Jasmonic and Salicylic Acids Enhance Biomass, Total Phenolic Content, and Antioxidant Activity of Adventitious Roots of Acmella radicans (Jacq.) R.K. Jansen Cultured in Shake Flasks
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Material
2.2. Obtaining Aseptic Plants
2.3. Adventitious Root Induction
2.4. Establishment of Roots Culture in Shake Flasks
2.5. Adventitious Roots Growth Kinetics
2.6. Elicitation of Roots with Jasmonic and Salicylic Acids
2.7. Obtaining Extracts from In Vitro Cultures and Wild Plants
2.8. Determination of Total Phenolic Content
2.9. Evaluation of Antioxidant Activity
2.9.1. DPPH Assay
2.9.2. ABTS Assay
2.10. Statistical Analysis
3. Results and Discussion
3.1. In Vitro Plant Culture
3.2. Adventitious Roots and Callus Induction from Internodal Segments
3.3. Adventitious Roots Cultures in Shake Flasks
3.4. Elicitor Effects on Adventitious Root Cultures in Shake Flasks
3.4.1. SA and JA Effect on Root Dry Weight
3.4.2. SA and JA Effects on Total Phenolic Content and Antioxidant Activity
3.5. Total Phenolic Content and Antioxidant Activity of In Vitro Plantlets and Wild Plants
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Muñoz López de Bustamante, F. Plantas Medicinales y Aromáticas: Estudio, Cultivo y Procesado; Mundi-Prensa: Madrid, Spain, 2002; pp. 15–30. [Google Scholar]
- Villaseñor, J.L. Diversidad y distribución de la familia Asteraceae en México. Bot. Sci. 2018, 96, 332–358. [Google Scholar] [CrossRef]
- Heinrich, M.; Robles, M.; West, J.E.; Ortiz De Montellano, B.R.; Rodriguez, E. Ethnopharmacology of Mexican Asteraceae (Compositae). Ann. Rev. Pharmacol. Toxicol. 1998, 38, 539–565. [Google Scholar] [CrossRef] [PubMed]
- Jansen, R.K. The systematics of Acmella (Asteraceae-Heliantheae). Syst. Bot. Monogr. 1985, 8, 1–115. [Google Scholar] [CrossRef]
- Pruski, J.F. Asteraceae. In Flora of the Venezuelan Guayana; Steyermark, J.A., Berry, P.E., Holst, B.K., Eds.; Missouri Botanical Garden Press: St. Louis, MO, USA, 1997; Volume 3, pp. 177–393. [Google Scholar]
- Davidse, G.; Sousa-Sánchez, M.; Knapp, S.; Chiang-Cabrera, F. Asteraceae. In Flora Mesoamericana; Davidse, G., Sousa-Sánchez, M., Knapp, S., Chiang-Cabrera, F., Eds.; Missouri Botanical Garden: St. Louis, MO, USA, 2018; Volume 5, pp. 1–608. [Google Scholar]
- Rios-Chavez, P.; Ramirez-Chavez, E.; Armenta-Salinas, C.; Molina-Torres, J. Acmella radicans var. radicans: In vitro culture establishment and alkamide content. In Vitro Cell. Dev. Biol. Plant 2003, 39, 37–41. [Google Scholar] [CrossRef]
- Rios, M.Y. Natural Alkamides: Pharmacology, Chemistry and Distribution. In Drug Discovery Research in Pharmacognosy; Vallisuta, O., Ed.; Intech: Kyiv, Ukraine, 2012; Volume 244, pp. 107–144. [Google Scholar] [CrossRef]
- Sharma, R.; Arumugam, N. N-alkylamides of Spilanthes (syn: Acmella): Structure, purification, characterization, biological activities and applications—A review. Future Foods 2021, 3, 100022. [Google Scholar] [CrossRef]
- Abdul Rahim, R.; Jayusman, P.A.; Muhammad, N.; Mohamed, N.; Lim, V.; Ahmad, N.H.; Mohamad, S.; Abdul Hamid, Z.A.; Ahmad, F.; Mokhtar, N.; et al. Potential Antioxidant and Anti-Inflammatory Effects of Spilanthes acmella and Its Health Beneficial Effects: A Review. Int. J. Environ. Res. Public. Health 2021, 18, 3532. [Google Scholar] [CrossRef]
- Abeysinghe, D.C.; Wijerathne, S.M.N.K.; Dharmadasa, R.M. Secondary metabolites contents and antioxidant capacities of Acmella oleraceae grown under different growing systems. World J. Agric. Res. 2014, 2, 163–167. [Google Scholar] [CrossRef]
- Rzedowski, J.; de Rzedowski, G.C. Compositae. Tribu Heliantheae I. In Flora del Bajío y de Regiones Adyacentes; Rzedowski, G.C., de y Rzedowski, J., Eds.; Instituto de Ecología-Centro Regional del Bajío: Pátzcuaro, Mexico, 2008; Volume 157, p. 12. [Google Scholar] [CrossRef]
- NOM-059-SEMARNAT-2010; Norma Oficial Mexicana. Protección Ambiental-Especies Nativas de México de flora y Fauna Silvestres-Categorías de Riesgo y Especificaciones para su Inclusión, Exclusión o Cambio-Lista de Especies en Riesgo. Diario Oficial: Mexico City, Mexico, 2010; Volume 6, pp. 158–169.
