] [CrossRef] [Green Version]
- Zhou, X.; Pardue, M.T.; Iuvone, P.M.; Qu, J. Dopamine signaling and myopia development: What are the key challenges. Prog. Retin. Eye Res. 2017, 61, 60–71. [Google Scholar] [CrossRef]
- Crick, F. Central dogma of molecular biology. Nature 1970, 227, 561–563. [Google Scholar] [CrossRef] [PubMed]
- Al Aboud, N.M.; Tupper, C.; Jialal, I. Genetics, Epigenetic Mechanism; StatPearls: Treasure Island, FL, USA, 2022. [Google Scholar]
- Lowe, R.; Shirley, N.; Bleackley, M.; Dolan, S.; Shafee, T. Transcriptomics technologies. PLoS Comput. Biol. 2017, 13, e1005457. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Del Giacco, L.; Cattaneo, C. Introduction to genomics. Methods Mol. Biol. 2012, 823, 79–88. [Google Scholar] [PubMed]
- Goldman, A.D.; Landweber, L.F. What Is a Genome? PLoS Genet. 2016, 12, e1006181. [Google Scholar] [CrossRef]
- Hood, L.; Rowen, L. The Human Genome Project: Big science transforms biology and medicine. Genome Med. 2013, 5, 79. [Google Scholar] [CrossRef] [Green Version]
- Ott, J.; Wang, J.; Leal, S.M. Genetic linkage analysis in the age of whole-genome sequencing. Nat. Rev. Genet. 2015, 16, 275–284. [Google Scholar] [CrossRef]
- Bell, J. The polymerase chain reaction. Immunol. Today 1989, 10, 351–355. [Google Scholar] [CrossRef]
- Delidow, B.C.; Lynch, J.P.; Peluso, J.J.; White, B.A. Polymerase Chain Reaction: Basic Protocols. In PCR Protocols; Humana Press: Totowa, NJ, USA, 1993; Volume 15, pp. 1–29. [Google Scholar]
- Brown, T. Southern Blotting. Curr. Protoc. Immunol. 1993, 6, 10.6.1–10.6.13. [Google Scholar] [CrossRef]
- Josefsen, K.; Nielsen, H. Northern blotting analysis. Methods Mol. Biol. 2011, 703, 87–105. [Google Scholar]
- Govindarajan, R.J.; Duraiyan, K.; Kaliyappan, M.; Palanisamy, M. Microarray and its applications. J. Pharm. Bioallied Sci. 2012, 4, 310–312. [Google Scholar]
- Wang, Z.; Gerstein, M.; Snyder, M. RNA-Seq: A revolutionary tool for transcriptomics. Nat. Rev. Genet. 2009, 10, 57–63. [Google Scholar] [CrossRef] [PubMed]
- Tkatchenko, T.V.; Troilo, D.; Benavente-Perez, A.; Tkatchenko, A.V. Gene expression in response to optical defocus of opposite signs reveals bidirectional mechanism of visually guided eye growth. PLoS Biol. 2018, 16, e2006021. [Google Scholar] [CrossRef] [Green Version]
- Zhao, F.; Zhang, D.; Zhou, Q.; Zhao, F.; He, M.; Yang, Z.; Su, Y.; Zhai, Y.; Yan, J.; Zhang, G.; et al. Scleral HIF-1alpha is a prominent regulatory candidate for genetic and environmental interactions in human myopia pathogenesis. EBioMedicine 2020, 57, 102878. [Google Scholar] [CrossRef]
- Rada, J.A.; Matthews, A.L.; Brenza, H. Regional proteoglycan synthesis in the sclera of experimentally myopic chicks. Exp. Eye Res. 1994, 59, 747–760. [Google Scholar] [CrossRef]
- Cirillo, E.; Parnell, L.D.; Evelo, C.T. A Review of Pathway-Based Analysis Tools That Visualize Genetic Variants. Front. Genet. 2017, 8, 174. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Husband, S.S. Evolution of the avian visual system. Avian Vis. Cogn. 2001, IV. Available online: https://pigeon.psy.tufts.edu/avc/husband/ (accessed on 9 January 2023).
