Spermiogenesis in Caenorhabditis elegans: An Excellent Model to Explore the Molecular Basis for Sperm Activation
Abstract
:1. Introduction
2. Overview of C. elegans Spermiogenesis
2.1. Male Reproductive Processes in Mice and C. elegans
2.2. Acrosome Reaction in Mice and Membranous Organelle Fusion in C. elegans
2.3. Spermiogenesis Pathways in C. elegans
2.4. Molecular Annotations of Cellular Reactions Occurring during C. elegans Spermiogenesis
3. Pharmacological Approach to the Mechanism Underlying C. elegans Spermiogenesis
3.1. Compounds Triggering Spermiogenesis
- Triethanolamine (TEA): TEA is a weak base that increases intracellular pH in spermatids [53]. Since it can activate spe-8 and spe-12 [19] but not fer-1 mutant spermatids [31], TEA might trigger spermiogenesis in a FER-1-dependent manner by affecting downstream SPE-8 class proteins. The half-maximal effective concentration (EC50) is approximately 10 mM at pH 7.8 [53].
- MAPK activators: 4-(2-Aminoethyl)benzenesulfonyl fluoride (AEBSF), an irreversible inhibitor of serine proteases, also acts as an activator of MAPKs [54]. AEBSF induces spermiogenesis in spe-8 class and snf-10 mutant spermatids but not in zipt-7.1 mutant cells [34]. AEBSF presumably affects the downstream of SPE-8 class proteins and SNF-10 and the upstream of ZIPT-7.1. The concentration employed for the assay (conc.) was 5 mM at pH 7.4 [34] or 0.5–20 mM at pH 7.0 [35]. Anisomycin (not shown in Figure 4) is a potent protein synthesis inhibitor and activator of c-Jun N-terminal kinase (JNK) [55], a member of the MAPK family. Like AEBSF, anisomycin can trigger spermiogenesis in spermatids, presumably via activation of JNK [35]. Conc. = 1 or 1.6 mM at pH 7.4 [35].
- Monensin: This is a Na+- and K+-transporting ionophore. The extracellular Na+ and K+ concentrations affect in vitro spermiogenesis [53]. Similar to that with TEA, activation of wild-type spermatids with monensin [43] is accompanied by an increase in intracellular pH [53], and triggering spermiogenesis can also be observed in spe-8 and spe-12 mutants [19]. EC50 ≈ 20 nM at pH 7.8 [53].
- 4,4′-Diisothiocyanatostilbene-2,2′-disulfonic acid (DIDS): This agent likely blocks Clir, an inward-rectifying chloride channel on the C. elegans spermatid PM [57]. DIDS can activate the wild-type but not spe-8 class mutant spermatids [57], suggesting that DIDS-induced spermiogenesis is linked to the SPE-8 class-dependent pathway. EC50 ≈ 500 µM at pH 7.8 [57].
- Calmodulin inhibitors: Chlorpromazine (CPZ), trifluoperazine (TFZ), and N-(6-aminohexyl)-5-chloro-1-naphthalenesulfonamide (W-7) belong to this category. These compounds trigger spermiogenesis at similar concentrations (EC50 ≈ 20 µM at pH 7.8) [19]; however, whether calmodulin is involved in activating spermatids remains to be clarified.
- DDI-6: This compound was screened as an in vitro SAF of C. elegans spermiogenesis from the Core Library, provided by the Drug Discovery Initiative (DDI), Tokyo, Japan [58]. DDI-6 also activates the acrosome reaction in mouse spermatozoa [58]. How DDI-6 triggers spermiogenesis in C. elegans spermatids and the acrosome reaction in mouse spermatozoa remains unknown. Conc. = 100 µM at pH 7.4 [58].
3.2. Compounds Blocking Pseudopod Extension but Not MO Fusion
- DDI-1 and its analogs: As spermatids are treated with Pron or ProK in the presence of DDI-1, the cells can undergo MO fusion but fail to extend pseudopods [34]. Moreover, some DDI-1 analogs (DDI-1A, DDI-1C, and DDI-1H; the two latter drugs are not shown in Figure 4) exhibit similar effects. These compounds block Pron-triggered pseudopod extension, but not that of ProK [34], suggesting that the original DDI-1 and DDI-1 analogs can dissect spermiogenesis pathways into the reactions of MO fusion and pseudopod extension, enabling us to focus on the mechanism of pseudopod extension during spermiogenesis. Conc. = 100 µM at pH 7.4 [34].
