Antitumor Effects of Cannabis sativa Bioactive Compounds on Colorectal Carcinogenesis
Abstract
:1. Introduction
2. Bioactive Compounds of Cannabis sativa
2.1. Cannabinoids
2.2. Terpenes
3. Bioactive Compounds in the Prevention and Treatment of Colorectal Cancer
3.1. Effects of Cannabinoids in CRC-Associated Mechanisms
3.1.1. CBD
3.1.2. Δ9-THC
3.1.3. CBG
3.1.4. Minor Cannabinoids
Cannabinoids | Cell Line/Animal Model | Doses | Cancer-Associated Mechanisms | Effects on CRC | Refs. |
---|---|---|---|---|---|
CBD | HCT-116, SW480, and SW620 | 0–10 μM | Cell survival Proliferation Apoptosis | ⬇ cell viability, proliferation (2.5, 5, 10 μM), cyclin D1/D3, CDK2, CDK4, CDK6; ⬆ G1 phase arrest, p-eIF2α, ATF3, ATF4, cleaved caspase-3/7 and PARP | [50] |
CACO-2, HT-29, and DLD-1 BALB/c nude mice (Xen: DLD-1) | In vitro: 4 μM In vivo: 10 mg/kg | Cell survival Proliferation Apoptosis Tumor growth | In vitro: ⬇ cell viability, TRAIL-induced colony formation; ⬆ apoptosis, DR5, PERK, eIF2α, ROS, CHOP, cleaved caspase-3, caspase-8 and PARP In vivo: ⬇ tumor growth, ⬆ apoptosis, DR5, CHOP | [51] | |
CACO-2, HT-29, HTC116 | 16–252 μg/mL | Apoptosis Inflammation | ⬇ IL-8; ⬆ apoptosis | [59] | |
CACO-2 and HCT116 AOM-induced ICR mice | In vitro: 0.01–10 μM In vivo: 1 and 5 mg/kg | Proliferation Apoptosis Tumor growth Genotoxicity | In vitro: ⬇ proliferation; H2O2-induced DNA damage, phospho-Akt; ⬆ caspase-3 In vivo: ⬇ ACF, polyps, tumor formation, Akt phosphorylation | [54] | |
HCT116, SW620, and DLD-1 BALB/c nude mice (Xen: HCT116) | In vitro: 3,6, and 12 μM In vivo: 10 and 15 mg/Kg | Proliferation Metastasis Tumor growth | In vitro: ⬇ proliferation, migrated cells, invasive cells, N-cadherin, vimentin, Snail, β-catenin, APC, CK1; ⬆ E-cadherin, β-catenin, Axin1 In vivo: ⬇ tumor volume, weight, vacuole degradation, edge collection | [47] | |
HT-29 | 0.1 mM–0.1 nM | Cell survival Proliferation Apoptosis Oxidative stress | ⬇ cell viability, proliferation, GR, GPx, CAT, GSH/GSSG ratio; ⬆ MDA, necrotic cells | [52] | |
HCT116 and DLD-1 Female BALB/c nude mice (Xen: HCT116) | In vitro: 0–8 μM In vivo: 10–20 mg/kg | Cell survival Proliferation Apoptosis Oxidative stress Tumor growth | In vitro: ⬇ cell viability, colony formation, SOD, CAT; ⬆ apoptosis (6 μM), Noxa levels (6 μM), p53, ROS, superoxide, IRE1α, PERK, BiP, GRP94, CHOP, cleaved caspase-3/8/9 and PARP; In vivo: ⬇ tumor growth; ⬆ Noxa levels | [46] | |
Male BALB/c mice (Xen: CT26) | 1 and 5 mg/kg | Inflammation Oxidative stress Angiogenesis Tumor growth | Tumor tissue: ⬇ tumor growth, cellular pleomorphism, VEGF; ⬆ apoptosis (5 mg/kg) Blood: ⬇ IL-6, IL-8 (5 mg/kg), MDA; ⬆ SOD, GPx, GR, TAC | [58] | |
SW480 | 15 μM | Proliferation Apoptosis | ⬇ proliferation; ⬆ mRNA expression of DUSP1, DUSP10, ACPP, ACPP, PTPN6, cleaved caspase-3 and PARP | [53] | |
Oxaliplatin-resistant DLD-1 and colo205 BALB/c nude mice (Xen: colo205) | In vitro: 0–30 μM In vivo: 10 mg/kg | Proliferation Apoptosis Oxidative stress Autophagy Mitochondrial dysfunction | In vitro: ⬇ proliferation, AKT, TOR, AMPK, NOS3, NO, SOD; ⬆ cell death, LC3, p62, rapamycin, autophagic cells, ROS, mitochondrial dysfunction In vivo: ⬇ tumor size, SOD, phopho-NOS3; ⬆ LC3 | [55] | |
HCT116 | 1–2.5 μM | Metastasis | ⬇ GPR55-dependent adhesion and migration | [62] | |
THC | SW480, HCT-15, HT-29, HCA7 | 2.5–12.5 μM | Cell survival Apoptosis | ⬇ cell viability, ERK, AKT; ⬆ chromatin condensation, micronucleation, BAD dephosphorylation, cleaved caspase-3 and PARP | [64] |
HT-29 | 0.1 Mm–0.1 nM | Cell survival Proliferation Apoptosis Oxidative stress | ⬇ cell viability, proliferation, CAT; ⬆ necrotic cells, GR, GPx | [52] | |
AOM/DSS-induced female C57BL/6 mice | 10 mg/kg | Inflammation Tumor appearance | ⬇ inflammation severity, IL-22, no tumors on treated mice | [48] | |
