Targeting Neutrophil β2-Integrins: A Review of Relevant Resources, Tools, and Methods
Abstract
:1. Introduction
2. β2-Integrins and Neutrophils
2.1. β2-Integrin Activation and Signaling
2.2. Neutrophils in Disease
3. Cell Types and Tools for Evaluating Integrins
3.1. Primary Cells
3.2. Cell Lines
3.3. Tools
3.3.1. Anti-Integrin and Fluorescently Labeled Antibodies
Antibody | Clone | Conformation/Purpose | References |
---|---|---|---|
Anti-CD18 | IB4 | Recognizes CD18 expression | [128,129] |
Crosslinking of CD18 | |||
In vitro blocking of human β2-integrins | |||
GAME-46 | Recognizes murine CD18 expression In vitro and in vivo blocking of murine CD18 | [127,130,131] | |
CBR LFA-1/2 | Crosslinking of CD18 Recognizes CD18 expression | [105,132] | |
Anti-CD11b | CBMR1/5 | Recognizes high-affinity /activated CD11b | [133,134,135] |
Anti-CD11b | ICRF44 | Recognizes CD11b expression | [136] |
M1/70 | Recognizes CD11b expression In vivo blocking of murine CD11b | [137,138] | |
Anti-human β2-integrin | KIM127 | Recognizes bent low-affinity (E+H−) β2-integrin conformation | [135,139] |
Anti-human CD11a/CD18 | m24 | Recognizes extended/high-affinity (H+) β2-integrin conformation | [139] |
3.3.2. Divalent Cations
3.4. Common Ligands
3.4.1. Recombinant ICAM-1
3.4.2. Fibrinogen
3.4.3. PolyRGD
3.4.4. iC3b
3.5. Assays
3.5.1. Flow Cytometry
3.5.2. Static Adhesion
3.5.3. FRET
3.5.4. Integrin Crosslinking
3.5.5. Flow Chamber Assays
3.5.6. Immunoblotting and Co-Immunoprecipitation
3.5.7. Microscopy
3.6. In Vivo Experiments
Intravital Microscopy
4. Perspectives on the Study of Neutrophil β-Integrins
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
Abbreviations
AKT | serine/threonine kinase |
CD18 | β chain of β2 integrins |
CD11 | α chain of β2 integrins |
CR3 | complement receptor 3 |
DAMP | damage-associated molecular pattern |
dHL60 | differentiated HL60 cells |
DMSO | dimethylsulfoxide |
eGFP | enhanced green fluorescent protein |
EV | extracellular vesicle |
FcγR | Fcgamma receptor |
fMLP | N-formylmethionine-leucyl-phenylalanine |
GM-CSF | granulocyte-macrophage-colony-stimulating factor |
GPCR | G-protein-coupled receptor |
iC3b | complement protein fragment produced when complement factor I cleaves C3b |
ICAM-1 | intercellular adhesion molecule 1 |
IL-8R | interleukin 8 receptor |
ITAM | immunoreceptor tyrosine-based activation motif |
LDN | low-density neutrophil |
LFA-1 | lymphocyte-function-associated antigen-1, αLβ2, CD11a/CD18 |
LPS | lipopolysaccharide |
LTB4 | leukotriene B4 |
Mac-1 | macrophage-1 antigen, αMβ2, CD11b/CD18 |
MIP-2 | macrophage inflammatory protein-2 |
NBT | nitroblue tetrazolium |
NDN | normal-density neutrophil |
NET | neutrophil extracellular trap |
nEV | neutrophil extracellular vesicle |
PAMP | pathogen-associated molecular pattern |
PMA | phorbol 12-myristate 13-acetate |
PMN | polymorphonuclear leukocyte, neutrophil |
PKC | protein kinase C |
ROS | reactive oxygen species |
Syk | Spleen tyrosine kinase |
References
- Abram, C.L.; Lowell, C.A. The Ins and Outs of Leukocyte Integrin Signaling. Annu. Rev. Immunol. 2009, 27, 339–362. [Google Scholar] [CrossRef] [PubMed]
- Bouti, P.; Webbers, S.D.S.; Fagerholm, S.C.; Alon, R.; Moser, M.; Matlung, H.L.; Kuijpers, T.W. β2 Integrin Signaling Cascade in Neutrophils: More Than a Single Function. Front. Immunol. 2021, 11, 619925. [Google Scholar] [CrossRef] [PubMed]
- Schymeinsky, J.; Mocsai, A.; Walzog, B. Neutrophil activation via β2 integrins (CD11/CD18): Molecular mechanisms and clinical implications. Thromb. Haemost. 2007, 98, 262–273. [Google Scholar] [CrossRef]
- Blythe, E.N.; Weaver, L.C.; Brown, A.; Dekaban, G.A. β2 Integrin CD11d/CD18: From Expression to an Emerging Role in Staged Leukocyte Migration. Front. Immunol. 2021, 12, 775447. [Google Scholar] [CrossRef] [PubMed]
- Montresor, A.; Toffali, L.; Constantin, G.; Laudanna, C.; Ley, K. Chemokines and the Signaling Modules Regulating Integrin Affinity. Front. Immunol. 2012, 3, 127. [Google Scholar] [CrossRef]
- Grabbe, S.; Wen, L.; Lyu, Q.; Ley, K.; Goult, B.T. Structural Basis of β2 Integrin Inside—Out Activation. Cells 2022, 11, 3039. [Google Scholar] [CrossRef]
- Williams, M.A.; Solomkin, J.S. Integrin-mediated signaling in human neutrophil functioning. J. Leukoc. Biol. 1999, 65, 725–736. [Google Scholar] [CrossRef] [PubMed]
- Jakus, Z.N.; Fodor, S.; Abram, C.L.; Lowell, C.A.; Mócsai, A. Immunoreceptor-like signaling by β2 and β3 integrins. Trends Cell Biol. 2007, 17, 493–501. [Google Scholar] [CrossRef]
- Schmidt, S.; Moser, M.; Sperandio, M. The molecular basis of leukocyte recruitment and its deficiencies. Mol. Immunol. 2013, 55, 49–58. [Google Scholar] [CrossRef]
- Yang, S.-C.; Tsai, Y.-F.; Pan, Y.-L.; Hwang, T.-L. Understanding the role of neutrophils in acute respiratory distress syndrome. Biomed. J. 2021, 44, 439–446. [Google Scholar] [CrossRef]
- Borges, L.; Pithon-Curi, T.C.; Curi, R.; Hatanaka, E. COVID-19 and Neutrophils: The Relationship between Hyperinflammation and Neutrophil Extracellular Traps. Mediat. Inflamm. 2020, 2020, 8829674. [Google Scholar] [CrossRef] [PubMed]
- Rosetti, F.; Mayadas, T.N. The many faces of Mac-1 in autoimmune disease. Immunol. Rev. 2016, 269, 175–193. [Google Scholar] [CrossRef] [PubMed]
