The Impact of Cholecaciferol Supplementation on Bone Mineral Density in Long-Term Kidney Transplant Recipients
Abstract
:1. Introduction
2. Materials and Methods
Statistical Analysis
3. Results
3.1. Baseline Study Population and DEXA Assessment
3.2. Follow-Up Study Population and DEXA Assessment
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Hariharan, S. Long-term kidney transplant survival. Am. J. Kidney Dis. 2001, 38 (Suppl. 6), S44–S50. [Google Scholar] [CrossRef] [PubMed]
- Palmer, S.C.; Chung, E.Y.; McGregor, D.O.; Bachmann, F.; Strippoli, G.F. Interventions for preventing bone disease in kidney transplant recipients. Cochrane Database Syst. Rev. 2007, 10, CD005015. [Google Scholar] [CrossRef] [PubMed]
- Bouquegneau, A.; Salam, S.; Delanaye, P.; Eastell, R.; Khwaja, A. Bone Disease after Kidney Transplantation. Clin. J. Am. Soc. Nephrol. 2016, 11, 1282–1296. [Google Scholar] [CrossRef] [Green Version]
- Malluche, H.H.; Monier-Faugere, M.-C.; Herberth, J. Bone disease after renal transplantation. Nat. Rev. Nephrol. 2010, 6, 32–40. [Google Scholar] [CrossRef] [Green Version]
- Monier-Faugere, M.C.; Mawad, H.; Qi, Q.; Friedler, R.M.; Malluche, H.H. High prevalence of low bone turnover and occurrence of osteomalacia after kidney transplantation. J. Am. Soc. Nephrol. 2000, 11, 1093–1099. [Google Scholar] [CrossRef] [PubMed]
- Malluche, H.H.; Mawad, H.W.; Monier-Faugere, M.-C. Renal osteodystrophy in the first decade of the new millennium: Analy-sis of 630 bone biopsies in black and white patients. J. Bone Miner. Res. 2011, 26, 1368–1376. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Khairallah, P.; Nickolas, T.L. Bone and Mineral Disease in Kidney Transplant Recipients. Clin. J. Am. Soc. Nephrol. 2022, 17, 121–130. [Google Scholar] [CrossRef] [PubMed]
- Stavroulopoulos, A.; Cassidy, M.J.D.; Porter, C.J.; Hosking, D.J.; Roe, S.D. Vitamin D Status in Renal Transplant Recipients. Am. J. Transplant. 2007, 7, 2546–2552. [Google Scholar] [CrossRef]
- Sarno, G.; Nappi, R.; Altieri, B.; Tirabassi, G.; Muscogiuri, E.; Salvio, G.; Paschou, S.A.; Ferrara, A.; Russo, E.; Vicedomini, D.; et al. Current evidence on vitamin D deficiency and kidney transplant: What’s new? Rev. Endocr. Metab. Disord. 2017, 18, 323–334. [Google Scholar] [CrossRef]
- Mainra, R.; Elder, G.J. Individualized therapy to prevent bone mineral density loss after kidney and kidney-pancreas trans-plantation. Clin. J. Am. Soc. Nephrol. 2010, 5, 117–124. [Google Scholar] [CrossRef] [Green Version]
- Torres, A.; García, S.; Gćmez, A.; González, A.; Barrios, Y.; Concepción, M.T.; Hernández, D.; García, J.J.; Checa, M.D.; Lorenzo, V.; et al. Treatment with intermittent calcitriol and calcium reduces bone loss after renal transplantation. Kidney Int. 2004, 65, 705–712. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gonzalez, E.; Rojas-Rivera, J.; Polanco, N.; Morales, E.; Morales, J.M.; Egido, J.; Amado, A.; Praga, M. Effects of Oral Paricalci-tol on Secondary Hyperparathyroidism and Proteinuria of Kidney Transplant Patients. Transplantation 2013, 95, e49–e52. [Google Scholar] [CrossRef] [PubMed]
- Available online: https://www.nice.org.uk/guidance/ng203 (accessed on 28 March 2023).