- Park, H.; Jabbar, S.B.; Tan, C.C.; Sidhu, C.S.; Abey, J.; Aseem, F.; Schmid, G.; Iuvone, P.M.; Pardue, M.T. Visually-driven ocular growth in mice requires functional rod photoreceptors. Investig. Ophthalmol. Vis. Sci. 2014, 55, 6272–6279. [Google Scholar] [CrossRef]
- Wells-Gray, E.; Choi, S.S.; Doble, N. The effect of moderate myopia on rod and cone photoreceptor densities in human eyes using AO-SLO imaging. Investig. Ophthalmol. Vis. Sci. 2017, 58, 2494. [Google Scholar]
- Lin, C.; Toychiev, A.; Ablordeppey, R.; Slavi, N.; Srinivas, M.; Benavente-Perez, A. Myopia Alters the Structural Organization of the Retinal Vasculature, GFAP-Positive Glia, and Ganglion Cell Layer Thickness. Int. J. Mol. Sci. 2022, 23, 6202. [Google Scholar] [CrossRef]
- Wan, W.; Chen, Z.; Lei, B. Increase in electroretinogram rod-driven peak frequency of oscillatory potentials and dark-adapted responses in a cohort of myopia patients. Doc. Ophthalmol. 2020, 140, 189–199. [Google Scholar] [CrossRef]
- Zhao, F.; Li, Q.; Chen, W.; Zhu, H.; Zhou, D.; Reinach, P.S.; Yang, Z.; He, M.; Xue, A.; Wu, D.; et al. Dysfunction of VIPR2 leads to myopia in humans and mice. J. Med. Genet. 2022, 59, 88–100. [Google Scholar] [CrossRef]
- Troilo, D.; Gottlieb, M.D.; Wallman, J. Visual deprivation causes myopia in chicks with optic nerve section. Curr. Eye Res. 1987, 6, 993–999. [Google Scholar] [CrossRef] [PubMed]
- Wildsoet, C.F.; Pettigrew, J.D. Experimental myopia and anomalous eye growth-patterns unaffected by optic-nerve section in chickens-evidence for local-control of eye growth. Clin. Vis. Sci. 1988, 3, 99–107. [Google Scholar]
- Liberfarb, R.M.; Levy, H.P.; Rose, P.S.; Wilkin, D.J.; Davis, J.; Balog, J.Z.; Griffith, A.J.; Szymko-Bennett, Y.M.; Johnston, J.J.; Francomano, C.A.; et al. The Stickler syndrome: Genotype/phenotype correlation in 10 families with Stickler syndrome resulting from seven mutations in the type II collagen gene locus COL2A1. Genet. Med. 2003, 5, 21–27. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Maumenee, I.H. The eye in the Marfan syndrome. Trans. Am. Ophthalmol. Soc. 1981, 79, 684–733. [Google Scholar]
- Nakanishi, H.; Yamada, R.; Gotoh, N.; Hayashi, H.; Yamashiro, K.; Shimada, N.; Ohno-Matsui, K.; Mochizuki, M.; Saito, M.; Iida, T.; et al. A genome-wide association analysis identified a novel susceptible locus for pathological myopia at 11q24.1. PLoS Genet. 2009, 5, e1000660. [Google Scholar] [CrossRef]
- Solouki, A.M.; Verhoeven, V.J.; van Duijn, C.M.; Verkerk, A.J.; Ikram, M.K.; Hysi, P.G.; Despriet, D.D.; van Koolwijk, L.M.; Ho, L.; Ramdas, W.D.; et al. A genome-wide association study identifies a susceptibility locus for refractive errors and myopia at 15q14. Nat. Genet. 2010, 42, 897–901. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kiefer, A.K.; Tung, J.Y.; Do, C.B.; Hinds, D.A.; Mountain, J.L.; Francke, U.; Eriksson, N. Genome-wide analysis points to roles for extracellular matrix remodeling, the visual cycle, and neuronal development in myopia. PLoS Genet. 2013, 9, e1003299. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Neitz, M.; Wagner-Schuman, M.; Rowlan, J.S.; Kuchenbecker, J.A.; Neitz, J. Insight from OPN1LW Gene Haplotypes into the Cause and Prevention of Myopia. Genes 2022, 13, 942. [Google Scholar] [CrossRef]
- Tedja, M.S.; Wojciechowski, R.; Hysi, P.G.; Eriksson, N.; Furlotte, N.A.; Verhoeven, V.J.M.; Iglesias, A.I.; Meester-Smoor, M.A.; Tompson, S.W.; Fan, Q.; et al. Genome-wide association meta-analysis highlights light-induced signaling as a driver for refractive error. Nat. Genet. 2018, 50, 834–848. [Google Scholar] [CrossRef] [PubMed]