- Jirovetz, L.; Buchbauer, G.; Abraham, G.T.; Shafi, M.P. Chemical composition and olfactoric characterization of Acmella radicans (Jacq.) RK Jansen var. radicans from southern India. Flavour Fragr. J. 2006, 21, 88–91. [Google Scholar] [CrossRef]
- Carvalho, E.; Curtis, W.R. Characterization of fluid-flow resistance in root cultures with a convective flow tubular bioreactor. Biotechnol. Bioeng. 1998, 60, 375–384. [Google Scholar] [CrossRef]
- Sivakumar, G. Bioreactor technology: A novel industrial tool for high-tech production of bioactive molecules and biopharmaceuticals from plant root. Biotechnol. J. 2006, 12, 1419–1427. [Google Scholar] [CrossRef]
- Hu, G.; Jia, J. Production of useful secondary metabolites through regulation of biosynthetic pathway in cell and tissue suspension culture of medicinal plants. In Recent Advances in Plant In Vitro Culture; IntechOpen: London, UK, 2012; pp. 197–210. [Google Scholar] [CrossRef]
- Paponov, M.; Antonyan, M.; Slimestad, R.; Paponov, I.A. Decoupling of plant growth and accumulation of biologically active compounds in leaves, roots, and root exudates of Hypericum perforatum L. by the combination of jasmonate and far-red lighting. Biomolecules 2021, 11, 1283. [Google Scholar] [CrossRef]
- Lv, Z.Y.; Sun, W.J.; Jiang, R.; Chen, J.F.; Ying, X.; Zhang, L.; Chen, W.S. Phytohormones jasmonic acid, salicylic acid, gibberellins, and abscisic acid are key mediators of plant secondary metabolites. World J. Tradit. Chin. Med. 2021, 7, 307. [Google Scholar] [CrossRef]
- Han, L.; Piao, X.C.; Jiang, J.; Jiang, X.L.; Yin, C.R.; Lian, M.L. A high production of flavonoids and anthraquinones via adventitious root culture of Oplopanax elatus and evaluating antioxidant activity. Plant Cell Tissue Organ Cult. 2019, 137, 173–179. [Google Scholar] [CrossRef]
- Ho, T.T.; Lee, J.D.; Jeong, C.S.; Paek, K.Y.; Park, S.Y. Improvement of biosynthesis and accumulation of bioactive compounds by elicitation in adventitious root cultures of Polygonum multiflorum. Appl. Microbiol. Biotechnol. 2018, 102, 199–209. [Google Scholar] [CrossRef]
- Khanam, M.N.; Anis, M.; Javed, S.B.; Mottaghipisheh, J.; Csupor, D. Adventitious root culture—An alternative strategy for secondary metabolite production: A review. Agronomy 2022, 12, 1178. [Google Scholar] [CrossRef]
- Pandey, S.; Sundararajan, S.; Ramalingam, S.; Pant, B. Elicitation and plant growth hormone-mediated adventitious root cultures for enhanced valepotriates accumulation in commercially important medicinal plant Valeriana jatamansi Jones. Acta Physiol. Plant. 2022, 44, 1–13. [Google Scholar] [CrossRef]
- Saeed, S.; Ali, H.; Khan, T.; Kayani, W.; Khan, M.A. Impacts of methyl jasmonate and phenyl acetic acid on biomass accumulation and antioxidant potential in adventitious roots of Ajuga bracteosa Wall ex Benth., a high valued endangered medicinal plant. Physiol. Mol. Biol. Plants 2017, 23, 229–237. [Google Scholar] [CrossRef]