4. Conclusions and Future Perspectives
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Yanagimachi, R. Mammalian fertilization. In The Physiology of Reproduction; Knobil, E., Neill, J.D., Eds.; Raven Press: New York, NY, USA, 1994; Volume 1, pp. 189–317. [Google Scholar]
- Molina, L.C.P.; Luque, G.M.; Balestrini, P.A.; Marín-Briggiler, C.I.; Romarowski, A.; Buffone, M.G. Molecular basis of human sperm capacitation. Front. Cell Dev. Biol. 2018, 6, 72. [Google Scholar] [CrossRef] [Green Version]
- Leemans, B.; Stout, T.A.E.; Schauwer, C.D.; Heras, S.; Nelis, H.; Hoogewijs, M.; Soom, A.V.; Bart, M.; Gadella, B.M. Update on mammalian sperm capacitation: How much does the horse differ from other species? Reproduction 2019, 157, R181–R197. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- L’Hernault, S.W. The genetics and cell biology of spermatogenesis in the nematode C. elegans. Mol. Cell. Endocrinol. 2009, 306, 59–65. [Google Scholar] [CrossRef] [PubMed]
- Nishimura, H.; L’Hernault, S.W. Spermatogenesis-defective (spe) mutants of the nematode Caenorhabditis elegans provide clues to solve the puzzle of male germline functions during reproduction. Dev. Dyn. 2010, 239, 1502–1514. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shakes, D.C. For male Caenorhabditis elegans, sperm activation is a “just-in-time” event. PLoS Genet. 2011, 7, e1002392. [Google Scholar] [CrossRef] [Green Version]
- Ma, X.; Zhao, Y.; Sun, W.; Shimabukuro, K.; Miao, L. Transformation: How do nematode sperm become activated and crawl? Protein Cell 2012, 3, 755–761. [Google Scholar] [CrossRef] [Green Version]
- Ellis, R.E.; Stanfield, G.M. The regulation of spermatogenesis and sperm function in nematodes. Semin. Cell Dev. Biol. 2014, 29, 17–30. [Google Scholar] [CrossRef] [Green Version]
- Nishimura, H.; L’Hernault, S.W. Spermatogenesis. Curr. Biol. 2017, 27, R988–R994. [Google Scholar] [CrossRef] [Green Version]
- Ward, S.; Carrel, J.S. Fertilization and sperm competition in the nematode Caenorhabditis elegans. Dev. Biol. 1979, 73, 304–321. [Google Scholar] [CrossRef]
- Smith, J.R.; Stanfield, G.M. TRY-5 is a sperm-activating protease in Caenorhabditis elegans seminal fluid. PLoS Genet. 2011, 7, e1002375. [Google Scholar] [CrossRef]
- Satouh, Y.; Inoue, N.; Ikawa, M.; Okabe, M. Visualization of the moment of mouse sperm-egg fusion and dynamic localization of IZUMO1. J. Cell Sci. 2012, 125, 4985–4990. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fenker, K.E.; Hansen, A.A.; Chong, C.A.; Jud, M.C.; Duffy, B.A.; Norton, J.P.; Hansen, J.M.; Stanfield, G.M. SLC6 family transporter SNF-10 is required for protease-mediated activation of sperm motility in C. elegans. Dev. Biol. 2014, 393, 171–182. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- L’Hernault, S.W.; Arduengo, P.M. Mutation of a putative sperm membrane protein in Caenorhabditis elegans prevents sperm differentiation but not its associated meiotic divisions. J. Cell Biol. 1992, 119, 55–68. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Arduengo, P.M.; Appleberry, O.K.; Chuang, P.; L’Hernault, S.W. The presenilin protein family member SPE-4 localizes to an ER/Golgi derived organelle and is required for proper cytoplasmic partitioning during Caenorhabditis elegans spermatogenesis. J. Cell Sci. 1998, 111, 3645–3654. [Google Scholar] [CrossRef]