- Simcoe, M.J.; Shah, A.; Fan, B.; Choquet, H.; Weisschuh, N.; Waseem, N.H.; Jiang, C.; Melles, R.B.; Ritch, R.; Mahroo, O.A.; et al. Genome-Wide Association Study Identifies Two Common Loci Associated with Pigment Dispersion Syndrome/Pigmentary Glaucoma and Implicates Myopia in its Development. Ophthalmology 2022, 129, 626–636. [Google Scholar] [CrossRef]
- Xue, Z.; Yuan, J.; Chen, F.; Yao, Y.; Xing, S.; Yu, X.; Li, K.; Wang, C.; Bao, J.; Qu, J.; et al. Genome-wide association meta-analysis of 88,250 individuals highlights pleiotropic mechanisms of five ocular diseases in UK Biobank. EBioMedicine 2022, 82, 104161. [Google Scholar] [CrossRef] [PubMed]
- Hysi, P.G.; Choquet, H.; Khawaja, A.P.; Wojciechowski, R.; Tedja, M.S.; Yin, J.; Simcoe, M.J.; Patasova, K.; Mahroo, O.A.; Thai, K.K.; et al. Meta-analysis of 542,934 subjects of European ancestry identifies new genes and mechanisms predisposing to refractive error and myopia. Nat. Genet. 2020, 52, 401–407. [Google Scholar] [CrossRef]
- Simpson, C.L.; Wojciechowski, R.; Oexle, K.; Murgia, F.; Portas, L.; Li, X.; Verhoeven, V.J.; Vitart, V.; Schache, M.; Hosseini, S.M.; et al. Genome-wide meta-analysis of myopia and hyperopia provides evidence for replication of 11 loci. PLoS ONE 2014, 9, e107110. [Google Scholar] [CrossRef] [Green Version]
- Verhoeven, V.J.; Hysi, P.G.; Saw, S.M.; Vitart, V.; Mirshahi, A.; Guggenheim, J.A.; Cotch, M.F.; Yamashiro, K.; Baird, P.N.; Mackey, D.A.; et al. Large scale international replication and meta-analysis study confirms association of the 15q14 locus with myopia. The CREAM consortium. Hum. Genet. 2012, 131, 1467–1480. [Google Scholar] [CrossRef] [Green Version]
- Khor, C.C.; Miyake, M.; Chen, L.J.; Shi, Y.; Barathi, V.A.; Qiao, F.; Nakata, I.; Yamashiro, K.; Zhou, X.; Tam, P.O.; et al. Genome-wide association study identifies ZFHX1B as a susceptibility locus for severe myopia. Hum. Mol. Genet. 2013, 22, 5288–5294. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fan, Q.; Verhoeven, V.J.; Wojciechowski, R.; Barathi, V.A.; Hysi, P.G.; Guggenheim, J.A.; Hohn, R.; Vitart, V.; Khawaja, A.P.; Yamashiro, K.; et al. Meta-analysis of gene-environment-wide association scans accounting for education level identifies additional loci for refractive error. Nat. Commun. 2016, 7, 11008. [Google Scholar] [CrossRef] [Green Version]
- Fan, Q.; Wojciechowski, R.; Kamran Ikram, M.; Cheng, C.Y.; Chen, P.; Zhou, X.; Pan, C.W.; Khor, C.C.; Tai, E.S.; Aung, T.; et al. Education influences the association between genetic variants and refractive error: A meta-analysis of five Singapore studies. Hum. Mol. Genet. 2014, 23, 546–554. [Google Scholar] [CrossRef]
- Shi, Y.; Gong, B.; Chen, L.; Zuo, X.; Liu, X.; Tam, P.O.; Zhou, X.; Zhao, P.; Lu, F.; Qu, J.; et al. A genome-wide meta-analysis identifies two novel loci associated with high myopia in the Han Chinese population. Hum. Mol. Genet. 2013, 22, 2325–2333. [Google Scholar] [CrossRef] [Green Version]
- Yin, G.C.; Gentle, A.; McBrien, N.A. Muscarinic antagonist control of myopia: A molecular search for the M1 receptor in chick. Mol. Vis. 2004, 10, 787–793. [Google Scholar] [PubMed]
- Lin, M.Y.; Lin, I.T.; Wu, Y.C.; Wang, I.J. Stepwise candidate drug screening for myopia control by using zebrafish, mouse, and Golden Syrian Hamster myopia models. EBioMedicine 2021, 65, 103263. [Google Scholar] [CrossRef] [PubMed]
- CooperVision and EssilorLuxottica Partner to Commercialize SightGlass Myopia Management Lens. Available online: https://reviewofmm.com/coopervision-and-essilor-partner-to-commercialize-sightglass-myopia-management-lens/ (accessed on 9 January 2023).