- Murashige, T.; Skoog, F. A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol. Plant. 1962, 15, 473–497. [Google Scholar] [CrossRef]
- Wojdyło, A.; Oszmiański, J.; Czemerys, R. Antioxidant activity and phenolic compounds in 32 selected herbs. Food Chem. 2007, 105, 940–949. [Google Scholar] [CrossRef]
- Debnath, T.; Park, P.J.; Nath, N.C.D.; Samad, N.B.; Park, H.W.; Lim, B.O. Antioxidant activity of Gardenia jasminoides Ellis fruit extracts. Food Chem. 2011, 128, 697–703. [Google Scholar] [CrossRef]
- Blakesley, D.; Weston, G.D.; Hall, J.F. The role of endogenous auxin in root initiation. Plant Growth Regul. 1991, 10, 341–353. [Google Scholar] [CrossRef]
- Olatunji, D.; Geelen, D.; Verstraeten, I. Control of endogenous auxin levels in plant root development. Int. J. Mol. Sci. 2017, 18, 2587. [Google Scholar] [CrossRef] [PubMed]
- Sana, H.; Rani, A.S. Micropropagation of Spilanthes acmella Murr. from nodal segment and apical shoot tip cultures. Indian J. Sci. Res. 2017, 13, 92–98. [Google Scholar]
- Pandey, V.; Sharma, G.; Shankar, V.; Agrawal, V. Biodiversity and in vitro conservation of three medicinally important herbs: Spilanthes acmella L. var. oleraceae Clarke, S. calva L., and S. paniculata Wall. ex DC. J. Herbs Spices Med. Plants 2014, 20, 295–318. [Google Scholar] [CrossRef]
- Jordán, M.; Casaretto, J. Hormonas y reguladores del crecimiento: Auxinas, giberelinas y citocininas. In Fisiología Vegetal; Squeo, F.A., Cardemil, L., Eds.; Ediciones Universidad de La Serena: La Serena, Chile, 2006; pp. 1–28. [Google Scholar]
- Moubayidin, L.; Di Mambro, R.; Sabatini, S. Cytokinin–auxin crosstalk. Trends Plant Sci. 2009, 14, 557–562. [Google Scholar] [CrossRef]
- Rodríguez Beraud, M.M.; Latsague Vidal, M.I.; Chacón Fuentes, M.A.; Astorga Brevis, P.K. Inducción in vitro de callogénesis y organogénesis indirecta a partir de explantes de cotiledón, hipocótilo y hoja en Ugni molinae. Bosque 2014, 35, 111–118. [Google Scholar] [CrossRef]
- Chamorro, A.H.; Martínez, S.L.; Fernández, J.C.; Mosquera, T. Evaluación de diferentes concentraciones de algunos reguladores de crecimiento en la multiplicación y enraizamiento in vitro de Limonium var. Misty blue. Agron. Colomb. 2007, 25, 47–53. [Google Scholar]
- Espinosa, A.; Silva, J.; Sariego, S.; Cholo Masapanta, L.; Delgado, H. Efecto del tipo de explante y la concentración de ácido 2,4-diclorofenoxiacético en la formación de callos en Morus alba L. Pastos Forrajes 2012, 35, 407–416. [Google Scholar]
- Fonseca-Carrasco, Y.Y.; Brizuela-Fuentes, L.; Silva-Pupo, J.J. Obtención de callos de Morus alba L. variedad acorazonada con medios de cultivo y tipos de explantes diferentes. Pastos Forrajes 2020, 43, 66–73. [Google Scholar]
- Machakova, I.; Zazimalova, E.; George, E.F. Plant Growth Regulators I: Introduction; Auxins, their Analogues and Inhibitors. In Plant Propagation by Tissue Culture: Volume 1. The Background; George, E.F., Hall, M.A., Klerk, G.J.D., Eds.; Springer: Dordrecht, The Netherlands, 2007; pp. 175–204. [Google Scholar] [CrossRef]