- Rosen, H.; Law, S.K.A. The Leukocyte Cell Surface Receptor(s) for the iC3b Product of Complement. Curr. Top. Microbiol. Immunol. 1990, 153, 99–122. [Google Scholar] [CrossRef] [PubMed]
- Johnson, C.M.; O’brien, X.M.; Byrd, A.S.; Parisi, V.E.; Loosely, A.J.; Li, W.; Witt, H.; Faridi, H.M.; Lefort, C.T.; Gupta, V.; et al. Integrin Cross-Talk Regulates the Human Neutrophil Response to Fungal β-Glucan in the Context of the Extracellular Matrix: A Prominent Role for VLA3 in the Antifungal Response. J. Immunol. 2017, 198, 318–334. [Google Scholar] [CrossRef]
- Wright, S.D.; Levin, S.M.; Jong, M.T.C.; Chad, Z.; Kàbbashi, L.G. CR3 (CD11b/CD18) expresses one binding site for Arg-Gly-Asp-containing peptides and a second site for bacterial lipopolysaccharide. J. Exp. Med. 1989, 169, 175–183. [Google Scholar] [CrossRef]
- Mitroulis, I.; Alexaki, V.I.; Kourtzelis, I.; Ziogas, A.; Hajishengallis, G.; Chavakis, T. Leukocyte integrins: Role in leukocyte recruitment and as therapeutic targets in inflammatory disease. Pharmacol. Ther. 2015, 147, 123–135. [Google Scholar] [CrossRef]
- Zimmerman, T.; Blanco, F. Inhibitors Targeting the LFA-1/ICAM-1 Cell-Adhesion Interaction: Design and Mechanism of Action. Curr. Pharm. Des. 2008, 14, 2128–2139. [Google Scholar] [CrossRef]
- Raab-Westphal, S.; Marshall, J.F.; Goodman, S.L. Integrins as Therapeutic Targets: Successes and Cancers. Cancers 2017, 9, 110. [Google Scholar] [CrossRef]
- Matsumoto, K.; Kurasawa, T.; Yoshimoto, K.; Suzuki, K.; Takeuchi, T. Identification of neutrophil β2-integrin LFA-1 as a potential mechanistic biomarker in ANCA-associated vasculitis via microarray and validation analyses. Arthritis Res. Ther. 2021, 23, 136. [Google Scholar] [CrossRef]
- Teschner, D.; Cholaszczyńska, A.; Ries, F.; Beckert, H.; Theobald, M.; Grabbe, S.; Radsak, M.; Bros, M. CD11b Regulates Fungal Outgrowth but Not Neutrophil Recruitment in a Mouse Model of Invasive Pulmonary Aspergillosis. Front. Immunol. 2019, 10, 123. [Google Scholar] [CrossRef]
- Silva, J.C.; Rodrigues, N.C.; Thompson-Souza, G.A.; Muniz, V.D.S.; Neves, J.S.; Figueiredo, R.T. Mac-1 triggers neutrophil DNA extracellular trap formation to Aspergillus fumigatus independently of PAD4 histone citrullination. J. Leukoc. Biol. 2020, 107, 69–83. [Google Scholar] [CrossRef] [PubMed]
- Friedrichs, K.; Adam, M.; Remane, L.; Mollenhauer, M.; Rudolph, V.; Rudolph, T.K.; Andrié, R.P.; Stöckigt, F.; Schrickel, J.W.; Ravekes, T.; et al. Induction of Atrial Fibrillation by Neutrophils Critically Depends on CD11b/CD18 Integrins. PLoS ONE 2014, 9, e89307. [Google Scholar] [CrossRef] [PubMed]
- Gorina, R.; Lyck, R.; Vestweber, D.; Engelhardt, B. β2 Integrin–Mediated Crawling on Endothelial ICAM-1 and ICAM-2 Is a Prerequisite for Transcellular Neutrophil Diapedesis across the Inflamed Blood–Brain Barrier. J. Immunol. 2014, 192, 324–337. [Google Scholar] [CrossRef] [PubMed]
- Marchetti, L.; Engelhardt, B. Immune cell trafficking across the blood-brain barrier in the absence and presence of neuroinflammation. Vasc. Biol. 2020, 2, H1–H18. [Google Scholar] [CrossRef]
- Li, X.; Utomo, A.; Cullere, X.; Choi, M.M.; Milner, D.A., Jr.; Venkatesh, D.; Yun, S.-H.; Mayadas, T.N. The β-Glucan Receptor Dectin-1 Activates the Integrin Mac-1 in Neutrophils via Vav Protein Signaling to Promote Candida albicans Clearance. Cell Host Microbe 2011, 10, 603–615. [Google Scholar] [CrossRef]
- Woolhouse, I.S.; Bayley, D.L.; Lalor, P.; Adams, D.H.; Stockley, R.A. Endothelial interactions of neutrophils under flow in chronic obstructive pulmonary disease. Eur. Respir. J. 2005, 25, 612–617. [Google Scholar] [CrossRef]
- Blidberg, K.; Palmberg, L.; James, A.; Billing, B.; Henriksson, E.; Lantz, A.-S.; Larsson, K.; Dahlén, B. Adhesion molecules in subjects with COPD and healthy non-smokers: A cross sectional parallel group study. Respir. Res. 2013, 14, 47. [Google Scholar] [CrossRef]
- Overbeek, S.A.; Braber, S.; Henricks, P.A.J.; Kleinjan, M.; Kamp, V.M.; Georgiou, N.A.; Garssen, J.; Kraneveld, A.D.; Folkerts, G. Cigarette smoke induces β2-integrin-dependent neutrophil migration across human endothelium. Respir. Res. 2011, 12, 75. [Google Scholar] [CrossRef]
- Zou, J.; Chen, J.; Yan, Q.; Guo, Q.; Bao, C. Serum IL8 and mRNA level of CD11b in circulating neutrophils are increased in clinically amyopathic dermatomyositis with active interstitial lung disease. Clin. Rheumatol. 2016, 35, 117–125. [Google Scholar] [CrossRef]
- Edwards, D.N.; Bix, G.J. The Inflammatory Response After Ischemic Stroke: Targeting β2 and β1 Integrins. Front. Neurosci. 2019, 13, 540. [Google Scholar] [CrossRef]
- Yago, T.; Petrich, B.G.; Zhang, N.; Liu, Z.; Shao, B.; Ginsberg, M.H.; McEver, R.P. Blocking neutrophil integrin activation prevents ischemia–reperfusion injury. J. Exp. Med. 2015, 212, 1267–1281. [Google Scholar] [CrossRef] [PubMed]
- Dehnadi, A.; Cosimi, A.B.; Smith, R.N.; Li, X.; Alonso, J.L.; Means, T.K.; Arnaout, M.A. Prophylactic orthosteric inhibition of leukocyte integrin CD11b/CD18 prevents long-term fibrotic kidney failure in cynomolgus monkeys. Nat. Commun. 2017, 8, 13899. [Google Scholar] [CrossRef] [PubMed]
- Volmering, S.; Block, H.; Boras, M.; Lowell, C.A.; Zarbock, A. The Neutrophil Btk Signalosome Regulates Integrin Activation during Sterile Inflammation. Immunity 2016, 44, 73–87. [Google Scholar] [CrossRef] [PubMed]