CBG | CACO-2 and HCT 116 ICR mice (Xen: HCT116 and AOM-induced) | 1–30 μM | Cell survival Apoptosis Oxidative stress Tumor growth | In vitro: ⬇ cell viability (3, 10, 30 μM); ⬆ apoptosis, CHOP mRNA, ROS In vivo: ⬇ tumor growth | [12] |
HCT116 | 0–10 μM | Proliferation | ⬇ proliferation (2.5, 5, 10 μM) | [50] | |
CBDV, CBL, CBGV | HCT116 | 0–10 μM | Proliferation | ⬇ proliferation (2.5, 5, 10 μM) | [50] |
CBCA, CBDV, THCV, CBGA | Polyp-derived cells | 14.5–51.2 μM | Cell survival | ⬇ cell viability in combined CBCA (14.5, 29 μM), CBDV (23.5, 47 μM), THCV (20, 40 μM), CBGA (25.6, 51.2 μM) | [65] |
3.2. Effects of Terpenes on CRC
3.3. Effects of Cannabis sativa Extracts on CRC
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Russo, E.B. History of Cannabis and Its Preparations in Saga, Science, and Sobriquet. Chem. Biodivers. 2007, 4, 1614–1648. [Google Scholar] [CrossRef]
- Ubeed, H.M.S.A.L.; Bhuyan, D.J.; Alsherbiny, M.A.; Basu, A.; Vuong, Q.V. A Comprehensive Review on the Techniques for Extraction of Bioactive Compounds from Medicinal Cannabis. Molecules 2022, 27, 604. [Google Scholar] [CrossRef]
- Duggan, P.J. The Chemistry of Cannabis and Cannabinoids. Aust. J. Chem. 2021, 74, 369–387. [Google Scholar] [CrossRef]
- Pratt, M.; Stevens, A.; Thuku, M.; Butler, C.; Skidmore, B.; Wieland, L.S.; Clemons, M.; Kanji, S.; Hutton, B. Benefits and harms of medical cannabis: A scoping review of systematic reviews. Syst. Rev. 2019, 8, 320. [Google Scholar] [CrossRef]
- Citti, C.; Braghiroli, D.; Vandelli, M.A.; Cannazza, G. Pharmaceutical and biomedical analysis of cannabinoids: A critical review. J. Pharm. Biomed. Anal. 2018, 147, 565–579. [Google Scholar] [CrossRef] [PubMed]
- Russo, E.B. Taming THC: Potential cannabis synergy and phytocannabinoid-terpenoid entourage effects. Br. J. Pharmacol. 2011, 163, 1344–1364. [Google Scholar] [CrossRef] [PubMed]
- Vučković, S.; Srebro, D.; Vujović, K.S.; Vučetić, C.; Prostran, M. Cannabinoids and Pain: New Insights from Old Molecules. Front. Pharmacol. 2018, 9, 1259. [Google Scholar] [CrossRef] [PubMed]
- Liktor-Busa, E.; Keresztes, A.; LaVigne, J.; Streicher, J.M.; Largent-Milnes, T.M. Analgesic Potential of Terpenes Derived from Cannabis sativa. Pharmacol. Rev. 2021, 73, 1269–1297. [Google Scholar] [CrossRef] [PubMed]
- McDougall, J.J.; McKenna, M.K. Anti-Inflammatory and Analgesic Properties of the Cannabis Terpene Myrcene in Rat Adjuvant Monoarthritis. Int. J. Mol. Sci. 2022, 23, 7891. [Google Scholar] [CrossRef]
- Atalay, S.; Jarocka-Karpowicz, I.; Skrzydlewska, E. Antioxidative and Anti-Inflammatory Properties of Cannabidiol. Antioxidants 2020, 9, 21. [Google Scholar] [CrossRef]
- Grill, M.; Hasenoehrl, C.; Storr, M.; Schicho, R. Medical Cannabis and Cannabinoids: An Option for the Treatment of Inflammatory Bowel Disease and Cancer of the Colon? Med. Cannabis Cannabinoids 2018, 1, 28–35. [Google Scholar] [CrossRef] [PubMed]
- Borrelli, F.; Pagano, E.; Romano, B.; Panzera, S.; Maiello, F.; Coppola, D.; De Petrocellis, L.; Buono, L.; Orlando, P.; Izzo, A.A. Colon carcinogenesis is inhibited by the TRPM8 antagonist cannabigerol, a Cannabis-derived non-psychotropic cannabinoid. Carcinogenesis 2014, 35, 2787–2797. [Google Scholar] [CrossRef] [PubMed]
- Pagano, E.; Capasso, R.; Piscitelli, F.; Romano, B.; Parisi, O.A.; Finizio, S.; Lauritano, A.; Di Marzo, V.; Izzo, A.A.; Borrelli, F. An Orally Active Cannabis Extract with High Content in Cannabidiol Attenuates Chemically-Induced Intestinal Inflammation and Hypermotility in the Mouse. Front. Pharmacol. 2016, 7, 341. [Google Scholar] [CrossRef] [PubMed]