- Goldsmith, D.J.; Covic, A.; Fouque, D. Endorsement of the kidney disease improving global outcomes (KDIGO) chronic kidney disease-mineral and bone disorder (CKD-MBD) guidelines: A European renal best practice (ERBP) commentary statement. Nephrol. Dial. Transpl. 2010, 25, 3823–3831. [Google Scholar] [CrossRef] [PubMed]
- Ketteler, M.; Block, G.A.; Evenepoel, P.; Fukagawa, M.; Herzog, C.A.; McCann, L.; Moe, S.M.; Shroff, R.; Tonelli, M.A.; Toussaint, N.D.; et al. Executive summary of the 2017 KDIGO Chronic Kidney Disease–Mineral and Bone Disorder (CKD-MBD) Guideline Update: What’s changed and why it matters. Kidney Int. 2017, 92, 26–36. [Google Scholar] [CrossRef] [Green Version]
- Battaglia, Y.; Bellasi, A.; Bortoluzzi, A.; Tondolo, F.; Esposito, P.; Provenzano, M.; Russo, D.; Andreucci, M.; Cianciolo, G.; Storari, A. Bone Mineral Density Changes in Long-Term Kidney Transplant Recipients: A Real-Life Cohort Study of Native Vitamin D Supplementation. Nutrients 2022, 14, 323. [Google Scholar] [CrossRef]
- National Kidney Fundation. K/DOQI Clinical practice guidelines for bone metabolism and disease in chronic kidney disease. Am. J. Kidney Dis. 2003, 42, S1–S201. [Google Scholar] [CrossRef]
- Kidney Disease: Improving Global Outcomes (KDIGO) CKD-MBD Work Group. KDIGO clinical practice guideline for the diagnosis, evaluation, prevention, and treatment of Chronic Kidney Disease-Mineral and Bone Disorder (CKD-MBD). Kidney Int. Suppl. 2009, 113, S1–S130. [Google Scholar]
- Nuti, R.; Brandi, M.L.; Checchia, G.; Di Munno, O.; Dominguez, L.; Falaschi, P.; Fiore, C.E.; Iolascon, G.; Maggi, S.; Michieli, R.; et al. Guidelines for the management of osteoporosis and fragility fractures. Intern. Emerg. Med. 2019, 14, 85–102. [Google Scholar] [CrossRef] [Green Version]
- Levey, A.S.; Bosch, J.P.; Lewis, J.B.; Greene, T.; Rogers, N.; Roth, D. A more accurate method to estimate glomerular filtration rate from serum creatinine: A new prediction equation. Modification of Diet in Renal Disease Study Group. Ann. Intern. Med. 1999, 130, 461–470. [Google Scholar] [CrossRef]
- Giustina, A.; Bilezikian, J.P. (Eds.) Vitamin D in Clinical Medicine; Karger: Basel, Switzerland, 2018; Volume 50, pp. 14–30. [Google Scholar]
- Taniguchi, M.; Tanaka, M.; Hamano, T.; Nakanishi, S.; Fujii, H.; Kato, H.; Koiwa, F.; Ando, R.; Kimata, N.; Akiba, T.; et al. Comparison between Whole and Intact Parathyroid Hormone Assays. Ther. Apher. Dial. 2011, 15 (Suppl. 1), 42–49. [Google Scholar] [CrossRef]
- Leffondre, K.; Boucquemont, J.; Tripepi, G.; Stel, V.S.; Heinze, G.; Dunkler, D. Analysis of risk factors associated with renal function trajectory over time: A comparison of different statistical approaches. Nephrol. Dial. Transplant. 2015, 30, 1237–1243. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wissing, K.M.; Broeders, E.N.; Reyes, M.R.M.; Gervy, C.; Stallenberg, B.; Abramowicz, D. A Controlled Study of Vitamin D3 to Prevent Bone Loss in Renal-Transplant Patients Receiving Low Doses of Steroids. Transplantation 2005, 79, 108–115. [Google Scholar] [CrossRef]