- Gosney, R.; Liau, W.-S.; Lamunyon, C.W. A novel function for the presenilin family member spe-4: Inhibition of spermatid activation in Caenorhabditis elegans. BMC Dev. Biol. 2008, 8, 44. [Google Scholar] [CrossRef] [Green Version]
- Muhlrad, P.J.; Ward, S. Spermiogenesis initiation in Caenorhabditis elegans involves a casein kinase 1 encoded by the spe-6 gene. Genetics 2002, 161, 143–155. [Google Scholar] [CrossRef]
- L’Hernault, S.W.; Shakes, D.C.; Ward, S. Developmental genetics of chromosome I spermatogenesis-defective mutants in the nematode Caenorhabditis elegans. Genetics 1988, 120, 435–452. [Google Scholar] [CrossRef] [PubMed]
- Shakes, D.C.; Ward, S. Initiation of spermiogenesis in C. elegans: A pharmacological and genetic analysis. Dev. Biol. 1989, 134, 189–200. [Google Scholar] [CrossRef] [PubMed]
- Nance, J.; Minniti, A.N.; Sadler, C.; Ward, S. spe-12 encodes a sperm cell surface protein that promotes spermiogenesis in Caenorhabditis elegans. Genetics 1999, 152, 209–220. [Google Scholar] [CrossRef]
- Geldziler, B.; Chatterjee, I.; Singson, A. The genetic and molecular analysis of spe-19, a gene required for sperm activation in Caenorhabditis elegans. Dev. Biol. 2005, 283, 424–436. [Google Scholar] [CrossRef] [Green Version]
- Minniti, A.N.; Sadler, C.; Ward, S. Genetic and molecular analysis of spe-27, a gene required for spermiogenesis in Caenorhabditis elegans hermaphrodites. Genetics 1996, 143, 213–223. [Google Scholar] [CrossRef] [PubMed]
- Nance, J.; Davis, E.B.; Ward, S. spe-29 encodes a small predicted membrane protein required for the initiation of sperm activation in Caenorhabditis elegans. Genetics 2000, 156, 1623–1633. [Google Scholar] [CrossRef] [PubMed]
- Krauchunas, A.R.; Mendez, E.; Ni, J.Z.; Druzhinina, M.; Mulia, A.; Parry, J.; Gu, S.G.; Stanfield, G.M.; Singson, A. spe-43 is required for sperm activation in C. elegans. Dev. Biol. 2018, 436, 75–83. [Google Scholar] [CrossRef]
- Liau, W.-S.; Nasri, U.; Elmatari, D.; Rothman, J.; LaMunyon, C.W. Premature sperm activation and defective spermatogenesis caused by loss of spe-46 function in Caenorhabditis elegans. PLoS ONE 2013, 8, e57266. [Google Scholar] [CrossRef] [Green Version]
- LaMunyon, C.W.; Nasri, U.; Sullivan, N.G.; Shaw, M.; Prajapati, G.; Christensen, M.; Elmatari, D.; Clark, J.N. A new player in the spermiogenesis pathway of Caenorhabditis elegans. Genetics 2015, 201, 1103–1116. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhao, Y.; Tan, C.-H.; Krauchunas, A.; Scharf, A.; Dietrich, N.; Warnhoff, K.; Yuan, Z.; Druzhinina, M.; Gu, S.G.; Miao, L.; et al. The zinc transporter ZIPT-7.1 regulates sperm activation in nematodes. PLoS Biol. 2018, 16, e2005069. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stanfield, G.M.; Villeneuve, A.M. Regulation of sperm activation by SWM-1 is required for reproductive success of C. elegans males. Curr. Biol. 2006, 16, 252–263. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ward, S.; Argon, Y.; Nelson, G.A. Sperm morphogenesis in wild-type and fertilization-defective mutants of Caenorhabditis elegans. J. Cell Biol. 1981, 91, 26–44. [Google Scholar] [CrossRef]