- Nabi, N.G.; Shrivastava, M.; Khan, A.A.; Rashid, A.; Dar, S.H. Organogenesis in callus derived from leaf explants of Spilanthes acmella Linn: An endangered medicinal plant. J. Pharmacogn. Phytochem. 2018, 7, 1–7. [Google Scholar]
- Saritha, K.V.; Naidu, C.V. High frequency plant regeneration and in vitro flowering of regenerated plantlets of Spilanthes acmella Murr.—An important threatened bio-insecticide medicinal plant. Acta Hortic. 2007, 756, 183–198. [Google Scholar] [CrossRef]
- Yadav, K.; Singh, N. Micropropagation of Spilanthes acmella Murr—An important medicinal plant. Nat. Sci. 2010, 8, 5–11. [Google Scholar]
- Tanwer, B.S.; Choudhary, R.; Vijayvergia, R. In vitro and in vivo comparative study of primary metabolites and antioxidant activity in Spilanthes acmella Murr. Int. J. Biotechnol. Biochem. 2010, 6, 819–825. [Google Scholar]
- Kulathilaka, P.S.; Senarath, W.T.P.S.K. Determination of cytotoxicity and chemical identities in natural plants and callus cultures of Spilanthes paniculata Wall. ex DC. Int. J. Herb. Med. 2014, 1, 135–141. [Google Scholar]
- Doran, P.M. Mass Transfer. In Bioprocess Engineering Principles, 2nd ed.; Doran, P.M., Ed.; Academic Press: Cambridge, MA, USA; Elsevier: Waltham, MA, USA, 2013; pp. 379–444. [Google Scholar] [CrossRef]
- Link, H.; Weuster-Botz, D. Medium Formulation and Development. In Comprehensive Biotechnology, 2nd ed.; Moo-Young, M., Ed.; Academic Press: Cambridge, MA, USA; Elsevier: Waltham, MA, USA, 2011; pp. 119–134. [Google Scholar] [CrossRef]
- Pandey, V.; Agrawal, V. Efficient micropropagation protocol of Spilanthes acmella L. possessing strong antimalarial activity. Vitr. Cell. Dev. Biol. Plant 2009, 45, 491–499. [Google Scholar] [CrossRef]
- Khalafalla, M.M.; Daffalla, H.M.; El-Shemy, H.A.; Abdellatef, E. Establishment of in vitro fast-growing normal root culture of Vernonia amygdalina—A potent African medicinal plant. Afr. J. Biotechnol. 2009, 8, 5952–5957. [Google Scholar] [CrossRef]
- Praveen, N.; Murthy, H.N. Production of withanolide-A from adventitious root cultures of Withania somnifera. Acta Physiol. Plant. 2010, 32, 1017–1022. [Google Scholar] [CrossRef]
- Sharma, S.N.; Jha, Z.; Sinha, R.K. Establishment of in vitro adventitious root cultures and analysis of andrographolide in Andrographis paniculata. Nat. Prod. Commun. 2013, 8, 1045–1047. [Google Scholar] [CrossRef]
- Khai, P.C.; Minh, T.V.; Khai, P.C.; Minh, T.V. Advance of adventitious root formation and production, and saponin accumulation by in vitro cultures of Giao Co Lam (Gynostemma pentaphyllum). Acta Hortic. 2018, 1224, 109–118. [Google Scholar] [CrossRef]
- Fazal, H.; Abbasi, B.H.; Ahmad, N. Optimization of adventitious root culture for production of biomass and secondary metabolites in Prunella vulgaris L. Appl. Biochem. Biotechnol. 2014, 174, 2086–2095. [Google Scholar] [CrossRef]