- Wang, T.; Collet, J.-P.; Shapiro, S.; Ware, M.A. Adverse effects of medical cannabinoids: A systematic review. Can. Med. Assoc. J. 2008, 178, 1669–1678. [Google Scholar] [CrossRef]
- Huestis, M.A.; Solimini, R.; Pichini, S.; Pacifici, R.; Carlier, J.; Busardò, F.P. Cannabidiol Adverse Effects and Toxicity. Curr. Neuropharmacol. 2019, 17, 974–989. [Google Scholar] [CrossRef]
- Zaiachuk, M.; Pryimak, N.; Kovalchuk, O.; Kovalchuk, I. Cannabinoids, Medical Cannabis, and Colorectal Cancer Immunotherapy. Front. Med. 2021, 8, 713153. [Google Scholar] [CrossRef]
- Cherkasova, V.; Kovalchuk, O.; Kovalchuk, I. Cannabinoids and Endocannabinoid System Changes in Intestinal Inflammation and Colorectal Cancer. Cancers 2021, 13, 4353. [Google Scholar] [CrossRef]
- Orrego-González, E.; Londoño-Tobón, L.; Ardila-González, J.; Polania-Tovar, D.; Valencia-Cárdenas, A.; Meerbeke, A.V.-V. Cannabinoid Effects on Experimental Colorectal Cancer Models Reduce Aberrant Crypt Foci (ACF) and Tumor Volume: A Systematic Review. Evid. -Based Complement. Altern. Med. 2020, 2020, 2371527. [Google Scholar] [CrossRef]
- Liu, Y.; Liu, H.-Y.; Li, S.-H.; Ma, W.; Wu, D.-T.; Li, H.-B.; Xiao, A.-P.; Liu, L.-L.; Zhu, F.; Gan, R.-Y. Cannabis sativa bioactive compounds and their extraction, separation, purification, and identification technologies: An updated review. TrAC Trends Anal. Chem. 2022, 149, 116554. [Google Scholar] [CrossRef]
- Kopustinskiene, D.M.; Masteikova, R.; Lazauskas, R.; Bernatoniene, J. Cannabis sativa L. Bioactive Compounds and Their Protective Role in Oxidative Stress and Inflammation. Antioxidants 2022, 11, 660. [Google Scholar] [CrossRef]
- Andre, C.M.; Hausman, J.-F.; Guerriero, G. Cannabis sativa: The Plant of the Thousand and One Molecules. Front. Plant Sci. 2016, 7, 19. [Google Scholar] [CrossRef] [PubMed]
- Gülck, T.; Møller, B.L. Phytocannabinoids: Origins and Biosynthesis. Trends Plant Sci. 2020, 25, 985–1004. [Google Scholar] [CrossRef] [PubMed]
- Hanuš, L.O.; Meyer, S.M.; Muñoz, E.; Taglialatela-Scafati, O.; Appendino, G. Phytocannabinoids: A unified critical inventory. Nat. Prod. Rep. 2016, 33, 1357–1392. [Google Scholar] [CrossRef] [PubMed]
- Sommano, S.R.; Sunanta, P.; Leksawasdi, N.; Jantanasakulwong, K.; Rachtanapun, P.; Seesuriyachan, P.; Phimolsiripol, Y.; Sringarm, K.; Ruksiriwanich, W.; Jantrawut, P.; et al. Mass Spectrometry-Based Metabolomics of Phytocannabinoids from Non-Cannabis Plant Origins. Molecules 2022, 27, 3301. [Google Scholar] [CrossRef] [PubMed]
- Mnekin, L.; Ripoll, L. Topical Use of Cannabis Sativa L. Biochemicals. Cosmetics 2021, 8, 85. [Google Scholar] [CrossRef]
- Odieka, A.E.; Obuzor, G.U.; Oyedeji, O.O.; Gondwe, M.; Hosu, Y.S.; Oyedeji, A.O. The Medicinal Natural Products of Cannabis sativa Linn.: A Review. Molecules 2022, 27, 1689. [Google Scholar] [CrossRef]
- Barrales-Cureño, H.J.; López-Valdez, L.G.; Reyes, C.; Cetina-Alcalá, V.M.; Vasquez-García, I.; Diaz-Lira, O.F.; Herrera-Cabrera, B.E. Chemical Characteristics, Therapeutic Uses, and Legal Aspects of the Cannabinoids of Cannabis sativa: A Review. Braz. Arch. Biol. Technol. 2020, 63. [Google Scholar] [CrossRef]
- Moreno, T.; Dyer, P.; Tallon, S. Cannabinoid Decarboxylation: A Comparative Kinetic Study. Ind. Eng. Chem. Res. 2020, 59, 20307–20315. [Google Scholar] [CrossRef]
- Rožanc, J.; Kotnik, P.; Milojević, M.; Gradišnik, L.; Hrnčič, M.K.; Knez, Ž.; Maver, U. Different Cannabis sativa Extraction Methods Result in Different Biological Activities against a Colon Cancer Cell Line and Healthy Colon Cells. Plants 2021, 10, 566. [Google Scholar] [CrossRef]
- Lazarjani, M.P.; Young, O.; Kebede, L.; Seyfoddin, A. Processing and extraction methods of medicinal cannabis: A narrative review. J. Cannabis Res. 2021, 3, 32. [Google Scholar] [CrossRef]