- Chen, G.Y.; Nuñez, G. Sterile inflammation: Sensing and reacting to damage. Nat. Rev. Immunol. 2010, 10, 826–837. [Google Scholar] [CrossRef]
- Kuijpers, T.W.; Verhoeven, A.J.; Roos, D.; Kuijpers, T.W.; Van Lier, R.A.W.; Hamann, D.; De Boer, M.; Thung, L.Y.; Weening, R.S. Leukocyte adhesion deficiency type 1 (LAD-1)/variant. A novel immunodeficiency syndrome characterized by dysfunctional beta2 integrins. J. Clin. Investig. 1997, 100, 1725–1733. [Google Scholar] [CrossRef]
- Wen, L.; Marki, A.; Roy, P.; McArdle, S.; Sun, H.; Fan, Z.; Gingras, A.R.; Ginsberg, M.H.; Ley, K. Kindlin-3 recruitment to the plasma membrane precedes high-affinity β2-integrin and neutrophil arrest from rolling. Blood 2021, 137, 29–38. [Google Scholar] [CrossRef]
- Moser, M.; Bauer, M.; Schmid, S.; Ruppert, R.; Schmidt, S.; Sixt, M.; Wang, H.-V.; Sperandio, M.; Fässler, R. Kindlin-3 is required for β2 integrin–mediated leukocyte adhesion to endothelial cells. Nat. Med. 2009, 15, 300–305. [Google Scholar] [CrossRef]
- Daseke, M.J.; Chalise, U.; Becirovic-Agic, M.; Salomon, J.D.; Cook, L.M.; Case, A.J.; Lindsey, M.L. Neutrophil signaling during myocardial infarction wound repair. Cell. Signal 2021, 77, 109816. [Google Scholar] [CrossRef]
- Meisel, S.R.; Shapiro, H.; Radnay, J.; Neuman, Y.; Khaskia, A.-R.; Gruener, N.; Pauzner, H.; David, D. Increased Expression of Neutrophil and Monocyte Adhesion Molecules LFA-1 and Mac-1 and Their Ligand ICAM-1 and VLA-4 Throughout the Acute Phase of Myocardial Infarction: Possible Implications for Leukocyte Aggregation and Microvascular Plugging. J. Am. Coll. Cardiol. 1998, 31, 120–125. [Google Scholar] [CrossRef]
- Khawaja, A.A.; Pericleous, C.; Ripoll, V.M.; Porter, J.C.; Giles, I.P. Autoimmune rheumatic disease IgG has differential effects upon neutrophil integrin activation that is modulated by the endothelium. Sci. Rep. 2019, 9, 1283. [Google Scholar] [CrossRef]
- Simons, P.; Rinaldi, D.A.; Bondu, V.; Kell, A.M.; Bradfute, S.; Lidke, D.S.; Buranda, T. Integrin activation is an essential component of SARS-CoV-2 infection. Sci. Rep. 2021, 11, 1120398. [Google Scholar] [CrossRef] [PubMed]
- Narasaraju, T.; Tang, B.M.; Herrmann, M.; Muller, S.; Chow, V.T.K.; Radic, M. Neutrophilia and NETopathy as Key Pathologic Drivers of Progressive Lung Impairment in Patients With COVID-19. Front. Pharmacol. 2020, 11, 870. [Google Scholar] [CrossRef]
- Yuki, K.; Hou, L. Role of β2 Integrins in Neutrophils and Sepsis. Infect. Immun. 2020, 88, e00031-20. [Google Scholar] [CrossRef] [PubMed]
- Park, I.; Kim, M.; Choe, K.; Song, E.; Seo, H.; Hwang, Y.; Ahn, J.; Lee, S.-H.; Lee, J.H.; Jo, Y.H.; et al. Neutrophils disturb pulmonary microcirculation in sepsis-induced acute lung injury. Eur. Respir. J. 2019, 53, 1800786. [Google Scholar] [CrossRef]
- Xu, J.; Gao, X.-P.; Ramchandran, R.; Zhao, Y.-Y.; Vogel, S.M.; Malik, A.B. Nonmuscle myosin light-chain kinase mediates neutrophil transmigration in sepsis-induced lung inflammation by activating β2 integrins. Nat. Immunol. 2008, 9, 880–886. [Google Scholar] [CrossRef] [PubMed]
- Shimizu, K.; Libby, P.; Shubiki, R.; Sakuma, M.; Wang, Y.; Asano, K.; Mitchell, R.N.; Simon, D.I. Leukocyte Integrin Mac-1 Promotes Acute Cardiac Allograft Rejection. Circulation 2008, 117, 1997–2008. [Google Scholar] [CrossRef]
- Fagerholm, S.C.; MacPherson, M.; James, M.J.; Sevier-Guy, C.; Lau, C.S. The CD11b-integrin (ITGAM) and systemic lupus erythematosus. Lupus 2013, 22, 657–663. [Google Scholar] [CrossRef]
- Zhou, Y.; Wu, J.; Kucik, D.F.; White, N.B.; Redden, D.T.; Szalai, A.J.; Bullard, D.C.; Edberg, J.C. Multiple Lupus-AssociatedITGAMVariants Alter Mac-1 Functions on Neutrophils. Arthritis Rheum. 2013, 65, 2907–2916. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Gao, H.; Shi, C.; Erhardt, P.W.; Pavlovsky, A.; Soloviev, D.A.; Bledzka, K.; Ustinov, V.; Zhu, L.; Qin, J.; et al. Leukocyte integrin Mac-1 regulates thrombosis via interaction with platelet GPIbα. Nat. Commun. 2017, 8, 15559. [Google Scholar] [CrossRef] [PubMed]
- Berthold, T.; Glaubitz, M.; Muschter, S.; Groß, S.; Palankar, R.; Reil, A.; Helm, C.A.; Bakchoul, T.; Schwertz, H.; Bux, J.; et al. Human neutrophil antigen-3a antibodies induce neutrophil stiffening and conformational activation of CD11b without shedding of L-selectin. Transfusion 2015, 55, 2939–2948. [Google Scholar] [CrossRef]
- Henrich, D.; Zimmer, S.; Seebach, C.; Frank, J.; Barker, J.; Marzi, I. Trauma-Activated Polymorphonucleated Leukocytes Damage Endothelial Progenitor Cells: Probable role of CD11b/CD18-CD54 interaction and release of reactive oxygen specie. Shock 2011, 36, 216–222. [Google Scholar] [CrossRef] [PubMed]
- Hahm, E.; Li, J.; Kim, K.; Huh, S.; Rogelj, S.; Cho, J. Extracellular protein disulfide isomerase regulates ligand-binding activity of αMβ2 integrin and neutrophil recruitment during vascular inflammation. Blood 2013, 121, 3789–3800. [Google Scholar] [CrossRef]
- Goretti Riça, I.; Joughin, B.A.; Teke, M.E.; Emmons, T.R.; Griffith, A.M.B.; Cahill, L.A.; Banner-Goodspeed, V.M.M.; Robson, S.C.; Hernandez, J.M.; Segal, B.H.; et al. Neutrophil heterogeneity and emergence of a distinct population of CD11b/CD18-activated low-density neutrophils after trauma. J. Trauma Acute Care Surg. 2023, 94, 187–196. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.; Schaff, U.Y.; Green, C.E.; Chen, H.; Sarantos, M.R.; Hu, Y.; Wara, D.; Simon, S.I.; Lowell, C.A. Impaired Integrin-Dependent Function in Wiskott-Aldrich Syndrome Protein-Deficient Murine and Human Neutrophils. Immunity 2006, 25, 285–295. [Google Scholar] [CrossRef]