- McClements, M.; Davies, W.I.; Michaelides, M.; Carroll, J.; Rha, J.; Mollon, J.D.; Neitz, M.; MacLaren, R.E.; Moore, A.T.; Hunt, D.M. X-linked cone dystrophy and colour vision deficiency arising from a missense mutation in a hybrid L/M cone opsin gene. Vision Res. 2013, 80, 41–50. [Google Scholar] [CrossRef] [Green Version]
- Hagen, L.A.; Arnegard, S.; Kuchenbecker, J.A.; Gilson, S.J.; Neitz, M.; Neitz, J.; Baraas, R.C. The association between L:M cone ratio, cone opsin genes and myopia susceptibility. Vision Res. 2019, 162, 20–28. Available online: https://www.sciencedirect.com/science/article/pii/S0042698919301270?via%3Dihub (accessed on 9 January 2023). [CrossRef] [PubMed]
- Greenwald, S.H.; Kuchenbecker, J.A.; Rowlan, J.S.; Neitz, J.; Neitz, M. Role of a Dual Splicing and Amino Acid Code in Myopia, Cone Dysfunction and Cone Dystrophy Associated with L/M Opsin Interchange Mutations. Transl. Vis. Sci. Technol. 2017, 6, 2. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- McClements, M.; Davies, W.I.; Michaelides, M.; Young, T.; Neitz, M.; MacLaren, R.E.; Moore, A.T.; Hunt, D.M. Variations in opsin coding sequences cause x-linked cone dysfunction syndrome with myopia and dichromacy. Investig. Ophthalmol. Vis. Sci. 2013, 54, 1361–1369. [Google Scholar] [CrossRef] [Green Version]
- Young, T.L.; Deeb, S.S.; Ronan, S.M.; Dewan, A.T.; Alvear, A.B.; Scavello, G.S.; Paluru, P.C.; Brott, M.S.; Hayashi, T.; Holleschau, A.M.; et al. X-linked high myopia associated with cone dysfunction. Arch. Ophthalmol. 2004, 122, 897–908. [Google Scholar] [CrossRef] [Green Version]
- Hagen, L.A.; Arnegard, S.; Kuchenbecker, J.A.; Gilson, S.J.; Neitz, M.; Neitz, J.; Baraas, R.C. The association between L:M cone ratio, cone opsin genes and myopia susceptibility. Investig. Ophthalmol. Vis. Sci. 2019, 60, 4266. Available online: https://iovs.arvojournals.org/article.aspx?articleid=2743887 (accessed on 9 January 2023).
- Zhu, X.; Du, Y.; Li, D.; Xu, J.; Wu, Q.; He, W.; Zhang, K.; Zhu, J.; Guo, L.; Qi, M.; et al. Aberrant TGF-beta1 signaling activation by MAF underlies pathological lens growth in high myopia. Nat. Commun. 2021, 12, 2102. [Google Scholar] [CrossRef] [PubMed]
- Riddell, N.; Giummarra, L.; Hall, N.E.; Crewther, S.G. Bidirectional Expression of Metabolic, Structural, and Immune Pathways in Early Myopia and Hyperopia. Front. Neurosci. 2016, 10, 390. [Google Scholar] [CrossRef] [Green Version]
- Karouta, C.; Kucharski, R.; Hardy, K.; Thomson, K.; Maleszka, R.; Morgan, I.; Ashby, R. Transcriptome-based insights into gene networks controlling myopia prevention. FASEB J. 2021, 35, e21846. [Google Scholar] [CrossRef]
- Srinivasalu, N.; Lu, C.; Pan, M.; Reinach, P.S.; Wen, Y.; Hu, Y.; Qu, J.; Zhou, X. Role of Cyclic Adenosine Monophosphate in Myopic Scleral Remodeling in Guinea Pigs: A Microarray Analysis. Investig. Ophthalmol. Vis. Sci. 2018, 59, 4318–4325. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Metlapally, R.; Park, H.N.; Chakraborty, R.; Wang, K.K.; Tan, C.C.; Light, J.G.; Pardue, M.T.; Wildsoet, C.F. Genome-Wide Scleral Micro- and Messenger-RNA Regulation During Myopia Development in the Mouse. Investig. Ophthalmol. Vis. Sci. 2016, 57, 6089–6097. [Google Scholar] [CrossRef] [PubMed]
- McGlinn, A.M.; Baldwin, D.A.; Tobias, J.W.; Budak, M.T.; Khurana, T.S.; Stone, R.A. Form-deprivation myopia in chick induces limited changes in retinal gene expression. Investig. Ophthalmol. Vis. Sci. 2007, 48, 3430–3436. [Google Scholar] [CrossRef] [PubMed]
- Srinivasalu, N.; McFadden, S.A.; Medcalf, C.; Fuchs, L.; Chung, J.; Philip, G.; Richardson, A.; Riaz, M.; Baird, P.N. Gene Expression and Pathways Underlying Form Deprivation Myopia in the Guinea Pig Sclera. Investig. Ophthalmol. Vis. Sci. 2018, 59, 1425–1434. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zeng, L.; Li, X.; Liu, J.; Liu, H.; Xu, H.; Yang, Z. RNA-Seq Analysis Reveals an Essential Role of the Tyrosine Metabolic Pathway and Inflammation in Myopia-Induced Retinal Degeneration in Guinea Pigs. Int. J. Mol. Sci. 2021, 22, 12598. [Google Scholar] [CrossRef]