- Radwan, M.M.; Chandra, S.; Gul, S.; Elsohly, M.A. Cannabinoids, Phenolics, Terpenes and Alkaloids of Cannabis. Molecules 2021, 26, 2274. [Google Scholar] [CrossRef] [PubMed]
- Russo, E.B.; Marcu, J. Cannabis Pharmacology: The Usual Suspects and a Few Promising Leads. In Advances in Pharmacology; Academic Press: Cambridge, MA, USA, 2017; Volume 80, pp. 67–134. [Google Scholar] [CrossRef]
- Tomko, A.M.; Whynot, E.G.; Ellis, L.D.; Dupré, D.J. Anti-Cancer Potential of Cannabinoids, Terpenes, and Flavonoids Present in Cannabis. Cancers 2020, 12, 1985. [Google Scholar] [CrossRef] [PubMed]
- Helcman, M.; Šmejkal, K. Biological activity of Cannabis compounds: A modern approach to the therapy of multiple diseases. Phytochem. Rev. 2022, 21, 429–470. [Google Scholar] [CrossRef]
- Kubiliene, A.; Mickute, K.; Baranauskaite, J.; Marksa, M.; Liekis, A.; Sadauskiene, I. The Effects of Cannabis sativa L. Extract on Oxidative Stress Markers in Vivo. Life 2021, 11, 647. [Google Scholar] [CrossRef] [PubMed]
- Jastrząb, A.; Jarocka-Karpowicz, I.; Skrzydlewska, E. The Origin and Biomedical Relevance of Cannabigerol. Int. J. Mol. Sci. 2022, 23, 7929. [Google Scholar] [CrossRef]
- Calapai, F.; Cardia, L.; Esposito, E.; Ammendolia, I.; Mondello, C.; Giudice, R.L.; Gangemi, S.; Calapai, G.; Mannucci, C. Pharmacological Aspects and Biological Effects of Cannabigerol and Its Synthetic Derivatives. Evid.-Based Complement. Altern. Med. 2022, 2022, 3336516. [Google Scholar] [CrossRef]
- Jin, D.; Dai, K.; Xie, Z.; Chen, J. Secondary Metabolites Profiled in Cannabis Inflorescences, Leaves, Stem Barks, and Roots for Medicinal Purposes. Sci. Rep. 2020, 10, 3309–3314. [Google Scholar] [CrossRef]
- Chacon, F.T.; Raup-Konsavage, W.M.; Vrana, K.E.; Kellogg, J.J. Secondary Terpenes in Cannabis sativa L.: Synthesis and Synergy. Biomedicines 2022, 10, 3142. [Google Scholar] [CrossRef]
- Johnson, A.; Stewart, A.; El-Hakim, I.; Hamilton, T.J. Effects of super-class cannabis terpenes beta-caryophyllene and alpha-pinene on zebrafish behavioural biomarkers. Sci. Rep. 2022, 12, 17250. [Google Scholar] [CrossRef]
- Booth, J.K.; Bohlmann, J. Terpenes in Cannabis sativa—From plant genome to humans. Plant Sci. 2019, 284, 67–72. [Google Scholar] [CrossRef]
- Janatová, A.; Doskočil, I.; Božik, M.; Fraňková, A.; Tlustoš, P.; Klouček, P. The chemical composition of ethanolic extracts from six genotypes of medical cannabis (Cannabis sativa L.) and their selective cytotoxic activity. Chem. Interact. 2022, 353, 109800. [Google Scholar] [CrossRef] [PubMed]
- Gonçalves, E.C.D.; Baldasso, G.M.; Bicca, M.A.; Paes, R.S.; Capasso, R.; Dutra, R.C. Terpenoids, Cannabimimetic Ligands, beyond the Cannabis Plant. Molecules 2020, 25, 1567. [Google Scholar] [CrossRef] [PubMed]
- Surendran, S.; Qassadi, F.; Surendran, G.; Lilley, D.; Heinrich, M. Myrcene—What Are the Potential Health Benefits of This Flavouring and Aroma Agent? Front. Nutr. 2021, 8, 699666. [Google Scholar] [CrossRef] [PubMed]
- Nallathambi, R.; Mazuz, M.; Namdar, D.; Shik, M.; Namintzer, D.; Vinayaka, A.C.; Ion, A.; Faigenboim, A.; Nasser, A.; Laish, I.; et al. Identification of Synergistic Interaction between Cannabis-Derived Compounds for Cytotoxic Activity in Colorectal Cancer Cell Lines and Colon Polyps That Induces Apoptosis-Related Cell Death and Distinct Gene Expression. Cannabis Cannabinoid Res. 2018, 3, 120–135. [Google Scholar] [CrossRef]
- Jeong, S.; Yun, H.K.; Jeong, Y.A.; Jo, M.J.; Kang, S.H.; Kim, J.L.; Kim, D.Y.; Park, S.H.; Kim, B.R.; Na, Y.J.; et al. Cannabidiol-induced apoptosis is mediated by activation of Noxa in human colorectal cancer cells. Cancer Lett. 2019, 447, 12–23. [Google Scholar] [CrossRef]