- Halder, M.; Sarkar, S.; Jha, S. Elicitation: A biotechnological tool for enhanced production of secondary metabolites in hairy root cultures. Eng. Life Sci. 2019, 19, 880–895. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.W.; Wu, J.Y. Effective elicitors and process strategies for enhancement of secondary metabolite production in hairy root cultures. In Biotechnology of Hairy Root Systems; Advances in Biochemical Engineering/Biotechnology; Doran, P.M., Ed.; Springer: Berlin/Heidelberg, Germany, 2013; pp. 55–89. [Google Scholar] [CrossRef]
- Mendoza, D.; Cuaspud, O.; Arias, J.P.; Ruiz, O.; Arias, M. Effect of salicylic acid and methyl jasmonate in the production of phenolic compounds in plant cell suspension cultures of Thevetia peruviana. Biotechnol. Rep. 2018, 19, e00273. [Google Scholar] [CrossRef] [PubMed]
- Romero, F.R.; Delate, K.; Kraus, G.A.; Solco, A.K.; Murphy, P.A.; Hannapel, D.J. Alkamide production from hairy root cultures of Echinacea. Vitr. Cell. Dev. Biol. Plant 2009, 45, 599–609. [Google Scholar] [CrossRef]
- Ramakrishna, A.; Ravishankar, G.A. Influence of abiotic stress signals on secondary metabolites in plants. Plant Signal. Behav. 2011, 6, 1720–1731. [Google Scholar] [CrossRef]
- Zaheer, M.; Reddy, V.D.; Giri, C.C. Enhanced daidzin production from jasmonic and acetyl salicylic acid elicited hairy root cultures of Psoralea corylifolia L. (Fabaceae). Nat. Prod. Res. 2016, 30, 1542–1547. [Google Scholar] [CrossRef]
- Malarz, J.; Stojakowska, A.; Kisiel, W. Effect of methyl jasmonate and salicylic acid on sesquiterpene lactone accumulation in hairy roots of Cichorium intybus. Acta Physiol. Plant. 2007, 29, 127–132. [Google Scholar] [CrossRef]
- Soleimani, T.; Keyhanfar, M.; Piri, K.; Hasanloo, T. Morphological evaluation of hairy roots induced in Artemisia annua L. and investigating elicitation effects on the hairy roots biomass production. Int. J. Agric. Res. Rev. 2012, 2, 1005–1013. [Google Scholar]
- Kovač, M.; Ravnikar, M. The effect of jasmonic acid on the photosynthetic pigments of potato plants grown in vitro. Plant Sci. 1994, 103, 11–17. [Google Scholar] [CrossRef]
- Kamińska, M. Role and activity of jasmonates in plants under in vitro conditions. Plant Cell Tissue Organ Cult. 2021, 146, 425–447. [Google Scholar] [CrossRef]
- Kazmi, A.; Khan, M.A.; Mohammad, S.; Ali, A.; Kamil, A.; Arif, M.; Ali, H. Elicitation directed growth and production of steviol glycosides in the adventitious roots of Stevia rebaudiana Bertoni. Ind. Crops Prod. 2019, 139, 111530. [Google Scholar] [CrossRef]
- Hwang, H.J.; Song, G.; Kim, M.H.; Do, S.G.; Bae, K.H. Increasement of antioxidative activity in Codonopsis lanceolata adventitious root treated by methyl jasmonate and salicylic acid. J. Plant Biotechnol. 2013, 40, 178–183. [Google Scholar] [CrossRef]
- An, D.; Wu, C.H.; Wang, M.; Wang, M.; Chang, G.N.; Chang, X.J.; Lian, M.L. Methyl jasmonate elicits enhancement of bioactive compound synthesis in adventitious root co-culture of Echinacea purpurea and Echinacea pallida. Vitr. Cell. Dev. Biol. Plant 2022, 58, 181–187. [Google Scholar] [CrossRef]