- Achanzar, W.E.; Ward, S. A nematode gene required for sperm vesicle fusion. J. Cell Sci. 1997, 110, 1073–1081. [Google Scholar] [CrossRef]
- Washington, N.L.; Ward, S. FER-1 regulates Ca2+-mediated membrane fusion during C. elegans spermatogenesis. J. Cell Sci. 2006, 119, 2552–2562. [Google Scholar] [CrossRef] [Green Version]
- Reinke, V.; Smith, H.E.; Nance, J.; Wang, J.; Doren, C.V.; Begley, R.; Jones, S.J.; Davis, E.B.; Scherer, S.; Ward, S.; et al. A global profile of germline gene expression in C. elegans. Mol. Cell 2000, 6, 605–616. [Google Scholar] [CrossRef] [Green Version]
- Reinke, V.; Gil, I.S.; Ward, S.; Kazmer, K. Genome-wide germline-enriched and sex-biased expression profiles in Caenorhabditis elegans. Development 2004, 131, 311–323. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tajima, T.; Ogawa, F.; Nakamura, S.; Hashimoto, M.; Omote, M.; Nishimura, H. Proteinase K is an activator for the male-dependent spermiogenesis pathway in Caenorhabditis elegans: Its application to pharmacological dissection of spermiogenesis. Genes Cells 2019, 24, 244–258. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, Z.; Wang, B.; He, R.; Zhao, Y.; Miao, L. Calcium signaling and the MAPK cascade are required for sperm activation in Caenorhabditis elegans. Biochim. Biophys. Acta 2014, 1843, 299–308. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Smith, H. Sperm motility and MSP. In WormBook; The C. elegans Research Community: Cambridge, UK, 2006. [Google Scholar] [CrossRef]
- Wu, J.-C.; Go, A.C.; Samson, M.; Cintra, T.; Mirsoian, S.; Wu, T.F.; Jow, M.M.; Routman, E.J.; Chu, D.S. Sperm development and motility are regulated by PP1 phosphatases in Caenorhabditis elegans. Genetics 2012, 190, 143–157. [Google Scholar] [CrossRef] [Green Version]
- Pramod, A.B.; Foster, J.; Carvelli, L.; Henry, L.K. SLC6 transporters: Structure, function, regulation, disease association and therapeutics. Rev. Mol. Asp. Med. 2013, 34, 197–219. [Google Scholar] [CrossRef] [Green Version]
- Liu, Z.; Chen, L.; Shang, Y.; Huang, P.; Miao, L. The micronutrient element zinc modulates sperm activation through the SPE-8 pathway in Caenorhabditis elegans. Development 2013, 140, 2103–2107. [Google Scholar] [CrossRef] [Green Version]
- Tan, C.-H.; Kornfeld, K. Zinc is an intracellular signal during sperm activation in Caenorhabditis elegans. Development 2021, 148, dev199836. [Google Scholar] [CrossRef]
- Clapham, D.E. Calcium signaling. Cell 2007, 131, 1047–1058. [Google Scholar] [CrossRef] [Green Version]
- Singaravelu, G.; Singson, A. Calcium signaling surrounding fertilization in the nematode Caenorhabditis elegans. Cell Calcium 2013, 53, 2–9. [Google Scholar] [CrossRef] [Green Version]
- Nelson, G.A.; Ward, S. Vesicle fusion, pseudopod extension and amoeboid motility are induced in nematode spermatids by the ionophore monensin. Cell 1980, 19, 457–464. [Google Scholar] [CrossRef]
- Putney, J.W., Jr. Ca2+ stores and Ca2+ pools. In Basic Neurochemistry: Molecular, Cellular and Medical Aspects, 6th ed.; Siegel, G.J., Agranoff, B.W., Albers, R.W., Fisher, S.K., Uhler, M.D., Eds.; Lippincott-Raven: Philadelphia, PA, USA, 1999. Available online: https://www.ncbi.nlm.nih.gov/books/NBK28135/ (accessed on 1 February 2023).