- Feng, P.; Zhu, L.; Jie, J.; Yang, P.; Sheng, N.; Chen, X.; Chen, X. Cannabidiol inhibits invasion and metastasis in colorectal cancer cells by reversing epithelial—Mesenchymal transition through the Wnt/β-catenin signaling pathway. J. Cancer Res. Clin. Oncol. 2022. [Google Scholar] [CrossRef]
- Becker, W.; Alrafas, H.R.; Wilson, K.; Miranda, K.; Culpepper, C.; Chatzistamou, I.; Cai, G.; Nagarkatti, M.; Nagarkatti, P.S. Activation of Cannabinoid Receptor 2 Prevents Colitis-Associated Colon Cancer through Myeloid Cell De-Activation Upstream of IL-22 Production. iScience 2020, 23, 101504. [Google Scholar] [CrossRef]
- Khoury, M.; Cohen, I.; Bar-Sela, G. “The Two Sides of the Same Coin”—Medical Cannabis, Cannabinoids and Immunity: Pros and Cons Explained. Pharmaceutics 2022, 14, 389. [Google Scholar] [CrossRef]
- Lee, H.-S.; Tamia, G.; Song, H.-J.; Amarakoon, D.; Wei, C.-I.; Lee, S.-H. Cannabidiol exerts anti-proliferative activity via a cannabinoid receptor 2-dependent mechanism in human colorectal cancer cells. Int. Immunopharmacol. 2022, 108, 108865. [Google Scholar] [CrossRef]
- Kim, J.L.; Kim, B.R.; Kim, D.Y.; Jeong, Y.A.; Jeong, S.; Na, Y.J.; Park, S.H.; Yun, H.K.; Jo, M.J.; Kim, B.G.; et al. Cannabidiol Enhances the Therapeutic Effects of TRAIL by Upregulating DR5 in Colorectal Cancer. Cancers 2019, 11, 642. [Google Scholar] [CrossRef]
- Cerretani, D.; Collodel, G.; Brizzi, A.; Fiaschi, A.I.; Menchiari, A.; Moretti, E.; Moltoni, L.; Micheli, L. Cytotoxic Effects of Cannabinoids on Human HT-29 Colorectal Adenocarcinoma Cells: Different Mechanisms of THC, CBD, and CB83. Int. J. Mol. Sci. 2020, 21, 5533. [Google Scholar] [CrossRef] [PubMed]
- Sreevalsan, S.; Joseph, S.; Jutooru, I.; Chadalapaka, G.; Safe, S.H. Induction of apoptosis by cannabinoids in prostate and colon cancer cells is phosphatase dependent. Anticancer Res. 2011, 31, 3799–3807. [Google Scholar]
- Aviello, G.; Romano, B.; Borrelli, F.; Capasso, R.; Gallo, L.; Piscitelli, F.; Di Marzo, V.; Izzo, A.A. Chemopreventive effect of the non-psychotropic phytocannabinoid cannabidiol on experimental colon cancer. J. Mol. Med. 2012, 90, 925–934. [Google Scholar] [CrossRef] [PubMed]
- Jeong, S.; Kim, B.G.; Kim, D.Y.; Kim, B.R.; Kim, J.L.; Park, S.H.; Na, Y.J.; Jo, M.J.; Yun, H.K.; Jeong, Y.A.; et al. Cannabidiol Overcomes Oxaliplatin Resistance by Enhancing NOS3- and SOD2-Induced Autophagy in Human Colorectal Cancer Cells. Cancers 2019, 11, 781. [Google Scholar] [CrossRef]
- Hanahan, D.; Weinberg, R.A. Hallmarks of cancer: The next generation. Cell 2011, 144, 646–674. [Google Scholar] [CrossRef] [PubMed]
- Kannan, K.; Jain, S.K. Oxidative stress and apoptosis. Pathophysiology 2000, 7, 153–163. [Google Scholar] [CrossRef]
- Honarmand, M.; Namazi, F.; Mohammadi, A.; Nazifi, S. Can cannabidiol inhibit angiogenesis in colon cancer? Comp. Clin. Pathol. 2019, 28, 165–172. [Google Scholar] [CrossRef]
- Nallathambi, R.; Mazuz, M.; Ion, A.; Selvaraj, G.; Weininger, S.; Fridlender, M.; Nasser, A.; Sagee, O.; Kumari, P.; Nemichenizer, D.; et al. Anti-Inflammatory Activity in Colon Models Is Derived from Δ9-Tetrahydrocannabinolic Acid That Interacts with Additional Compounds in Cannabis Extracts. Cannabis Cannabinoid Res. 2017, 2, 167–182. [Google Scholar] [CrossRef]
- Lee, X.C.; Werner, E.; Falasca, M. Molecular Mechanism of Autophagy and Its Regulation by Cannabinoids in Cancer. Cancers 2021, 13, 1211. [Google Scholar] [CrossRef]
- Solinas, M.; Massi, P.; Cantelmo, A.; Cattaneo, M.; Cammarota, R.; Bartolini, D.; Cinquina, V.; Valenti, M.; Vicentini, L.; Noonan, D.; et al. Cannabidiol inhibits angiogenesis by multiple mechanisms. Br. J. Pharmacol. 2012, 167, 1218–1231. [Google Scholar] [CrossRef]