- Candotti, F. Clinical Manifestations and Pathophysiological Mechanisms of the Wiskott-Aldrich Syndrome. J. Clin. Immunol. 2018, 38, 13–27. [Google Scholar] [CrossRef]
- Pillay, J.; Braber, I.D.; Vrisekoop, N.; Kwast, L.M.; de Boer, R.J.; Borghans, J.A.M.; Tesselaar, K.; Koenderman, L. In vivo labeling with 2H2O reveals a human neutrophil lifespan of 5.4 days. Blood 2010, 116, 625–627. [Google Scholar] [CrossRef] [PubMed]
- Tak, T.; Tesselaar, K.; Pillay, J.; Borghans, J.A.M.; Koenderman, L. What’s your age again? Determination of human neutrophil half-lives revisited. J. Leukoc. Biol. 2013, 94, 595–601. [Google Scholar] [CrossRef] [PubMed]
- Wright, H.L.; Makki, F.A.; Moots, R.J.; Edwards, S.W. Low-density granulocytes: Functionally distinct, immature neutrophils in rheumatoid arthritis with altered properties and defective TNF signalling. J. Leukoc. Biol. 2017, 101, 599–611. [Google Scholar] [CrossRef]
- Quach, A.; Ferrante, A. The Application of Dextran Sedimentation as an Initial Step in Neutrophil Purification Promotes Their Stimulation, due to the Presence of Monocytes. J. Immunol. Res. 2017, 2017, 1254792. [Google Scholar] [CrossRef]
- Kuhns, D.B.; Priel, D.A.L.; Chu, J.; Zarember, K.A. Isolation and Functional Analysis of Human Neutrophils. Curr. Protoc. Immunol. 2016, 111, 7.23.1–7.23.16. [Google Scholar] [CrossRef]
- Jimbo, S.; Suleman, M.; Maina, T.; Prysliak, T.; Mulongo, M.; Perez-Casal, J. Effect of Mycoplasma bovis on bovine neutrophils. Veter Immunol. Immunopathol. 2017, 188, 27–33. [Google Scholar] [CrossRef] [PubMed]
- Villanueva, E.; Yalavarthi, S.; Berthier, C.C.; Hodgin, J.B.; Khandpur, R.; Lin, A.M.; Rubin, C.J.; Zhao, W.; Olsen, S.H.; Klinker, M.; et al. Netting Neutrophils Induce Endothelial Damage, Infiltrate Tissues, and Expose Immunostimulatory Molecules in Systemic Lupus Erythematosus. J. Immunol. 2012, 187, 538–552. [Google Scholar] [CrossRef] [PubMed]
- Schweizer, T.A.; Shambat, S.M.; Vulin, C.; Hoeller, S.; Acevedo, C.; Huemer, M.; Gomez-Mejia, A.; Chang, C.; Baum, J.; Hertegonne, S.; et al. Blunted sFasL signalling exacerbates TNF-driven neutrophil necroptosis in critically ill COVID-19 patients. Clin. Transl. Immunol. 2021, 10, e1357. [Google Scholar] [CrossRef] [PubMed]
- Cotter, M.J.; Norman, K.E.; Hellewell, P.G.; Ridger, V.C. A Novel Method for Isolation of Neutrophils from Murine Blood Using Negative Immunomagnetic Separation. Am. J. Pathol. 2001, 159, 473–481. [Google Scholar] [CrossRef] [PubMed]
- Son, K.; Mukherjee, M.; McIntyre, B.A.S.; Eguez, J.C.; Radford, K.; LaVigne, N.; Ethier, C.; Davoine, F.; Janssen, L.; Lacy, P.; et al. Improved recovery of functionally active eosinophils and neutrophils using novel immunomagnetic technology. J. Immunol. Methods 2017, 449, 44–55. [Google Scholar] [CrossRef]
- Willeke, T.; Schymeinsky, J.; Prange, P.; Zahler, S.; Walzog, B. A role for Syk-kinase in the control of the binding cycle of the β2 integrins (CD11/CD18) in human polymorphonuclear neutrophils. J. Leukoc. Biol. 2003, 74, 260–269. [Google Scholar] [CrossRef]
- Diacovo, T.G.; Roth, S.J.; Buccola, J.M.; Bainton, D.F.; Springer, T.A. Neutrophil Rolling, Arrest, and Transmigration Across Activated, Surface-Adherent Platelets Via Sequential Action of P-Selectin and the β2-Integrin CDllb/CDl8. Blood 1996, 88, 146–157. [Google Scholar] [CrossRef]
- Lowenthal, R.; Park, D.; Goldman, J.; Th’ng, K.; Hill, R.; Whyte, G. The cyropresevration of leukaemia cells: Morphological and functional changes. Br. J. Haematol. 1976, 34, 105–117. [Google Scholar] [CrossRef]
- Hill, R.S.; Still, B.J.; Mackinder, C.A. Improved functional recovery of human granulocytes after cryopreservation. Cryobiology 1981, 18, 533–540. [Google Scholar] [CrossRef]
- Malawista, S.E.; Van Blaricom, G.; Breitenstein, M.G. Cryopreservable neutrophil surrogates. Stored cytoplasts from human polymorphonuclear leukocytes retain chemotactic, phagocytic, and microbicidal function. J. Clin. Investig. 1989, 83, 728–732. [Google Scholar] [CrossRef]
- Voetman, A.; Bot, A.; Roos, D. Cryopreservation of enucleated human neutrophils (PMN cytoplasts). Blood 1984, 63, 234–237. [Google Scholar] [CrossRef] [PubMed]
- Hong, C.-W. Extracellular Vesicles of Neutrophils. Immune Netw. 2018, 18, e43. [Google Scholar] [CrossRef] [PubMed]
- Kolonics, F.; Szeifert, V.; Timár, C.I.; Ligeti, E.; Lőrincz, Á.M. The Functional Heterogeneity of Neutrophil-Derived Extracellular Vesicles Reflects the Status of the Parent Cell. Cells 2020, 9, 2718. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Y.; Bréchard, S. Neutrophil Extracellular Vesicles: A Delicate Balance between Pro-Inflammatory Responses and Anti-Inflammatory Therapies. Cells 2022, 11, 3318. [Google Scholar] [CrossRef] [PubMed]
- Szeifert, V.; Kolonics, F.; Bartos, B.; Khamari, D.; Vági, P.; Barna, L.; Ligeti, E.; Lőrincz, M. Mac-1 Receptor Clustering Initiates Production of Pro-Inflammatory, Antibacterial Extracellular Vesicles from Neutrophils. Front. Immunol. 2021, 12, 671995. [Google Scholar] [CrossRef]