- Jeon, H.; Han, M.; Jeong, J.; Kim, Y.; Kwon, H.; Koo, T.; Ahn, C.; Yang, J. Impact of Vitamin D, Bisphosphonate, and Combination Therapy on Bone Mineral Density in Kidney Transplant Patients. Transplant. Proc. 2013, 45, 2963–2967. [Google Scholar] [CrossRef] [PubMed]
- Tsujita, M.; Doi, Y.; Obi, Y.; Hamano, T.; Tomosugi, T.; Futamura, K.; Okada, M.; Hiramitsu, T.; Goto, N.; Isaka, Y.; et al. Author response for “Cholecalciferol supplementation attenuates bone loss in incident kidney transplant recipients: A prespecified secondary endpoint analysis of a randomized controlled trial. J. Bone Miner. Res. 2021, 37, 303–311. [Google Scholar] [CrossRef] [PubMed]
- Battaglia, Y.; Cojocaru, E.; Fiorini, F.; Granata, A.; Esposito, P.; Russo, L.; Bortoluzzi, A.; Storari, A.; Russo, D. Vitamin D in kidney transplant recipients. Clin. Nephrol. 2020, 93, 57–64. [Google Scholar] [CrossRef]
- Priemel, M.; Von Domarus, C.; Klatte, T.O.; Kessler, S.; Schlie, J.; Meier, S.; Proksch, N.; Pastor, F.; Netter, C.; Streichert, T.; et al. Bone mineralization defects and vitamin D deficiency: Histomorphometric analysis of iliac crest bone biopsies and circulating 25-hydroxyvitamin D in 675 patients. J. Bone Miner. Res. 2010, 25, 305–312. [Google Scholar] [CrossRef]
- Keronen, S.; Martola, L.; Finne, P.; Burton, I.S.; Kröger, H.; Honkanen, E. Changes in Bone Histomorphometry after Kidney Transplantation. Clin. J. Am. Soc. Nephrol. 2019, 14, 894–903. [Google Scholar] [CrossRef] [Green Version]
- Yang, Y.; Qiu, S.; Deng, L.; Tang, X.; Li, X.; Wei, Q.; Fu, P. Outcomes of bisphosphonate and its supplements for bone loss in kid-ney transplant recipients: A systematic review and network meta-analysis. BMC Nephrol. 2018, 19, 269. [Google Scholar] [CrossRef] [Green Version]
- Cueto-Manzano, A.M.; Konel, S.; Freemont, A.J.; Adams, J.E.; Mawer, B.; Gokal, R.; Hutchison, A. Effect of 1,25-dihydroxyvitamin D3 and calcium carbonate on bone loss associated with long-term renal transplantation. Am. J. Kidney Dis. 2000, 35, 227–236. [Google Scholar] [CrossRef]
- Koc, M.; Tuglular, S.; Arikan, H.; Ozener, C.; Akoglu, E. Alendronate increases bone mineral density in long-term renal trans-plant recipients. Transpl. Proc. 2002, 34, 2111–2113. [Google Scholar] [CrossRef]
- Tartaglione, L.; Pasquali, M.; Rotondi, S.; Muci, M.L.; Leonangeli, C.; Farcomeni, A.; Fassino, V.; Mazzaferro, S. Interactions of sclerostin with FGF23, soluble klotho and vitamin D in renal transplantation. PLoS ONE 2017, 12, e0178637. [Google Scholar] [CrossRef] [PubMed]
- Provenzano, M.; Andreucci, M.; De Nicola, L.; Garofalo, C.; Battaglia, Y.; Borrelli, S.; Gagliardi, I.; Faga, T.; Michael, A.; Mastroroberto, P.; et al. The Role of Prognostic and Predictive Biomarkers for Assessing Cardiovascular Risk in Chronic Kidney Disease Patients. BioMed Res. Int. 2020, 2020, 2314128. [Google Scholar] [CrossRef] [PubMed]
- Russo, D.; Battaglia, Y. Clinical Significance of FGF-23 in Patients with CKD. Int. J. Nephrol. 2011, 2011, 2314128. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Battaglia, Y.; Fiorini, F.; Gisonni, P.; Imbriaco, M.; Lentini, P.; Zeiler, M.; Russo, L.; Prencipe, M.; Russo, D.; Ultrasound Study Group of the Italian Society of Nephrology. Ultrasonographic Assessment of Atherosclerotic Renal Artery Stenosis in Elderly Patients with Chronic Kidney Disease: An Italian Cohort Study. Diagnostics 2022, 12, 1454. [Google Scholar] [CrossRef]