- Kargl, J.; Andersen, L.; Hasenöhrl, C.; Feuersinger, D.; Stančić, A.; Fauland, A.; Magnes, C.; El-Heliebi, A.; Lax, S.; Uranitsch, S.; et al. GPR55 promotes migration and adhesion of colon cancer cells indicating a role in metastasis. Br. J. Pharmacol. 2016, 173, 142–154. [Google Scholar] [CrossRef] [PubMed]
- Bergamaschi, M.M.; Queiroz, R.H.C.; Zuardi, A.W.; Crippa, J.A.S. Safety and Side Effects of Cannabidiol, a Cannabis sativa Constituent. Curr. Drug Saf. 2011, 6, 237–249. [Google Scholar] [CrossRef] [PubMed]
- Greenhough, A.; Patsos, H.A.; Williams, A.C.; Paraskeva, C. The cannabinoid δ 9-tetrahydrocannabinol inhibits RAS-MAPK and PI3K-AKT survival signalling and induces BAD-mediated apoptosis in colorectal cancer cells. Int. J. Cancer 2007, 121, 2172–2180. [Google Scholar] [CrossRef] [PubMed]
- Shor, D.B.-A.; Hochman, I.; Gluck, N.; Shibolet, O.; Scapa, E. The Cytotoxic Effect of Isolated Cannabinoid Extracts on Polypoid Colorectal Tissue. Int. J. Mol. Sci. 2022, 23, 11366. [Google Scholar] [CrossRef] [PubMed]
- De la Ossa, D.H.P.; Gil-Alegre, M.E.; Ligresti, A.; Aberturas, M.D.R.; Molpeceres, J.; Torres, A.I.; Di Marzo, V. Preparation and characterization of Δ9-tetrahydrocannabinol-loaded biodegradable polymeric microparticles and their antitumoral efficacy on cancer cell lines. J. Drug Target. 2013, 21, 710–718. [Google Scholar] [CrossRef]
- McPartland, J.M.; Pruitt, P.L. Side effects of pharmaceuticals not elicited by comparable herbal medicines: The case of tetrahydrocannabinol and marijuana. Altern. Ther. Health Med. 1999, 5, 57–63. [Google Scholar]
- Niesink, R.J.M.; van Laar, M.W. Does Cannabidiol Protect against Adverse Psychological Effects of THC? Front. Psychiatry 2013, 4, 130. [Google Scholar] [CrossRef]
- Navarro, G.; Varani, K.; Reyes-Resina, I.; Sánchez de Medina, V.; Rivas-Santisteban, R.; Sánchez-Carnerero Callado, C.; Vincenzi, F.; Casano, S.; Ferreiro-Vera, C.; Canela, E.I.; et al. Cannabigerol Action at Cannabinoid CB1 and CB2 Receptors and at CB1-CB2 Heteroreceptor Complexes. Front. Pharmacol. 2018, 9, 632. [Google Scholar] [CrossRef]
- Martínez, V.; Iriondo De-Hond, A.; Borrelli, F.; Capasso, R.; del Castillo, M.D.; Abalo, R. Cannabidiol and Other Non-Psychoactive Cannabinoids for Prevention and Treatment of Gastrointestinal Disorders: Useful Nutraceuticals? Int. J. Mol. Sci. 2020, 21, 3067. [Google Scholar] [CrossRef]
- Ceccarelli, I.; Fiorenzani, P.; Pessina, F.; Pinassi, J.; Aglianò, M.; Miragliotta, V.; Aloisi, A.M. The CB2 Agonist β-Caryophyllene in Male and Female Rats Exposed to a Model of Persistent Inflammatory Pain. Front. Neurosci. 2020, 14, 850. [Google Scholar] [CrossRef]
- LaVigne, J.E.; Hecksel, R.; Keresztes, A.; Streicher, J.M. Cannabis sativa terpenes are cannabimimetic and selectively enhance cannabinoid activity. Sci. Rep. 2021, 11, 8232. [Google Scholar] [CrossRef] [PubMed]
- Dahham, S.S.; Tabana, Y.; Asif, M.; Ahmed, M.; Babu, D.; Hassan, L.E.; Ahamed, M.B.K.; Sandai, D.; Barakat, K.; Siraki, A.; et al. β-Caryophyllene Induces Apoptosis and Inhibits Angiogenesis in Colorectal Cancer Models. Int. J. Mol. Sci. 2021, 22, 10550. [Google Scholar] [CrossRef] [PubMed]
- Zhou, L.; Zhan, M.-L.; Tang, Y.; Xiao, M.; Li, M.; Li, Q.-S.; Yang, L.; Li, X.; Chen, W.-W.; Wang, Y.-L. Effects of β-caryophyllene on arginine ADP-ribosyltransferase 1-mediated regulation of glycolysis in colorectal cancer under high-glucose conditions. Int. J. Oncol. 2018, 53, 1613–1624. [Google Scholar] [CrossRef] [PubMed]
- Lucafò, M.; Curci, D.; Franzin, M.; Decorti, G.; Stocco, G. Inflammatory Bowel Disease and Risk of Colorectal Cancer: An Overview from Pathophysiology to Pharmacological Prevention. Front. Pharmacol. 2021, 12, 772101. [Google Scholar] [CrossRef]