- Xu, Z.; Cai, J.; Gao, J.; White, G.C.; Chen, F.; Ma, Y.-Q. Interaction of kindlin-3 and β2-integrins differentially regulates neutrophil recruitment and NET release in mice. Blood 2015, 126, 373–377. [Google Scholar] [CrossRef]
- Wong, S.L.; Demers, M.; Martinod, K.; Gallant, M.; Wang, Y.; Goldfine, A.B.; Kahn, C.R.; Wagner, D.D. Diabetes primes neutrophils to undergo NETosis, which impairs wound healing. Nat. Med. 2015, 21, 815–819. [Google Scholar] [CrossRef]
- Alder, M.N.; Mallela, J.; Opoka, A.M.; Lahni, P.; Hildeman, D.A.; Wong, H.R. Olfactomedin 4 marks a subset of neutrophils in mice. Innate Immun. 2018, 25, 22–33. [Google Scholar] [CrossRef]
- Helou, D.G.; Braham, S.; De Chaisemartin, L.; Granger, V.; Damien, M.-H.; Pallardy, M.; Kerdine-Römer, S.; Chollet-Martin, S. Nrf2 downregulates zymosan-induced neutrophil activation and modulates migration. PLoS ONE 2019, 14, e0216465. [Google Scholar] [CrossRef]
- Rivadeneyra, L.; Charó, N.; Kviatcovsky, D.; de la Barrera, S.; Gómez, R.M.; Schattner, M. Role of neutrophils in CVB3 infection and viral myocarditis. J. Mol. Cell. Cardiol. 2018, 125, 149–161. [Google Scholar] [CrossRef]
- Mestas, J.; Hughes, C.C.W. Of mice and not men: Differences between mouse and human immunology. J. Immunol. 2004, 172, 2731–2738. [Google Scholar] [CrossRef]
- Bruhns, P.; Jönsson, F. Mouse and human FcR effector functions. Immunol. Rev. 2015, 268, 25–51. [Google Scholar] [CrossRef] [PubMed]
- Castro-Dopico, T.; Clatworthy, M.R. IgG and Fcγ Receptors in Intestinal Immunity and Inflammation. Front. Immunol. 2019, 10, 805. [Google Scholar] [CrossRef] [PubMed]
- Bertram, A.; Zhang, H.; von Vietinghoff, S.; de Pablo, C.; Haller, H.; Shushakova, N.; Ley, K. Protein Kinase C-θ Is Required for Murine Neutrophil Recruitment and Adhesion Strengthening under Flow. J. Immunol. 2012, 188, 4043–4051. [Google Scholar] [CrossRef] [PubMed]
- Dorward, D.A.; Lucas, C.D.; Alessandri, A.L.; Marwick, J.A.; Rossi, F.; Dransfield, I.; Haslett, C.; Dhaliwal, K.; Rossi, A.G. Technical Advance: Autofluorescence-based sorting: Rapid and nonperturbing isolation of ultrapure neutrophils to determine cytokine production. J. Leukoc. Biol. 2013, 94, 193–202. [Google Scholar] [CrossRef] [PubMed]
- Grieshaber-Bouyer, R.; Nigrovic, P.A. Neutrophil Heterogeneity as Therapeutic Opportunity in Immune-Mediated Disease. Front. Immunol. 2019, 10, 346. [Google Scholar] [CrossRef] [PubMed]
- Silvestre-Roig, C.; Fridlender, Z.G.; Glogauer, M.; Scapini, P. Neutrophil Diversity in Health and Disease. Trends Immunol. 2019, 40, 565–583. [Google Scholar] [CrossRef] [PubMed]
- Eruslanov, E.B.; Singhal, S.; Albelda, S.M. Mouse versus Human Neutrophils in Cancer: A Major Knowledge Gap. Trends Cancer 2017, 3, 149–160. [Google Scholar] [CrossRef]
- Soroush, F.; Tang, Y.; Mustafa, O.; Sun, S.; Yang, Q.; Kilpatrick, L.E.; Kiani, M.F. Neutrophil-endothelial interactions of murine cells is not a good predictor of their interactions in human cells. FASEB J. 2020, 34, 2691–2702. [Google Scholar] [CrossRef]
- Ecker, S.; Chen, L.; Pancaldi, V.; Bagger, F.O.; Fernández, J.M.; Carrillo de Santa Pau, E.C.; Juan, D.; Mann, A.L.; Watt, S.; Casale, F.P.; et al. Genome-wide analysis of differential transcriptional and epigenetic variability across human immune cell types. Genome Biol. 2017, 18, 18. [Google Scholar] [CrossRef]
- Atallah-Yunes, S.A.; Ready, A.; Newburger, P.E. Benign ethnic neutropenia. Blood Rev. 2019, 37, 100586. [Google Scholar] [CrossRef] [PubMed]
- Saul, M.C.; Philip, V.M.; Reinholdt, L.G.; Chesler, E.J. High-Diversity Mouse Populations for Complex Traits. Trends Genet. 2019, 35, 501–514. [Google Scholar] [CrossRef] [PubMed]
- Gupta, S.; Lee, C.-M.; Wang, J.-F.; Parodo, J.; Jia, S.-H.; Hu, J.; Marshall, J.C. Heat-shock protein-90 prolongs septic neutrophil survival by protecting c-Src kinase and caspase-8 from proteasomal degradation. J. Leukoc. Biol. 2018, 103, 933–944. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.G.; Teng, Y.S.; Cheng, P.; Kong, H.; Lv, P.Y.; Mao, F.Y.; Wu, X.L.; Hao, C.J.; Chen, W.; Yang, S.M.; et al. Abrogation of cathepsin C by Helicobacter pylori impairs neutrophil activation to promote gastric infection. FASEB J. 2019, 33, 5018–5033. [Google Scholar] [CrossRef] [PubMed]
- Hickstein, D.D.; Smith, A.; Fisher, W.; Beatty, P.G.; Schwartz, B.R.; Harlan, J.M.; Root, R.K.; Locksley, R.M. Expression of leukocyte adherence-related glycoproteins during differentiation of HL-60 promyelocytic leukemia cells. J. Immunol. 1987, 138, 513–519. [Google Scholar] [CrossRef]
- Gupta, D.; Shah, H.P.; Malu, K.; Berliner, N.; Gaines, P. Differentiation and Characterization of Myeloid Cells. Curr. Protoc. Immunol. 2014, 104, 22F.5.1–22F.5.28. [Google Scholar] [CrossRef]
- Blanter, M.; Gouwy, M.; Struyf, S. Studying Neutrophil Function in vitro: Cell Models and Environmental Factors. J. Inflamm. Res. 2021, 14, 141–162. [Google Scholar] [CrossRef]
- Deevi, R.K.; Koney-Dash, M.; Kissenpfennig, A.; Johnston, J.A.; Schuh, K.; Walter, U.; Dib, K. Vasodilator-Stimulated Phosphoprotein Regulates Inside-Out Signaling of β2 Integrins in Neutrophils. J. Immunol. 2010, 184, 6575–6584. [Google Scholar] [CrossRef]
- Rincón, E.; Rocha-Gregg, B.L.; Collins, S.R. A map of gene expression in neutrophil-like cell lines. BMC Genom. 2018, 19, 573. [Google Scholar] [CrossRef]