- Battaglia, Y.; Ullo, I.; Massarenti, S.; Esposito, P.; Prencipe, M.; Ciancio, G.; Provenzano, M.; Fiorini, F.; Andreucci, M.; Storari, A.; et al. Ultrasonography of Quadriceps Femoris Muscle and Subcutaneous Fat Tissue and Body Composition by BIVA in Chronic Dialysis Patients. Nutrients 2020, 12, 1388. [Google Scholar] [CrossRef]
- Pisani, A.; Petruzzelli Annicchiarico, L.; Pellegrino, A.; Bruzzese, D.; Feriozzi, S.; Imbriaco, M.; Tedeschi, E.; Cocozza, S.; De Rosa, D.; Mignani, R.; et al. Parapelvic cysts, a distinguishing feature of renal Fabry disease. Nephrol. Dial. Transplant. 2018, 33, 318–323. [Google Scholar] [CrossRef] [Green Version]
- Esposito, P.; Picciotto, D.; Battaglia, Y.; Costigliolo, F.; Viazzi, F.; Verzola, D. Myostatin: Basic biology to clinical application. Adv. Clin. Chem. 2022, 106, 181–234. [Google Scholar]
- Aucella, F.; Battaglia, Y.; Bellizzi, V.; Bolignano, D.; Capitanini, A.; Cupisti, A. Erratum to: Physical exercise programs in CKD: Lights, shades and perspectives. J. Nephrol. 2015, 28, 143–150. [Google Scholar] [CrossRef]
- Aucella, F.; Gesuete, A.; Battaglia, Y. A “Nephrological” Approach to Physical Activity. Kidney Blood Press. Res. 2014, 39, 189–196. [Google Scholar] [CrossRef]
- Russo, D.; Morrone, L.F.; Errichiello, C.; De Gregorio, M.G.; Imbriaco, M.; Battaglia, Y.; Russo, L.; Andreucci, M.; Di Iorio, B.R. Impact of BMI on Cardiovascular Events, Renal Function, and Coronary Artery Calcification. Blood Purif. 2014, 38, 1–6. [Google Scholar] [CrossRef]
KTRs-Free (n. 69) | KTRs-Treated (n. 49) | p-Value | |||
---|---|---|---|---|---|
Age, years * | 52.20 | (11.14) | 56.61 | (12.32) | 0.04 ° |
Male, n (%) | 51 | (73.91) | 30 | (61.22) | 0.14 |
Smoker, n (%) | 7 | (10.14) | 4 | (8.16) | 0.71 |
Diabetes, n (%) | 5 | (7.24) | 10 | (20.40) | 0.04 ° |
BMI, kg/m2 * | 24.71 | (2.97) | 23.29 | (3.94) | 0.21 |
HD Vintage Pre-KT, months * | 28.14 | (30.32) | 28.29 | (21.51) | 0.97 |
KT pre-emptive, n (%) | 5 | (7.24) | 2 | (4.08) | 0.69 |
KT duration, months ** | 88 | (28–188) | 61 | (21–154) | 0.50 |
Systolic BP, mmHg * | 130.00 | (14.30) | 128.47 | (15.28) | 0.57 |
Diastolic BP, mmHg * | 77.83 | (7.35) | 77.76 | (8.96) | 0.96 |
FC, bpm * | 73.80 | (11.41) | 71.88 | (10.50) | 0.35 |
serum Creatinine, mg/dL * | 1.43 | (0.55) | 1.30 | (0.44) | 0.17 |
eGFR, ml/min * | 53.84 | (16.87) | 56.12 | (18.69) | 0.49 |
serum Calcium, mg/dL * | 9.40 | (0.43) | 9.39 | (0.53) | 0.98 |
serum Phosphorus, mg/dL * | 3.21 | (0.60) | 3.20 | (0.71) | 0.92 |
25-OH Vitamin D, ng/mL * | 15.43 | (8.07) | 14.70 | (9.29) | 0.64 |
intact PTH, pg/mL * | 103.38 | (80.01) | 108.96 | (68.50) | 0.69 |
Total Protein, g/dL * | 6.61 | (0.52) | 6.62 | (0.60) | 0.91 |
Albumin, % * | 58.88 | (4.14) | 58.51 | (4.82) | 0.65 |
Immunosuppressive Therapy | |||||
Steroids, n (%) | 63 | (91.30) | 45 | (91.83) | 0.71 |
Steroids dose, mg * | 3.45 | (1.35) | 3.82 | (1.19) | 0.12 |
Cyclosporine, n (%) | 28 | (40.57) | 19 | (38.77) | 0.74 |