- Vocale, L.G.; Crewther, S.; Riddell, N.; Hall, N.E.; Murphy, M.; Crewther, D. RNA-seq and GSEA identifies suppression of ligand-gated chloride efflux channels as the major gene pathway contributing to form deprivation myopia. Sci. Rep. 2021, 11, 5280. [Google Scholar] [CrossRef]
- Liu, S.; Chen, H.; Ma, W.; Zhong, Y.; Liang, Y.; Gu, L.; Lu, X.; Li, J. Non-coding RNAs and related molecules associated with form-deprivation myopia in mice. J. Cell. Mol. Med. 2022, 26, 186–194. [Google Scholar] [CrossRef]
- Wu, H.; Chen, W.; Zhao, F.; Zhou, Q.; Reinach, P.S.; Deng, L.; Ma, L.; Luo, S.; Srinivasalu, N.; Pan, M.; et al. Scleral hypoxia is a target for myopia control. Proc. Natl. Acad. Sci. USA 2018, 115, E7091–E7100. [Google Scholar] [CrossRef] [Green Version]
- Ding, X.; Fu, D.; Ge, S.; Guan, Q.; Chen, M.; Yu, Z. DNA methylation and mRNA expression of IGF-1 and MMP-2 after form-deprivation myopia in guinea pigs. Ophthalmic Physiol. Opt. 2020, 40, 491–501. [Google Scholar] [CrossRef]
- Quint, W.H.; Tadema, K.C.D.; de Vrieze, E.; Lukowicz, R.M.; Broekman, S.; Winkelman, B.H.J.; Hoevenaars, M.; de Gruiter, H.M.; van Wijk, E.; Schaeffel, F.; et al. Loss of Gap Junction Delta-2 (GJD2) gene orthologs leads to refractive error in zebrafish. Commun. Biol. 2021, 4, 676. [Google Scholar] [CrossRef]
- Jobling, A.I.; Gentle, A.; Metlapally, R.; McGowan, B.J.; McBrien, N.A. Regulation of scleral cell contraction by transforming growth factor-beta and stress: Competing roles in myopic eye growth. J. Biol. Chem. 2009, 284, 2072–2079. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Srinivasalu, N.; Zhang, S.; Xu, R.; Reinach, P.S.; Su, Y.; Zhu, Y.; Qu, J.; Zhou, X. Crosstalk between EP2 and PPARalpha Modulates Hypoxic Signaling and Myopia Development in Guinea Pigs. Investig. Ophthalmol. Vis. Sci. 2020, 61, 44. [Google Scholar] [CrossRef]
- Hsu, Y.A.; Chen, C.S.; Wang, Y.C.; Lin, E.S.; Chang, C.Y.; Chen, J.J.; Wu, M.Y.; Lin, H.J.; Wan, L. Anti-Inflammatory Effects of Resveratrol on Human Retinal Pigment Cells and a Myopia Animal Model. Curr. Issues Mol. Biol. 2021, 43, 716–727. [Google Scholar] [CrossRef] [PubMed]
- Landis, E.G.; Park, H.N.; Chrenek, M.; He, L.; Sidhu, C.; Chakraborty, R.; Strickland, R.; Iuvone, P.M.; Pardue, M.T. Ambient Light Regulates Retinal Dopamine Signaling and Myopia Susceptibility. Investig. Ophthalmol. Vis. Sci. 2021, 62, 28. [Google Scholar] [CrossRef]
- Wei, C.C.; Kung, Y.J.; Chen, C.S.; Chang, C.Y.; Lin, C.J.; Tien, P.T.; Chang, H.Y.; Chen, H.J.; Huang, Y.S.; Lin, H.J.; et al. Allergic Conjunctivitis-induced Retinal Inflammation Promotes Myopia Progression. EBioMedicine 2018, 28, 274–286. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yuan, Y.; Li, M.; To, C.H.; Lam, T.C.; Wang, P.; Yu, Y.; Chen, Q.; Hu, X.; Ke, B. The Role of the RhoA/ROCK Signaling Pathway in Mechanical Strain-Induced Scleral Myofibroblast Differentiation. Investig. Ophthalmol. Vis. Sci. 2018, 59, 3619–3629. [Google Scholar] [CrossRef] [Green Version]
- Barathi, V.A.; Beuerman, R.W. Molecular mechanisms of muscarinic receptors in mouse scleral fibroblasts: Prior to and after induction of experimental myopia with atropine treatment. Mol. Vis. 2011, 17, 680–692. [Google Scholar]
- Summers, J.A.; Martinez, E. Visually induced changes in cytokine production in the chick choroid. Elife 2021, 10, e70608. [Google Scholar] [CrossRef] [PubMed]
- Li, T.; Zhou, X.; Li, B.; Jiang, B. Effect of MT3 on Retinal and Choroidal TGF-beta2 and HAS2 Expressions in Form Deprivation Myopia of Guinea Pig. J. Ophthalmol. 2017, 2017, 5028019. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bitzer, M.; Feldkaemper, M.; Schaeffel, F. Visually induced changes in components of the retinoic acid system in fundal layers of the chick. Exp. Eye Res. 2000, 70, 97–106. [Google Scholar] [CrossRef] [PubMed]
- Liu, A.L.; Liu, Y.F.; Wang, G.; Shao, Y.Q.; Yu, C.X.; Yang, Z.; Zhou, Z.R.; Han, X.; Gong, X.; Qian, K.W.; et al. The role of ipRGCs in ocular growth and myopia development. Sci. Adv. 2022, 8, eabm9027. [Google Scholar] [CrossRef]