- Grzegorczyk-Karolak, I.; Krzemińska, M.; Kiss, A.K.; Owczarek-Januszkiewicz, A.; Olszewska, M.A. Role of phytohormones in biomass and polyphenol accumulation in Salvia bulleyana in vitro culture. Biomolecules 2023, 13, 227. [Google Scholar] [CrossRef]
- Park, C.H.; Yeo, H.J.; Park, Y.E.; Chun, S.W.; Chung, Y.S.; Lee, S.Y.; Park, S.U. Influence of chitosan, salicylic acid and jasmonic acid on phenylpropanoid accumulation in germinated buckwheat (Fagopyrum esculentum Moench). Foods 2019, 8, 153. [Google Scholar] [CrossRef]
- Poljšak, B.; Raspor, P. The antioxidant and pro-oxidant activity of vitamin C and trolox in vitro: A comparative study. J. Appl. Toxicol. 2008, 28, 183–188. [Google Scholar] [CrossRef]
- Chung, I.M.; Thiruvengadam, M.; Rekha, K.; Rajakumar, G. Elicitation enhanced the production of phenolic compounds and biological activities in hairy root cultures of bitter melon (Momordica charantia L.). Braz. Arch. Biol. Technol. 2016, 59, e160393. [Google Scholar] [CrossRef]
- Autor, E.; Cornejo, A.; Bimbela, F.; Maisterra, M.; Gandía, L.M.; Martínez-Merino, V. Extraction of phenolic compounds from Populus Salicaceae Bark. Biomolecules 2022, 12, 539. [Google Scholar] [CrossRef]
- Lavanya, D.K.; Shivanna, M.B.; Ganeshan, S. Total phenolic content and antioxidant activity of Spilanthes species from Peninsular India. Int. J. Pharm. Pharmacol. 2017, 1, 115. [Google Scholar] [CrossRef]
- Nabi, N.G.; Wani, T.A.; Shrivastava, M.; Wani, A.; Shah, S.N. Spilanthes acmella an endangered medicinal plant—Its traditional, phytochemical and therapeutic properties—An overview. Int. J. Adv. Res. 2016, 4, 627–639. [Google Scholar]
- Abeysiri, G.R.P.I.; Dharmadasa, R.M.; Abeysinghe, D.C.; Samarasinghe, K. Screening of phytochemical, physico-chemical and bioactivity of different parts of Acmella oleraceae Murr. (Asteraceae), a natural remedy for toothache. Ind. Crops Prod. 2013, 50, 852–856. [Google Scholar] [CrossRef]
- Weintraub, L.; Naftzger, T.; Parr, T.; Henning, S.; Soendergaard, M. Antioxidant activity and antiproliferative effects of Acmella alba, Acmella oleracea, and Acmella calirrhiza. FASEB J. 2020, 34, 1. [Google Scholar] [CrossRef]
- Angerhofer, C.K.; Maes, D.; Giacomoni, P.U. The use of natural compounds and botanicals in the development of anti-aging skin care products. In Skin Aging Handbook; Nava, D., Ed.; William Andrew Publishing: Norwich, NY, USA, 2008; pp. 205–263. [Google Scholar] [CrossRef]
PGRs (mg/L) | Roots Induction (%) | Callus Induction (%) | Simultaneous Root and Callus Induction (%) | No. of Roots per Segment | |
---|---|---|---|---|---|
IBA | KIN | ||||
0.0 | 0.0 | 0.0 ± 0.0 b | 0.0 ± 0.0 c | 0.0 ± 0.0 d | 0.0 ± 0.0 f |
0.01 | 0.0 | 75.0 ± 20.4 a | 0.0 ± 0.0 c | 0.0 ± 0.0 d | 2.8 ± 0.1 cde |
0.01 | 0.1 | 66.7 ± 11.8 a | 0.0 ± 0.0 c | 0.0 ± 0.0 d | 1.9 ± 0.2 def |
0.01 | 1.0 | 66.7 ± 23.6 a | 0.0 ± 0.0 c | 0.0 ± 0.0 d | 1.3 ± 0.5 ef |