Tacrolimus, n (%) | 37 | (53.62) | 28 | (57.14) | 0.84 |
Mycophenolate mofetil, n (%) | 44 | (63.76) | 32 | (65.30) | 0.96 |
Azathioprine, n (%) | 8 | (11.59) | 6 | (12.24) | 0.96 |
mTOR inhibitors, n (%) | 4 | (5.79) | 7 | (14.28) | 0.13 |
WHO | FN | Mean | SD | LV | Mean | SD |
---|---|---|---|---|---|---|
Normal BMD | T score KTRs-free | −0.572 | 0.698 | T score KTRs-free | 0.137 | 0.954 |
T score KTRs-treated | −0.100 | 0.676 | T score KTRs-treated | −0.312 | 0.527 | |
p-value | 0.89 | p-value | 0.84 | |||
Z score KTRs-free | 0.112 | 0.724 | Z score KTRs-free | 0.731 | 1.136 | |
Z score KTRs-treated | 0.700 | 0.880 | Z score KTRs-treated | 0.476 | 0.631 | |
p-value | 0.57 | p-value | 0.40 | |||
Osteopenia | T score KTRs-free | −1.659 | 0.459 | T score KTRs-free | −1.670 | 0.322 |
T score KTRs-treated | −1.773 | 0.371 | T score KTRs-treated | −1.737 | 0.434 | |
p-value | 0.28 | p-value | 0.55 | |||
Z score KTRs-free | −0.834 | 0.524 | Z score KTRs-free | −1.015 | 0.541 | |
Z score KTRs-treated | −0.763 | 0.629 | Z score KTRs-treated | −1.284 | 1.613 | |
p-value | 0.63 | p-value | 0.42 | |||
Osteoporosis | T score KTRs-free | −2.590 | 0.242 | T score KTRs-free | −3.100 | 0.425 |
T score KTRs-treated | −2.690 | 0.600 | T score KTRs-treated | −3.190 | 0.546 | |
p-value | 0.63 | p-value | 0.64 | |||
Z score KTRs-free | −1.500 | 0.419 | Z score KTRs-free | −2.333 | 0.530 | |
Z score KTRs-treated | −1.650 | 0.843 | Z score KTRs-treated | −2.220 | 0.989 | |
p-value | 0.62 | p-value | 0.74 |
Sites | Variables | WHO Classification | KTRs Free | KTRs Treated | p °° | Sites | Variables | WHO Classification | KTRs Free | KTRs Treated | p °° |
---|---|---|---|---|---|---|---|---|---|---|---|
FN | Calcium mg/dL * | Normal BMD | 9.59 (0.50) | 9.27 (0.48) | 0.92 | LV | Calcium mg/dL * | Normal BMD | 9.55 (0.42) | 9.46 (0.45) | 0.49 |
Osteopenia | 9.63 (0.47) | (9.50) (0.50) | 0.27 | Osteopenia | 9.70 (0.44) | 9.45 (0.59) | 0.11 | ||||
Osteoporosis | 9.41 (0.68) | 9.44 (0.72) | 0.92 | Osteoporosis | 9.41 (0.79) | 9.44 (0.59) | 0.94 | ||||
Statistics ° | 0.48 | 0.50 | Statistics ° | 0.27 | 0.99 | ||||||
FN | Phosphorus mg/dL * | Normal BMD | 3.29 (0.58) | 3.37 (0.68) | 0.70 | LV | Phosphorus mg/dL * | Normal BMD | 3.38 (0.60) | 3.31 (0.63) | 0.67 |
Osteopenia | 3.37 (0.59) | 3.24 (0.50) | 0.35 | Osteopenia | 3.30 (0.58) | 3.40 (0.55) | 0.54 | ||||
Osteoporosis | 3.42 (0.51) | 3.26 (0.74) | 0.57 | Osteoporosis | 3.35 (0.48) | 3.08 (0.51) | 0.21 | ||||
Statistics ° | 0.79 | 0.82 | Statistics ° | 0.85 | 0.36 | ||||||
FN | 25-OH Vit D ng/mL * | Normal BMD | 30.47 (8.66) | 27.10 (8.25) | 0.29 | LV | 25-OH Vit D ng/mL * | Normal BMD | 27.81 (8.92) | 28.89 (9.54) | 0.69 |
Osteopenia | 28.49 (9.82) | 32.71 (10.44) | 0.10 | Osteopenia | 30.69 (9.25) | 30.29 (8.88) | 0.88 | ||||
Osteoporosis | 30.80 (5.85) | 33.40 (5.67) | 0.34 | Osteoporosis | 29.84 (7.58) | 37.79 (8.63) | 0.03 ** | ||||
Statistics ° | 0.64 | 0.20 | Statistics ° | 0.48 | 0.04 ** | ||||||
FN | iPTH pg/mL * | Normal BMD | 81.89 (37.93) | 81.07 (27.09) | 0.95 | LV | iPTH pg/mL * | Normal BMD | 82.18 (41.91) | 90.00 (41.11) | 0.53 |
Osteopenia | 82.08 (40.85) | 89.90 (42.03) | 0.46 | Osteopenia | 77.50 (32.39) | 88.46 (32.67) | 0.26 | ||||