- Tian, X.D.; Cheng, Y.X.; Liu, G.B.; Guo, S.F.; Fan, C.L.; Zhan, L.H.; Xu, Y.C. Expressions of type I collagen, alpha2 integrin and beta1 integrin in sclera of guinea pig with defocus myopia and inhibitory effects of bFGF on the formation of myopia. Int. J. Ophthalmol. 2013, 6, 54–58. [Google Scholar] [PubMed]
- Chen, B.J.; Lam, T.C.; Liu, L.Q.; To, C.H. Post-translational modifications and their applications in eye research (Review). Mol. Med. Rep. 2017, 15, 3923–3935. [Google Scholar] [CrossRef] [Green Version]
- Ghorbani Mojarrad, N.; Plotnikov, D.; Williams, C.; Guggenheim, J.A.; Eye, U.K.B.; Vision, C. Association Between Polygenic Risk Score and Risk of Myopia. JAMA. Ophthalmol. 2020, 138, 7–13. [Google Scholar] [CrossRef] [Green Version]
- Schaeffel, F.; Feldkaemper, M. Animal models in myopia research. Clin. Exp. Optom. 2015, 98, 507–517. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Barzykowski, K.; Staugaard, S.R. How intention and monitoring your thoughts influence characteristics of autobiographical memories. Br. J. Psychol. 2018, 109, 321–340. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tkatchenko, T.V.; Tkatchenko, A.V. Pharmacogenomic Approach to Antimyopia Drug Development: Pathways Lead the Way. Trends Pharmacol. Sci. 2019, 40, 833–852. [Google Scholar] [CrossRef]
Publications | Research Techniques | Animal Myopia Model, Targeted Tissues | Findings |
---|---|---|---|
PMID: 34405458 Karouta et al. (2021) [73] | RNA-seq; Enrichment analysis was undertaken using GO terms and the KEGG database; Validation of RNA-seq data by sqRT-PCR | Chick, FDM with and without drug interference, the retina | The JAK-STAT and circadian entrainment pathways showed significant gene enrichment through KEGG analysis; Alternative splicing events show commonality across growth-inhibitory treatments |
PMID: 30167661 Srinivasalu et al. (2018) [74] | Customized microarray analysis; pathway analysis performed using GO; qPCR for validation | Guinea pig, FDM, forskolin (FSK) to induce myopia, sclera | FSK and FD both promote myopia through increased collagen degradation, targeting cAMP signaling pathway genes that could suppress myopia development. |
PMID: 27832275 Metlapally et al. (2016) [75] | Custom multispecies miRNA microarrays and pathway analyses performed using GO, and qPCR for validation | C57BL/6J mice, FDM, the sclera | There were 54 differentially expressed miRNAs and 261 mRNAs in treated than in fellow eyes. Significant ontologies included intermediate filament organization, scaffold protein binding, detection of stimuli, calcium ion, G protein, and phototransduction. Significant differential expression of miRNAs Let-7a and miR-16-2, and genes Smok4a, Prph2, and Gnat1 were confirmed. |
PMID: 17652709 McGlinn et al. (2007) [76] | Affymetrix Chicken GeneChip microarray; qRT-PCR for validation. | Chick, FDM, the retina/RPE | In chickens that had 6 h of FDM BMP2 and NOV downregulated 3 days of FDM, BMP2, VIP, URP2, and MKP2 downregulated ETB and IL-18 upregulated. |
PMID: 17653032 Brand, Schaeffel and Feldkaemper (2007) [76] | Affymetrix GeneChip Mouse array, sqRT-PCR for validation | C57BL/6 mice, FDM while controlling for retinal illuminance | Affected genes at the mRNA level were Egr-1, cFos, Akt2, and Mapk8ip3. A pattern of differential transcription in the retina changed with the treatment. |
PMID: 29625465 Srinivasalu et al. (2018) [77] | RNA-seq; Differential expression analysis using Voom; Pathway analysis using IPA; qRT-PCR for validation. | Guinea pig, FDM, peripapillary zone vs. peripheral temporal sclera | There were 348 genes differentially expressed between two regions, of which 61 were differentially expressed in the peripapillary zone between myopic and control eyes. Pathway analyses showed the involvement of Gαi signaling along with previously reported GABA and glutamate receptors. |
PMID: 34830490 Zeng et al. (2021) [78] | ERG, RNA-seq, confocal microscopy, KEGG enrichment analysis | Guinea pigs, FDM, the retina | There were 288 genes upregulated and 119 genes downregulated in FDM retinas compared to naïve control. Tyrosine metabolism, ABC transporters, and inflammatory pathways were upregulated, whereas tight junction, lipid, and glycosaminoglycan biosynthesis were downregulated in FDM eyes. |