0.1 | 0.0 | 0.0 ± 0.0 b | 0.0 ± 0.0 c | 100.0 ± 0.0 a | 5.0 ± 1.2 abc |
0.1 | 0.1 | 0.0 ± 0.0 b | 0.0 ± 0.0 c | 100.0 ± 0.0 a | 5.5 ± 0.4 ab |
0.1 | 1.0 | 0.0 ± 0.0 b | 0.0 ± 0.0 c | 100.0 ± 0.0 a | 3.8 ± 0.9 bcd |
1.0 | 0.0 | 0.0 ± 0.0 b | 0.0 ± 0.0 c | 100.0 ± 0.0 a | 7.4 ± 1.7 a |
1.0 | 0.1 | 0.0 ± 0.0 b | 0.0 ± 0.0 c | 100.0 ± 0.0 a | 5.7 ± 1.7 ab |
1.0 | 1.0 | 0.0 ± 0.0 b | 12.5 ± 4.9 b | 87.5 ± 4.9 b | 3.3 ± 1.5 bcde |
2.0 | 0.0 | 0.0 ± 0.0 b | 12.5 ± 4.9 b | 87.5 ± 4.9 b | 3.6 ± 0.8 bcde |
2.0 | 0.1 | 0.0 ± 0.0 b | 19.1 ± 4.2 ab | 80.9 ± 4.2 bc | 4.1 ± 1.2 bcd |
2.0 | 1.0 | 0.0 ± 0.0 b | 25.0 ± 8.2 a | 75.0 ± 8.2 c | 4.0 ± 0.6 bcd |
Extract Source | Total Phenolics (mg GAE/g Extract) | IC50 (μg/mL) | |
---|---|---|---|
DPPH | ABTS | ||
In Vitro plants * | |||
Roots | 31.2 ± 0.1 c | 76.0 ± 2.1 b | 24.2 ± 0.1 b |
Aerial part | 24.0 ± 0.2 d | >250 † | 52.5 ± 0.7 f |
Wild plants | |||
Roots | 31.8 ± 0.8 c | 142.9 ± 3.6 d | 26.2 ± 0.1 c |
Aerial part | 32.8 ± 0.3 b | >250 † | 48.4 ± 0.2 e |
Flowers | 43.2 ± 0.4 a | 133.5 ± 2.5 c | 27.8 ± 0.5 d |
Ascorbic acid | n.a. | 1.7 ± 0.1 a | 2.0 ± 0.0 a |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bernabé-Antonio, A.; Castro-Rubio, C.; Rodríguez-Anda, R.; Silva-Guzmán, J.A.; Manríquez-González, R.; Hurtado-Díaz, I.; Sánchez-Ramos, M.; Hinojosa-Ventura, G.; Romero-Estrada, A. Jasmonic and Salicylic Acids Enhance Biomass, Total Phenolic Content, and Antioxidant Activity of Adventitious Roots of Acmella radicans (Jacq.) R.K. Jansen Cultured in Shake Flasks. Biomolecules 2023, 13, 746. https://doi.org/10.3390/biom13050746
Bernabé-Antonio A, Castro-Rubio C, Rodríguez-Anda R, Silva-Guzmán JA, Manríquez-González R, Hurtado-Díaz I, Sánchez-Ramos M, Hinojosa-Ventura G, Romero-Estrada A. Jasmonic and Salicylic Acids Enhance Biomass, Total Phenolic Content, and Antioxidant Activity of Adventitious Roots of Acmella radicans (Jacq.) R.K. Jansen Cultured in Shake Flasks. Biomolecules. 2023; 13(5):746. https://doi.org/10.3390/biom13050746
Chicago/Turabian StyleBernabé-Antonio, Antonio, Clarisa Castro-Rubio, Raúl Rodríguez-Anda, José Antonio Silva-Guzmán, Ricardo Manríquez-González, Israel Hurtado-Díaz, Mariana Sánchez-Ramos, Gabriela Hinojosa-Ventura, and Antonio Romero-Estrada. 2023. "Jasmonic and Salicylic Acids Enhance Biomass, Total Phenolic Content, and Antioxidant Activity of Adventitious Roots of Acmella radicans (Jacq.) R.K. Jansen Cultured in Shake Flasks" Biomolecules 13, no. 5: 746. https://doi.org/10.3390/biom13050746
APA StyleBernabé-Antonio, A., Castro-Rubio, C., Rodríguez-Anda, R., Silva-Guzmán, J. A., Manríquez-González, R., Hurtado-Díaz, I., Sánchez-Ramos, M., Hinojosa-Ventura, G., & Romero-Estrada, A. (2023). Jasmonic and Salicylic Acids Enhance Biomass, Total Phenolic Content, and Antioxidant Activity of Adventitious Roots of Acmella radicans (Jacq.) R.K. Jansen Cultured in Shake Flasks. Biomolecules, 13(5), 746. https://doi.org/10.3390/biom13050746