Osteoporosis | 95.96 (41.21) | 92.78 (38.92) | 0.86 | Osteoporosis | 105.85 (43.61) | 86.10 (44.00) | 0.31 | ||||
Statistics ° | 0.59 | 0.79 | Statistics ° | 0.12 | 0.96 |
Gain T Score | Gain Z Score | Gain BMD | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Lumbar Spine | p | Femoral Neck | p | Lumbar Spine | p | Femoral Neck | p | Lumbar Spine | p | Femoral Neck | p | |
KTRs-free | 0.03 ± 0.51 | 0.88 | −0.07 ± 0.35 | 0.82 | 0.07 ± 0.46 | 0.92 | −0.03 ± 0.47 | 0.68 | −0.03 ± 0.27 | 0.30 | 0.01 ± 0.07 | 0.66 |
KTRs-treated | 0.01 ± 0.45 | 0.75 | −0.04 ± 0.28 | 0.66 | 0.07 ± 0.44 | 0.35 | 0.02 ± 0.28 | 0.98 | −0.01 ± 0.04 | 0.77 | 0.01 ± 0.05 | 0.98 |
p-value | 0.77 | 0.64 | 0.95 | 0.41 | 0.47 | 0.51 |
Parameter | Estimate | Std. Error | df | t | Sig. | 95% CI | |
---|---|---|---|---|---|---|---|
LB | UB | ||||||
Intercept | −2.449 | 1.115 | 121.817 | −2.196 | 0.030 | −4.658 | −0.241 |
Age | −0.003 | 0.013 | 83.970 | −0.278 | 0.781 | −0.030 | 0.023 |
Sex | −0.947 | 0.344 | 68.559 | −2.749 | 0.008 * | −1.635 | −0.259 |
BMI | 0.102 | 0.037 | 131.997 | 2.719 | 0.007 * | 0.028 | 0.177 |
25-OH-Vit D | 0.007 | 0.003 | 80.521 | 2.045 | 0.044 * | 0.001 | 0.014 |
Diabetes | 1.284 | 0.581 | 68.863 | 2.211 | 0.030 * | 0.125 | 2.444 |
A. Dependent Variable: Z Score at lumbar vertebral bodies | |||||||
Intercept | −2.205 | 1.149 | 117.142 | −1.918 | 0.057 | −4.481 | 0.071 |
Age | −0.038 | 0.013 | 81.308 | −2.826 | 0.006 * | −0.064 | −0.011 |
Sex | −0.310 | 0.341 | 69.286 | −0.911 | 0.366 | −0.990 | 0.369 |
BMI | 0.119 | 0.039 | 130.519 | 3.004 | 0.003 * | 0.040 | 0.197 |
25-OH-Vit D | 0.008 | 0.003 | 80.949 | 2.063 | 0.042 * | 0.001 | 0.015 |
Diabetes | 1.288 | 0.575 | 69.825 | 2.240 | 0.028 * | 0.141 | 2.435 |
B. Dependent Variable: T Score at lumbar vertebral bodies |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Battaglia, Y.; Bellasi, A.; Esposito, P.; Bortoluzzi, A.; Rotondi, S.; Andreucci, M.; Fiorini, F.; Russo, D.; Storari, A. The Impact of Cholecaciferol Supplementation on Bone Mineral Density in Long-Term Kidney Transplant Recipients. Biomolecules 2023, 13, 629. https://doi.org/10.3390/biom13040629
Battaglia Y, Bellasi A, Esposito P, Bortoluzzi A, Rotondi S, Andreucci M, Fiorini F, Russo D, Storari A. The Impact of Cholecaciferol Supplementation on Bone Mineral Density in Long-Term Kidney Transplant Recipients. Biomolecules. 2023; 13(4):629. https://doi.org/10.3390/biom13040629
Chicago/Turabian StyleBattaglia, Yuri, Antonio Bellasi, Pasquale Esposito, Alessandra Bortoluzzi, Silverio Rotondi, Michele Andreucci, Fulvio Fiorini, Domenico Russo, and Alda Storari. 2023. "The Impact of Cholecaciferol Supplementation on Bone Mineral Density in Long-Term Kidney Transplant Recipients" Biomolecules 13, no. 4: 629. https://doi.org/10.3390/biom13040629
APA StyleBattaglia, Y., Bellasi, A., Esposito, P., Bortoluzzi, A., Rotondi, S., Andreucci, M., Fiorini, F., Russo, D., & Storari, A. (2023). The Impact of Cholecaciferol Supplementation on Bone Mineral Density in Long-Term Kidney Transplant Recipients. Biomolecules, 13(4), 629. https://doi.org/10.3390/biom13040629