- Bento, A.F.; Marcon, R.; Dutra, R.C.; Claudino, R.F.; Cola, M.; Leite, D.F.P.; Calixto, J.B. β-Caryophyllene Inhibits Dextran Sulfate Sodium-Induced Colitis in Mice through CB2 Receptor Activation and PPARγ Pathway. Am. J. Pathol. 2011, 178, 1153–1166. [Google Scholar] [CrossRef]
- Nascimento-Gonçalves, E.; Mendes, B.A.; Silva-Reis, R.; Faustino-Rocha, A.I.; Gama, A.; Oliveira, P.A. Animal Models of Colorectal Cancer: From Spontaneous to Genetically Engineered Models and Their Applications. Vet. Sci. 2021, 8, 59. [Google Scholar] [CrossRef]
- Legault, J.; Pichette, A. Potentiating effect of β-caryophyllene on anticancer activity of α-humulene, isocaryophyllene and paclitaxel. J. Pharm. Pharmacol. 2010, 59, 1643–1647. [Google Scholar] [CrossRef]
- Ambrož, M.; Šmatová, M.; Šadibolová, M.; Pospíšilová, E.; Hadravská, P.; Kašparová, M.; Skarková, V.H.; Králová, V.; Skálová, L. Sesquiterpenes α-humulene and β-caryophyllene oxide enhance the efficacy of 5-fluorouracil and oxaliplatin in colon cancer cells. Acta Pharm. 2019, 69, 121–128. [Google Scholar] [CrossRef]
- Jia, S.-S.; Xi, G.-P.; Zhang, M.; Chen, Y.-B.; Lei, B.; Dong, X.-S.; Yang, Y.-M. Induction of apoptosis by D-limonene is mediated by inactivation of Akt in LS174T human colon cancer cells. Oncol. Rep. 2013, 29, 349–354. [Google Scholar] [CrossRef]
- Kawamori, T.; Tanaka, T.; Hirose, Y.; Obnishi, M.; Mori, H. Short Communication: Inhibitory effects of d-limonene on the development of colonic aberrant crypt foci induced by azoxymethane in F344 rats. Carcinogenesis 1996, 17, 369–372. [Google Scholar] [CrossRef]
- Da Silva, S.L.; Figueiredo, P.M.; Yano, T. Cytotoxic evaluation of essential oil from Zanthoxylum rhoifolium Lam. leaves. Acta Amaz. 2007, 37, 281–286. [Google Scholar] [CrossRef]
- Jo, H.; Cha, B.; Kim, H.; Brito, S.; Kwak, B.M.; Kim, S.T.; Bin, B.-H.; Lee, M.-G. α-Pinene Enhances the Anticancer Activity of Natural Killer Cells via ERK/AKT Pathway. Int. J. Mol. Sci. 2021, 22, 656. [Google Scholar] [CrossRef]
- Carnesecchi, S.; Langley, K.; Exinger, F.; Gosse, F.; Raul, F. Geraniol, a component of plant essential oils, sensitizes human colonic cancer cells to 5-Fluorouracil treatment. Experiment 2002, 301, 625–630. [Google Scholar] [CrossRef] [PubMed]
- Carnesecchi, S.; Bras-Gonçalves, R.; Bradaia, A.; Zeisel, M.; Gossé, F.; Poupon, M.-F.; Raul, F. Geraniol, a component of plant essential oils, modulates DNA synthesis and potentiates 5-fluorouracil efficacy on human colon tumor xenografts. Cancer Lett. 2004, 215, 53–59. [Google Scholar] [CrossRef] [PubMed]
- Hou, M.; Zhang, Y.; Huang, Q.; Zhan, H.; Jia, T.; Li, M.; Hu, J.; Zhao, Y. Linalool Impress Colorectal Cancer Deterioration by Mediating AKT/mTOR and JAK2/STAT3 Signaling Pathways. BioMed Res. Int. 2022, 2022, 4801703. [Google Scholar] [CrossRef]
- Romano, B.; Borrelli, F.; Pagano, E.; Cascio, M.G.; Pertwee, R.G.; Izzo, A.A. Inhibition of colon carcinogenesis by a standardized Cannabis sativa extract with high content of cannabidiol. Phytomedicine 2014, 21, 631–639. [Google Scholar] [CrossRef]
- Mun, J.-G.; Jeon, H.D.; Yoon, D.H.; Lee, Y.S.; Park, S.Y.; Jin, J.-S.; Park, N.-J.; Kee, J.-Y. Supercritical Extract of Cannabis sativa Inhibits Lung Metastasis in Colorectal Cancer Cells by Increasing AMPK and MAPKs-Mediated Apoptosis and Cell Cycle Arrest. Nutrients 2022, 14, 4548. [Google Scholar] [CrossRef]
Cannabinoids | Pharmacological Effects | Refs. |
---|---|---|
CBD | Antiepileptic, antioxidant, anti-inflammatory, antiemetic, immunosuppressive, antipsychotic, neuroprotective, anticancer | [26,32,33,34,35] |
Δ9-THC | Antioxidant, antipruritic, anti-inflammatory, neuroprotective, analgesic, anticancer, antinausea | [33,34] |
CBG | Antibacterial, antifungal, anti-inflammatory, prevents cell proliferation, anticancer, antidepressant, antihypertensive, analgesic | [26,36,37] |