- Sham, R.L.; Phatak, P.D.; Belanger, K.A.; Packman, C.H. Functional properties of HL60 cells matured with all-trans-retinoic acid and DMSO: Differences in response to interleukin-8 and fMLP. Leuk. Res. 1995, 19, 1–6. [Google Scholar] [CrossRef]
- Launay, S.; Brown, G.; Machesky, L.M. Expression of WASP and Scar1/WAVE1 actin-associated proteins is differentially modulated during differentiation of HL-60 cells. Cell Motil. Cytoskelet. 2003, 54, 274–285. [Google Scholar] [CrossRef] [PubMed]
- Hauert, A.B.; Martinelli, S.; Marone, C.; Niggli, V. Differentiated HL-60 cells are a valid model system for the analysis of human neutrophil migration and chemotaxis. Int. J. Biochem. Cell Biol. 2002, 34, 838–854. [Google Scholar] [CrossRef] [PubMed]
- Patcha, V.; Wigren, J.; Winberg, M.E.; Rasmusson, B.; Li, J.; Särndahl, E. Differential inside-out activation of β2-integrins by leukotriene B4 and fMLP in human neutrophils. Exp. Cell Res. 2004, 300, 308–319. [Google Scholar] [CrossRef] [PubMed]
- Lubbert, M.; Herrmann, F.; Koeffler, H.P. Expression and regulation of myeloid-specific genes in normal and leukemic myeloid cells. Blood 1991, 77, 909–924. [Google Scholar] [CrossRef] [PubMed]
- Weber, C.; Lu, C.F.; Casasnovas, J.M.; Springer, T.A. Role of alpha L beta 2 integrin avidity in transendothelial chemotaxis of mononuclear cells. J. Immunol. Methods 1997, 159, 3968–3975. [Google Scholar] [CrossRef]
- DuMont, A.L.; Yoong, P.; Day, C.J.; Alonzo, F.; McDonald, W.H.; Jennings, M.P.; Torres, V.J. Staphylococcus aureus LukAB cytotoxin kills human neutrophils by targeting the CD11b subunit of the integrin Mac-1. Proc. Natl. Acad. Sci. USA 2013, 110, 10794–10799. [Google Scholar] [CrossRef] [PubMed]
- Xue, Z.-H.; Feng, C.; Liu, W.-L.; Tan, S.-M. A Role of Kindlin-3 in Integrin αMβ2 Outside-In Signaling and the Syk-Vav1-Rac1/Cdc42 Signaling Axis. PLoS ONE 2013, 8, e56911. [Google Scholar] [CrossRef]
- Lefort, C.T.; Hyun, Y.-M.; Schultz, J.B.; Law, F.-Y.; Waugh, R.E.; Knauf, P.A.; Kim, M. Outside-In Signal Transmission by Conformational Changes in Integrin Mac-1. J. Immunol. 2009, 183, 6460–6468. [Google Scholar] [CrossRef]
- Harlan, J.M.; Winn, R.K. Leukocyte-endothelial interactions: Clinical trials of anti-adhesion therapy. Crit. Care Med. 2002, 30, S214–S219. [Google Scholar] [CrossRef]
- Dove, A. CD18 trials disappoint again. Nat. Biotechnol. 2000, 18, 817–818. [Google Scholar] [CrossRef]
- Hafeez Faridi, M.; Altintas, M.M.; Gomez, C.; Camilo Doque, J.; Vazquez-Padron, R.I.; Gupta, V. Small molecular agonists of integrin CD11b/CD18 do not induce global conformational changes and are significantly better than activating antibodies in reducing vascular injury. Biochim. Biophys. Acta 2013, 1830, 3696–3710. [Google Scholar] [CrossRef] [PubMed]
- Celik, E.; Faridi, M.H.; Kumar, V.; Deep, S.; Moy, V.T.; Gupta, V. Agonist Leukadherin-1 Increases CD11b/CD18-Dependent Adhesion Via Membrane Tethers. Biophys. J. 2013, 105, 2517–2527. [Google Scholar] [CrossRef] [PubMed]
- Chu, J.Y.; McCormick, B.; Mazelyte, G.; Michael, M.; Vermeren, S. HoxB8 neutrophils replicate Fcγ receptor and integrin-induced neutrophil signaling and functions. J. Leukoc. Biol. 2019, 105, 93–100. [Google Scholar] [CrossRef] [PubMed]
- Saul, S.; Castelbou, C.; Fickentscher, C.; Demaurex, N. Signaling and functional competency of neutrophils derived from bone-marrow cells expressing the ER-HOXB8 oncoprotein. J. Leukoc. Biol. 2019, 106, 1101–1115. [Google Scholar] [CrossRef]
- Wilson, Z.S.; Witt, H.; Hazlett, L.; Harman, M.; Neumann, B.M.; Whitman, A.; Patel, M.; Ross, R.S.; Franck, C.; Reichner, J.S.; et al. Context-Dependent Role of Vinculin in Neutrophil Adhesion, Motility and Trafficking. Sci. Rep. 2020, 10, 2142. [Google Scholar] [CrossRef]
- Cohen, J.T.; Danise, M.; Hinman, K.D.; Neumann, B.M.; Johnson, R.; Wilson, Z.S.; Chorzalska, A.; Dubielecka, P.M.; Lefort, C.T. Engraftment, Fate, and Function of HoxB8-Conditional Neutrophil Progenitors in the Unconditioned Murine Host. Front. Cell Dev. Biol. 2022, 10, 840894. [Google Scholar] [CrossRef]
- Bromberger, T.; Klapproth, S.; Rohwedder, I.; Weber, J.; Pick, R.; Mittmann, L.; Min-Weißenhorn, S.J.; Reichel, C.A.; Scheiermann, C.; Sperandio, M.; et al. Binding of Rap1 and Riam to Talin1 Fine-Tune β2 Integrin Activity During Leukocyte Trafficking. Front. Immunol. 2021, 12, 702345. [Google Scholar] [CrossRef]
- Bromberger, T.; Klapproth, S.; Sperandio, M.; Moser, M. Humanized Beta2 Integrin-Expressing Hoxb8 Cells Serve as Model to Study Integrin Activation. Cells 2022, 11, 1532. [Google Scholar] [CrossRef]
- Penberthy, T.; Jiang, Y.; Luscinskas, F.; Graves, D. MCP-1-stimulated monocytes preferentially utilize β2-integrins to migrate on laminin and fibronectin. Am. J. Physiol. 1995, 269, C60–C68. [Google Scholar] [CrossRef]
- Graham, I.L.; Lefkowith, J.B.; Anderson, D.C.; Brown, E.J.; Leikowith, J.B.; Anderson, D.C.; Browntln, E.J. Immune complex-stimulated neutrophil LTB4 production is dependent on β2 integrins. J. Cell Biol. 1993, 120, 1509–1517. [Google Scholar] [CrossRef]
- Berton, G.; Fumagalli, L.; Laudanna, C.; Sorio, C. β2 Integrin-dependent Protein Tyrosine Phosphorylation and Activation of the FGR Protein Tyrosine Kinase in Human Neutrophils. J. Cell Biol. 1994, 126, 1111–1121. [Google Scholar] [CrossRef] [PubMed]