PMID: 33674625 Vocale et al. (2021) [79] | RNA-seq; Enrichment analysis using GO, KEGG, Pathway Interaction Database, Reactome, and the Signal Transduction Knowledge Environment; microarray for validation | Chicks, FDM, the retina/RPE/choroid | FDM led to significant suppression in the ligand-gated chloride ion channel transport pathway via suppression of glycine, GABA-A, and GABA-C ionotropic receptors. Recovery from FDM for 6 h and 24 h all induced significant upregulation of cone receptor phototransduction, mitochondrial energy, and complement pathways. |
PMID: 34841657 Liu et al. (2022) [80] | Differentially expressed miRNA (DE- miR) screening; Pathway analysis using GO, KEGG, UniProt, and Drugbank Protein-protein interaction (PPI) network creation and modular analysis; qRT-PCR | Mouse, FDM, Retina | Three upregulated miRNAs (mmu-miR-1936, mmu-miR-338-5p, and mmu-miR-673-3p) were significantly associated with myopia. GO functional analysis suggested these three miRNAs were targeted in genes mostly enriched in morphogenesis and developmental growth of retinal tissues. |
PMID: 29987045 Wu et al. (2018) [81] | scRNA-Seq; RT-PCR; WB; GSEA | Mouse and guinea pig, FDM, sclera | The eIF2-signaling and mTOR-signaling pathways were activated in murine myopic sclera. Consistent with the role of hypoxic pathways in the mouse model of myopia, nearly one-third of human myopia risk genes from the GWAS and linkage analyses interact with genes in the HIF-1α–signaling pathway. |
Publications | Research Techniques | Species Targeted Tissues | Findings |
---|---|---|---|
PMID: 15525903 Yin, Gentle, and McBrien (2004) [62] | PCR; Southern blot; Northern blot | Chick | No evidence of M1 mRNA expression in PCR or Southern blot. Chicks do not possess an M1 receptor, therefore pirenzepine, an M1 selective muscarinic antagonist is unlikely to exert its effect via the M1 pathway. |
PMID: 32495406 Ding et al. (2020) [82] | DNA methylation assay; qPCR; Mass spectrometry | guinea pig, FDM, sclera | The methylation of four cytosine-guanine sites in the IGF-1 gene promoter was significantly lower in the sclera after four weeks of FDM, and the transcription level of scleral IGF-1 was moderately higher. The level of MMP-2 mRNA in the sclera of MDT eyes was significantly higher, but not regulated by the methylation pathway. |
PMID: 34083742 Quint et al. (2021) [83] | Eccentric photorefraction; scRNA-seq; | gjd2a and gjd2b mutant Zebrafish, the retina | Cx35.5 (gjd2a) depletion leads to hyperopia and electrophysiological changes in the retina and lack of Cx35.1 (gjd2b) led to a nuclear cataract that triggered axial elongation. |
PMID: 19011237 Jobling et al. (2009) [84] | Collagen Gel cell contraction assay; qRT-PCR; Immunocytochemistry; WB | Tree shrew, FDM, sclera | α-SMA levels were increased in FDM eyes, suggesting increased numbers of contractile myofibroblasts, and decreased in eyes recovering from FDM. |
PMID: 32725213 Srinivasalu et al. (2020) [85] | qPCR; cAMP radioimmunoassay | Guinea pig, FDM + drug interference, Sclera | EP2 agonism increased cAMP and HIF-1α signaling, which decreased scleral fibrosis and promoted myopia. EP2 antagonism instead inhibited these responses |
PMID: 34287272 Hsu et al. (2021) [86] | ELISA; IHC and IF; WB | Golden Syrian hamsters, FDM, Retina | Resveratrol increased collagen I levels and suppresses the levels of MMP2 and inflammatory cytokines such as TNF-α, IL-6, and IL-1β. |
PMID: 33502461 Landis et al. (2021) [87] | HPLC; ddPCR; WB | C57BL/6J Mice, -10 D LIMunder 3 different lighting conditions, Retina | Lighting conditions affected mRNA levels of TH in both LIM and the control group of mice. |
PMID: 29398596 Wei et al. (2018) [88] | ELISA; IF; IHC | Rat, chicken ovalbumin injection, Retina | The expression levels of inflammatory markers were up-regulated, lower refractive error and longer axial length were observed in eyes with allergic conjunctivitis, with myopia progression enhanced by TNF-α or IL-6 administration. |