CBC | Anti-inflammatory, analgesic | [32,34] |
CBN | Sedative, anticonvulsant, anti-inflammatory, antibiotic, anticancer | [32,33,34] |
THCV | Weight loss, anticonvulsant, antihyperalgesia, anti-inflammatory, anticancer | [32,33] |
CBDV | Inhibits endocannabinoid degradation, antinausea, anticonvulsant, anticancer | [32,33] |
Terpenes/Terpenoids | Pharmacological Effects | Refs. |
---|---|---|
β-myrcene | Anti-pain, anti-inflammatory, hepatoprotective, analgesic, antioxidant, neuroprotective, gastroprotective, antinociceptive, anticancer, antidiabetic | [32,33,34,43,44] |
β/α-caryophyllene | Antibacterial, antifungal, antioxidant, anti-inflammatory, anticancer, anxiolytic | [40,43] |
α/β-pinene | Antimetastatic, anti-inflammatory, antibacterial, antidepressant, anticancer | [33,34,40] |
D-limonene | Anxiolytic, immunostimulatory, anticancer | [32,34] |
Linalool | Sedative, antiepileptic | [34] |
Terpineol | Antinociceptive, antifungal, anti-inflammatory, antidiarrheal | [43] |
Bisabolol | Anticancer | [33] |
β-ocimene | Anticonvulsant, anticancer, antifungal | [26] |
Extraction Method | Bioactive Compounds | Cell Line/Animal Model | Doses | Cancer-Associated Mechanisms | Effects on CRC | Refs. |
---|---|---|---|---|---|---|
SFE-CO2 | CBD (⬆%), Δ9-THC, CBG, CBDV, CBDA, CBN | HCT116 and DLD-1 AOM-induced ICR mice Athymic mice (Xen: HCT116) | In vitro: 0.3–5 μM In vivo:10 mg/kg (AOM) 5 mg/kg (Xen) | Proliferation Tumor growth | In vitro: ⬇ proliferation In vivo: ⬇ ACF, polyps, tumor formation, volume | [87] |
ND | CT26 and HCT116 Mice (Xen: CT26) | In vitro: 1, 2, 3, and 4 µg/mL In vivo: 2.5, 5, and 10 mg/kg | Cell survival Proliferation Apoptosis Metastasis | ⬇ cell viability (4 µg/mL), colony formation, cyclin D1, CDK4, Bcl-2; ⬆ G0/G1 phase arrest, apoptosis (4 µg/mL), cleaved caspase-3 and PARP | [88] | |
EtOH extract | ⬆% Δ9-THC and CBD ⬆% Terpenes | CACO-2 and HT-29 | 0.24–500 μg/mL | Cell survival | ⬆ positive selective cytotoxicity against Ht-29 cells | [42] |
CBG, CBD, CBDA, CBN, CBGA, THC, CBC, and THCA (⬆%) | HCT 116, HT-29, and CACO-2 | 20 μg/mL (THCA-rich fraction) and 35 μg/mL (CBGA-rich fraction) | Cell survival Apoptosis | ⬇ cell viability (EtOH extract, THCA- and CBGA-rich fractions); ⬆ cytotoxicity in THCA-rich fraction combined with EtOH extract fraction, apoptosis (THCA/CBGA-rich fractions), G0/G1 phase arrest (THCA/CBD-rich fractions) | [45] | |
CBG, CBD, CBDA, CBN, CBGA, THC, CBC, and THCA (⬆%) | CACO-2, HT-29, HTC116 | 114–207 μg/mL | Cytotoxicity Inflammation | ⬆ cytotoxicity EtOH extract/THCA fraction: ⬇ IL-8, MMP9, COX2 | [59] | |
Maceration (EtOH and MeOH), Soxhlet, UAE (MeOH), SFE CO2 | CBD, CBDA, THC, THCA, CBGA, CBC, and CBN | CACO-2 | 0.625–20 μg/mL | Cell survival | Maceration EtOH extract: ⬇ cell viability | [29] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Silva-Reis, R.; Silva, A.M.S.; Oliveira, P.A.; Cardoso, S.M. Antitumor Effects of Cannabis sativa Bioactive Compounds on Colorectal Carcinogenesis. Biomolecules 2023, 13, 764. https://doi.org/10.3390/biom13050764
Silva-Reis R, Silva AMS, Oliveira PA, Cardoso SM. Antitumor Effects of Cannabis sativa Bioactive Compounds on Colorectal Carcinogenesis. Biomolecules. 2023; 13(5):764. https://doi.org/10.3390/biom13050764
Chicago/Turabian StyleSilva-Reis, Rita, Artur M. S. Silva, Paula A. Oliveira, and Susana M. Cardoso. 2023. "Antitumor Effects of Cannabis sativa Bioactive Compounds on Colorectal Carcinogenesis" Biomolecules 13, no. 5: 764. https://doi.org/10.3390/biom13050764
APA StyleSilva-Reis, R., Silva, A. M. S., Oliveira, P. A., & Cardoso, S. M. (2023). Antitumor Effects of Cannabis sativa Bioactive Compounds on Colorectal Carcinogenesis. Biomolecules, 13(5), 764. https://doi.org/10.3390/biom13050764