- Gleason, E.J.; Hartley, P.D.; Henderson, M.; Hill-Harfe, K.L.; Price, P.W.; Weimer, R.M.; Kroft, T.L.; Zhu, G.-D.; Cordovado, S.; L’Hernault, S.W. Developmental genetics of secretory vesicle acidification during Caenorhabditis elegans spermatogenesis. Genetics 2012, 191, 477–491. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chatterjee, I.; Richmond, A.; Putiri, E.; Shakes, D.C.; Singson, A. The Caenorhabditis elegans spe-38 gene encodes a novel four-pass integral membrane protein required for sperm function at fertilization. Development 2005, 132, 2795–2808. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xu, X.-Z.S.; Sternberg, P.W. A C. elegans sperm TRP protein required for sperm-egg interactions during fertilization. Cell 2003, 114, 285–297. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zannoni, S.; L’Hernault, S.W.; Singson, A.W. Dynamic localization of SPE-9 in sperm: A protein required for sperm-oocyte interactions in Caenorhabditis elegans. BMC Dev. Biol. 2003, 3, 10. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Aldana, A.; Carneiro, J.; Martínez-Mekler, G.; Darszon, A. Discrete dynamic model of the mammalian sperm acrosome reaction: The influence of acrosomal pH and physiological heterogeneity. Front. Physiol. 2021, 12, 682790. [Google Scholar] [CrossRef]
- Morohoshi, A.; Miyata, H.; Tokuhiro, K.; Iida-Norita, R.; Noda, T.; Fujihara, Y.; Ikawa, M. Testis-enriched ferlin, FER1L5, is required for Ca2+-activated acrosome reaction and male fertility. Sci. Adv. 2023, 9, eade7607. [Google Scholar] [CrossRef] [PubMed]
- Duman, J.G.; Forte, J.G. What is the role of SNARE proteins in membrane fusion? Am. J. Physiol. Cell Physiol. 2003, 285, C237–C249. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, Q.; Cao, Z.; Du, B.; Zhang, Q.; Chen, L.; Wang, X.; Yuan, Z.; Wang, P.; He, R.; Shan, J.; et al. Membrane contact site-dependent cholesterol transport regulates Na+/K+-ATPase polarization and spermiogenesis in Caenorhabditis elegans. Dev. Cell 2021, 56, 1631–1645.e7. [Google Scholar] [CrossRef]
- Ward, S.; Hogan, E.; Nelson, G.A. The initiation of spermiogenesis in the nematode Caenorhabditis elegans. Dev. Biol. 1983, 98, 70–79. [Google Scholar] [CrossRef] [PubMed]
- Wijayanti, N.; Kietzmann, T.; Immenschuh, S. Heme oxygenase-1 gene activation by the NAD(P)H oxidase inhibitor 4-(2-aminoethyl) benzenesulfonyl fluoride via a protein kinase B, p38-dependent signaling pathway in monocytes. J. Biol. Chem. 2005, 280, 21820–21829. [Google Scholar] [CrossRef] [Green Version]
- Cano, E.; Mahadevan, L.C. Parallel signal processing among mammalian MAPKs. Trends Biochem. Sci. 1995, 20, 117–122. [Google Scholar] [CrossRef]
- Bae, Y.-K.; Kim, E.; L’Hernault, S.W.; Barr, M.M. The CIL-1 PI 5-phosphatase localizes TRP polycystins to cilia and activates sperm in C. elegans. Curr. Biol. 2009, 19, 1599–1607. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Machaca, K.; DeFelice, L.J.; L’Hernault, S.W. A novel chloride channel localizes to Caenorhabditis elegans spermatids and chloride channel blockers induce spermatid differentiation. Dev. Biol. 1996, 176, 1–16. [Google Scholar] [CrossRef] [Green Version]
- Karuo, Y.; Shiraki, R.; Yoshida, A.; Tsunokawa, R.; Nakahara-Yamada, M.; Tarui, A.; Sato, K.; Kawai, K.; Omote, M.; Nishimura, H. Identification and synthesis of DDI-6, a quinolinol analog capable of activating both Caenorhabditis elegans and mouse spermatozoa. Chem. Pharm. Bull. 2021, 69, 557–563. [Google Scholar] [CrossRef]