PMID: 30029249 Yuan et al. (2018) [89] | qRT-PCR; WB; mechanical stretching protocol; confocal microscopy; Flow cytometry | Guinea Pig, FDM, Sclera | mRNA and protein levels of RhoA and α-SMA were significantly increased in the FDM eyes. Mechanical strain led to the activation of RhoA signaling and the differentiation of scleral myofibroblasts, likely to be mediated by RhoA/ROCK2-MRTF-A/ SRF pathway. |
PMID: 21403852 Barathi and Beuerman (2011) [90] | qPCR; Northern blots | Balb/CJ (BJ) and C57BL/6 (B6) mice, LIM with and without atropine application, sclera | Muscarinic receptor subtype (M)1, 3, and 4 were upregulated in myopic sclera after atropine treatment. |
PMID: 34608867 Summers and Martinez (2021) [91] | Microarray; qRT-PCR; ELISA | Chick, FDM with and without atropine application, choroid | IL-6 was upregulated in chick choroids under recovery from induced myopia and compensation for positive lenses. Intraocular administration of atropine, an agent known to slow ocular elongation, also resulted in an increase in choroidal IL-6 gene expression |
PMID: 29163988 Li et al. (2017) [92] | qPCR; WB | Guinea pig, FDM with and without MT3 application, retina and choroid | MT3 can inhibit FDM, and MT3 treatment can result in changes in retinal and choroidal TGF-β2 and HAS2 mRNA and protein expressions. |
PMID: 10644425 Bitzer, Feldkaemper and Schaeffel (2000) [93] | Northern blot; PCR | Chick, LIM and FDM, retina and choroid | AHD2 is up-regulated after LIM. An inhibitor of RA synthesis, disulfiram, inhibited FDM but not LIM. |
PMID: 33318135 Zhao et al. (2022) [43] | qRT-PCR; scRNA-seq; Pathway analysis using KEGG | Vipr2-KO mice, wild type C57BL/6J mice with and without VIPR2 antagonist PG99-465 or VIPR2 agonist Ro25-1553 treatment, FDM, | After either 1 or 2 days of FDM, retinal VIP mRNA expression was downregulated. scRNA-seq showed cAMP signaling pathway axis was inhibited in VIPR2-expressing cells. The selective VIPR2 antagonist PG99-465 induced relative myopia, whereas the selective VIPR2 agonist Ro25-1553 inhibited it. Vipr2-KO mice were myopic. |
PMID: 35675393 Liu et al. (2022) [94] | Specific ablation and chemogenetic activation of intrinsically photosensitive retinal ganglion cells (ipRGCs); IHC; qRT-PCR; WB; ERG; HPLC | C57BL/6, Opn4Cre/Cre, Opn4Cre/+, Opn4−/− mice, FDM, retina | FDM was inhibited in ipRGC-ablated and melanopsin-deficient animals. Melanopsin expression/photoresponses increased in form-deprived eyes. Cell subtype–specific ablation showed that M1 subtype cells, and probably M2/M3 subtype cells, are involved in ocular development. |
PMID: 23550266 Tian et al. (2013) [95] | RT-PCR, WB | Guinea pig, LIM with or without bFGF injection, sclera | bFGF inhibited LIM. LIM decreased type I collagen, α2 integrin, and β1 integrin expressions while bFGF increased them significantly |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jiang, L.; Goh, D.X.; Koh, J.H.Z.; Chan, X.; Brennan, N.A.; Barathi, V.A.; Hoang, Q.V. Applications of Genomics and Transcriptomics in Precision Medicine for Myopia Control or Prevention. Biomolecules 2023, 13, 494. https://doi.org/10.3390/biom13030494
Jiang L, Goh DX, Koh JHZ, Chan X, Brennan NA, Barathi VA, Hoang QV. Applications of Genomics and Transcriptomics in Precision Medicine for Myopia Control or Prevention. Biomolecules. 2023; 13(3):494. https://doi.org/10.3390/biom13030494
Chicago/Turabian StyleJiang, Liqin, Dong Xuan Goh, James Hao Zhong Koh, Xavier Chan, Noel A. Brennan, Veluchamy Amutha Barathi, and Quan V. Hoang. 2023. "Applications of Genomics and Transcriptomics in Precision Medicine for Myopia Control or Prevention" Biomolecules 13, no. 3: 494. https://doi.org/10.3390/biom13030494
APA StyleJiang, L., Goh, D. X., Koh, J. H. Z., Chan, X., Brennan, N. A., Barathi, V. A., & Hoang, Q. V. (2023). Applications of Genomics and Transcriptomics in Precision Medicine for Myopia Control or Prevention. Biomolecules, 13(3), 494. https://doi.org/10.3390/biom13030494