- Jakus, Z.; Berton, G.; Ligeti, E.; Lowell, C.A.; Mócsai, A. Responses of Neutrophils to Anti-Integrin Antibodies Depends on Costimulation through Low Affinity FcγRs: Full Activation Requires Both Integrin and Nonintegrin Signals. J. Immunol. 2004, 173, 2068–2077. [Google Scholar] [CrossRef] [PubMed]
- Sheats, M.K.; Pescosolido, K.C.; Hefner, E.M.; Sung, E.J.; Adler, K.B.; Jones, S.L. Myristoylated Alanine Rich C Kinase Substrate (MARCKS) is essential to β2-integrin dependent responses of equine neutrophils. Veter Immunol. Immunopathol. 2014, 160, 167–176. [Google Scholar] [CrossRef] [PubMed]
- Jones, S.L.; Sharief, Y.; Chilcoat, C.D. Signaling mechanism for equine neutrophil activation by immune complexes. Veter Immunol. Immunopathol. 2001, 82, 87–100. [Google Scholar] [CrossRef]
- Feng, C.; Zhang, L.; Almulki, L.; Faez, S.; Whitford, M.; Hafezi-Moghadam, A.; Cross, A.S. Endogenous PMN sialidase activity exposes activation epitope on CD11b/CD18 which enhances its binding interaction with ICAM-1. J. Leukoc. Biol. 2011, 90, 313–321. [Google Scholar] [CrossRef]
- Sule, G.; Kelley, W.J.; Gockman, K.; Yalavarthi, S.; Vreede, A.P.; Banka, A.L.; Bockenstedt, P.L.; Eniola-Adefeso, O.; Knight, J.S. Increased Adhesive Potential of Antiphospholipid Syndrome Neutrophils Mediated by β2 Integrin Mac-1. Arthritis Rheumatol. 2020, 72, 114–124. [Google Scholar] [CrossRef]
- Wilson, Z.S.; Ahn, L.B.; Serratelli, W.S.; Belley, M.D.; Lomas-Neira, J.; Sen, M.; Lefort, C.T. Activated β2 Integrins Restrict Neutrophil Recruitment during Murine Acute Pseudomonal Pneumonia. Am. J. Respir. Cell Mol. Biol. 2017, 56, 620–627. [Google Scholar] [CrossRef]
- Pollara, J.; Tay, M.Z.; Edwards, R.W.; Goodman, D.; Crowley, A.R.; Edwards, R.J.; Easterhoff, D.; Conley, H.E.; Hoxie, T.; Gurley, T.; et al. Functional Homology for Antibody-Dependent Phagocytosis Across Humans and Rhesus Macaques. Front. Immunol. 2021, 12, 678511. [Google Scholar] [CrossRef]
- Walzog, B.; Weinmann, P.; Jeblonski, F.; Scharffetter-Kochanek, K.; Bommert, K.; Gaehtgens, P. A role for β2 integrins (CD11/CD18) in the regulation of cytokine gene expression of polymorphonuclear neutrophils during the inflammatory response. FASEB J. 1999, 13, 1855–1865. [Google Scholar] [CrossRef]
- Burnett, A.; Gomez, I.; De Leon, D.D.; Ariaans, M.; Progias, P.; Kammerer, R.A.; Velasco, G.; Marron, M.; Hellewell, P.; Ridger, V. Angiopoietin-1 enhances neutrophil chemotaxis in vitro and migration in vivo through interaction with CD18 and release of CCL4. Sci. Rep. 2017, 7, 2332. [Google Scholar] [CrossRef]
- Kunkel, E.J.; Dunne, J.L.; Ley, K. Leukocyte Arrest During Cytokine-Dependent Inflammation In Vivo. J. Immunol. 2000, 164, 3301–3308. [Google Scholar] [CrossRef] [PubMed]
- Petruzzelli, L.; Maduzia, L.; Springer3, T.A. Activation of Lymphocyte Function-Associated Molecule4 (CDlla/CD18) and Mac-1 (CD11 b/CD18) Mimicked by an Antibody Directed Against CD18’. J. Immunol. 1995, 155, 854–866. [Google Scholar] [CrossRef] [PubMed]
- Jones, S.L.; Knaus, U.G.; Bokoch, G.M.; Brown, E.J. Two Signaling Mechanisms for Activation of αMβ2 Avidity in Polymorphonuclear Neutrophils. J. Biol. Chem. 1998, 273, 10556–10566. [Google Scholar] [CrossRef] [PubMed]
- Diamond, M.S.; Springer, T.A. A Subpopulation of Mac-1 (CDllb/CD18) Molecules Mediates Neutrophil Adhesion to ICAM-1 and Fibfinogen. J. Cell Biol. 1993, 120, 545–556. [Google Scholar] [CrossRef]
- Nishida, N.; Xie, C.; Shimaoka, M.; Cheng, Y.; Walz, T.; Springer, T.A. Activation of Leukocyte β2 Integrins by Conversion from Bent to Extended Conformations. Immunity 2006, 25, 583–594. [Google Scholar] [CrossRef]
- Fossati-Jimack, L.; Ling, G.S.; Cortini, A.; Szajna, M.; Malik, T.H.; McDonald, J.U.; Pickering, M.C.; Cook, H.T.; Taylor, P.R.; Botto, M. Phagocytosis Is the Main CR3-Mediated Function Affected by the Lupus-Associated Variant of CD11b in Human Myeloid Cells. PLoS ONE 2013, 8, e57082. [Google Scholar] [CrossRef]
- Sun, X.; Huang, B.; Pan, Y.; Fang, J.; Wang, H.; Ji, Y.; Ling, Y.; Guo, P.; Lin, J.; Li, Q.; et al. Spatiotemporal characteristics of P-selectin-induced β2 integrin activation of human neutrophils under flow. Front. Immunol. 2022, 13, 1023865. [Google Scholar] [CrossRef]
- Azcutia, V.; Kelm, M.; Luissint, A.-C.; Boerner, K.; Flemming, S.; Quiros, M.; Newton, G.; Nusrat, A.; Luscinskas, F.W.; Parkos, C.A. Neutrophil expressed CD47 regulates CD11b/CD18-dependent neutrophil transepithelial migration in the intestine in vivo. Mucosal Immunol. 2021, 14, 331–341. [Google Scholar] [CrossRef]
- Wen, L.; Marki, A.; Wang, Z.; Orecchioni, M.; Makings, J.; Billitti, M.; Wang, E.; Suthahar, S.S.A.; Kim, K.; Kiosses, W.B.; et al. A humanized β2 integrin knockin mouse reveals localized intra- and extravascular neutrophil integrin activation in vivo. Cell Rep. 2022, 39, 110876. [Google Scholar] [CrossRef]
- Spillmann, C.; Osorio, D.; Waugh, R. Integrin activation by divalent ions affects neutrophil homotypic adhesion. Ann. Biomed. Eng. 2002, 30, 1002–1011. [Google Scholar] [CrossRef]
- Mehta, R.; Petrova, A. Intrapartum Magnesium Sulfate Exposure Attenuates Neutrophil Function in Preterm Neonates. Neonatology 2006, 89, 99–103. [Google Scholar] [CrossRef] [PubMed]