- Visconti, P.E.; Ning, X.; Fornés, M.W.; Alvarez, J.G.; Stein, P.; Connors, S.A.; Kopf, G.S. Cholesterol efflux-mediated signal transduction in mammalian sperm: Cholesterol release signals an increase in protein tyrosine phosphorylation during mouse sperm capacitation. Dev. Biol. 1999, 214, 429–443. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jimenez, T.; McDermott, J.P.; Sánchez, G.; Blanco, G. Na,K-ATPase α4 isoform is essential for sperm fertility. Proc. Natl. Acad. Sci. USA 2011, 108, 644–649. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rochester, J.D.; Hyemin Min, H.; Gajjar, G.A.; Sharp, C.S.; Maki, N.J.; Rollins, J.A.; Keiper, B.D.; Graber, J.H.; Updike, D.L. GLH-1/Vasa represses neuropeptide expression and drives spermiogenesis in the C. elegans germline. Dev. Biol. 2022, 492, 200–211. [Google Scholar] [CrossRef]
- Tanaka, S.S.; Toyooka, Y.; Akasu, R.; Katoh-Fukui, Y.; Nakahara, Y.; Suzuki, R.; Yokoyama, M.; Noce, T. The mouse homolog of Drosophila Vasa is required for the development of male germ cells. Genes Dev. 2000, 14, 841–853. [Google Scholar] [CrossRef]
Gene | LG | M/F 1 | Encoded Protein | Sex of Mutants in Which Spermiogenesis Does Not Occur | Ref. |
---|---|---|---|---|---|
snf-10 | V | 15.9 | SLC6 transporter (673 aa) | Male | [13] |
spe-4 | I | 2.72 | Presenilin-like Asp protease (465 aa) | Hermaphrodite and male | [14,15,16] |
spe-6 | III | ND | Casein kinase 1-like Ser/Thr kinase (379 aa) | Hermaphrodite and male | [17] |
spe-8 | I | 2.92 | Non-receptor type Tyr kinase with a SH2 domain (512 aa) | Hermaphrodite | [18,19] |
spe-12 | I | 1.20 | Single-pass TM protein (255 aa) | Hermaphrodite and partially male | [18,19,20] |
spe-19 | V | 4.63 | Single-pass TM protein (300 aa) | Hermaphrodite | [21] |
spe-27 | IV | 9.32 | Soluble protein (131 aa) | Hermaphrodite | [22] |
spe-29 | IV | ND | Single-pass TM protein (66 aa) | Hermaphrodite | [23] |
spe-43 | IV | 3.97 | Soluble protein (226 aa) Single-pass TM protein (273 aa) | Hermaphrodite | [24] |
spe-46 | I | 35.8 | Six-pass TM protein (290 aa) | Hermaphrodite and male | [25] |
spe-47 | I | 5.94 | Soluble protein with an MSP domain (380 aa) | Hermaphrodite and male | [26] |
zipt-7.1 | IV | 1.00 | Zinc transporter (393 aa) | Hermaphrodite and male | [27] |
try-5 | V | 0.95 | Ser protease (327 aa) | Male | [11] |
swm-1 | V | 2.15 | Soluble protein with two TIL domains (135 aa) | Male | [28] |
fer-1 | I | 8.24 | Ca2+-dependent lipid-binding protein (2034 aa) | Hermaphrodite and male | [29,30,31] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shimada, Y.; Kanazawa-Takino, N.; Nishimura, H. Spermiogenesis in Caenorhabditis elegans: An Excellent Model to Explore the Molecular Basis for Sperm Activation. Biomolecules 2023, 13, 657. https://doi.org/10.3390/biom13040657
Shimada Y, Kanazawa-Takino N, Nishimura H. Spermiogenesis in Caenorhabditis elegans: An Excellent Model to Explore the Molecular Basis for Sperm Activation. Biomolecules. 2023; 13(4):657. https://doi.org/10.3390/biom13040657
Chicago/Turabian StyleShimada, Yoshihiro, Nana Kanazawa-Takino, and Hitoshi Nishimura. 2023. "Spermiogenesis in Caenorhabditis elegans: An Excellent Model to Explore the Molecular Basis for Sperm Activation" Biomolecules 13, no. 4: 657. https://doi.org/10.3390/biom13040657
APA StyleShimada, Y., Kanazawa-Takino, N., & Nishimura, H. (2023). Spermiogenesis in Caenorhabditis elegans: An Excellent Model to Explore the Molecular Basis for Sperm Activation. Biomolecules, 13(4), 657. https://doi.org/10.3390/biom13040657