- Lowell, C.A.; Fumagalli, L.; Berton, G. Deficiency of Src family kinases p59/61hck and p58c-fgr results in defective adhesion-dependent neutrophil functions. J. Cell Biol. 1996, 133, 895–910. [Google Scholar] [CrossRef] [PubMed]
- Zen, K.; Guo, Y.-L.; Li, L.-M.; Bian, Z.; Zhang, C.-Y.; Liu, Y. Cleavage of the CD11b extracellular domain by the leukocyte serprocidins is critical for neutrophil detachment during chemotaxis. Blood 2011, 117, 4885–4894. [Google Scholar] [CrossRef]
- Szczur, K.; Zheng, Y.; Filippi, M.-D. The small Rho GTPase Cdc42 regulates neutrophil polarity via CD11b integrin signaling. Blood 2009, 114, 4527–4537. [Google Scholar] [CrossRef] [PubMed]
- McMillan, S.J.; Sharma, R.S.; McKenzie, E.J.; Richards, H.E.; Zhang, J.; Prescott, A.; Crocker, P.R. Siglec-E is a negative regulator of acute pulmonary neutrophil inflammation and suppresses CD11b β2-integrin–dependent signaling. Blood 2013, 121, 2084–2094. [Google Scholar] [CrossRef]
- Cox, D.; Aoki, T.; Seki, J.; Motoyama, Y.; Yoshida, K. The pharmacology of the integrins. Med. Res. Rev. 1994, 14, 195–228. [Google Scholar] [CrossRef]
- Ruoslahti, E.; Pierschbacher, M.D. New Perspectives in Cell Adhesion: RGD and Integrins. Science 1987, 238, 491–497. [Google Scholar] [CrossRef]
- Mócsai, A.; Zhou, M.; Meng, F.; Tybulewicz, V.L.; Lowell, C.A. Syk Is Required for Integrin Signaling in Neutrophils. Immunity 2002, 16, 547–558. [Google Scholar] [CrossRef]
- Mócsai, A.; Abram, C.L.; Jakus, Z.; Hu, Y.; Lanier, L.L.; Lowell, C.A. Integrin signaling in neutrophils and macrophages uses adaptors containing immunoreceptor tyrosine-based activation motifs. Nat. Immunol. 2006, 7, 1326–1333. [Google Scholar] [CrossRef]
- Kim, H.-Y.; Skokos, E.A.; Myer, D.J.; Agaba, P.; Gonzalez, A.L. αVβ3 Integrin Regulation of Respiratory Burst in Fibrinogen Adherent Human Neutrophils. Cell. Mol. Bioeng. 2014, 7, 231–242. [Google Scholar] [CrossRef]
- Rossaint, J.; Herter, J.M.; Van Aken, H.; Napirei, M.; Oring, Y.D.; Weber, C.; Soehnlein , O.; Zarbock, A. Synchronized integrin engagement and chemokine activation is crucial in neutrophil extracellular trap-mediated sterile inflammation. Blood 2014, 123, 2573–2584. [Google Scholar] [CrossRef] [PubMed]
- Ueda, T.; Rieu, P.; Brayer, J.; Amin Arnaout, M. Identification of the complement iC3b binding site in the β2 integrin CR3 (CD11b/CD18). Proc. Nati. Acad. Sci. USA 1994, 91, 10680–10684. [Google Scholar] [CrossRef] [PubMed]
- Lau, D.; Mollnau, H.; Eiserich, J.P.; Freeman, B.A.; Daiber, A.; Gehling, U.M.; Brümmer, J.; Rudolph, V.; Münzel, T.; Heitzer, T.; et al. Myeloperoxidase mediates neutrophil activation by association with CD11b/CD18 integrins. Proc. Natl. Acad. Sci. USA 2005, 102, 431–436. [Google Scholar] [CrossRef]
- Newton, R.A.; Hogg, N. The Human S100 Protein MRP-14 Is a Novel Activator of the β2 Integrin Mac-1 on Neutrophils. J. Immunol. Ref. 1998, 160, 1427–1435. [Google Scholar] [CrossRef]
- Monsel, A.; Lécart, S.; Roquilly, A.; Broquet, A.; Jacqueline, C.; Mirault, T.; Troude, T.; Fontaine-Aupart, M.-P.; Asehnoune, K. Analysis of Autofluorescence in Polymorphonuclear Neutrophils: A New Tool for Early Infection Diagnosis. PLoS ONE 2014, 9, e92564. [Google Scholar] [CrossRef]
- Naegele, M.; Tillack, K.; Reinhardt, S.; Schippling, S.; Martin, R.; Sospedra, M. Neutrophils in multiple sclerosis are characterized by a primed phenotype. J. Neuroimmunol. 2012, 242, 60–71. [Google Scholar] [CrossRef]
- Andersen, M.N.; Al-Karradi, S.N.H.; Kragstrup, T.W.; Hokland, M. Elimination of erroneous results in flow cytometry caused by antibody binding to Fc receptors on human monocytes and macrophages. Cytom. Part A 2016, 89, 1001–1009. [Google Scholar] [CrossRef]
- Smirnov, A.; Solga, M.D.; Lannigan, J.; Criss, A.K. Using Imaging Flow Cytometry to Quantify Neutrophil Phagocytosis. Neutrophil. Methods Mol. Biol. 2020, 2087, 127–140. [Google Scholar] [CrossRef]
- Han, Y.; Gu, Y.; Zhang, A.C.; Lo, Y.-H. Review: Imaging technologies for flow cytometry. Lab Chip 2016, 16, 4639–4647. [Google Scholar] [CrossRef]
- Eckert, R.E.; Neuder, L.E.; Park, J.; Adler, K.B.; Jones, S.L. Myristoylated Alanine-Rich C-Kinase Substrate (MARCKS) Protein Regulation of Human Neutrophil Migration. Am. J. Respir. Cell Mol. Biol. 2010, 42, 586–594. [Google Scholar] [CrossRef]
- Takahashi, M.; Nagao, T.; Matsuzaki, K.; Nishimura, T.; Minamitani, H. Photodynamically induced endothelial cell injury and neutrophil-like HL-60 adhesion. J. Photoscience 2002, 9, 518–520. [Google Scholar]
- Shimizu, Y.; Mobley, J.L.; Finkelstein, L.D.; Chan, A.S.H. A role for phosphatidylinositol 3-kinase in the regulation of beta 1 integrin activity by the CD2 antigen. J. Cell Biol. 1995, 131, 1867–1880. [Google Scholar] [CrossRef] [PubMed]
- Shrestha, D.; Jenei, A.; Nagy, P.; Vereb, G.; Szöllősi, J. Understanding FRET as a Research Tool for Cellular Studies. Int. J. Mol. Sci. 2015, 16, 6718–6756. [Google Scholar] [CrossRef] [PubMed]
- Liu, W.; Hsu, A.Y.; Wang, Y.; Lin, T.; Sun, H.; Pachter, J.S.; Groisman, A.; Imperioli, M.; Yungher, F.W.; Hu, L.; et al. Mitofusin-2 regulates leukocyte adhesion and β2 integrin activation. J. Leukoc. Biol. 2022, 111, 771–791. [Google Scholar] [CrossRef] [PubMed]
- Zarbock, A.; Lowell, C.A.; Ley, K. Syk signaling is necessary for E-selectin-induced LFA-1-ICAM-1 association and rolling but not arrest. Immunity 2007, 26, 773–783. [Google Scholar] [CrossRef] [PubMed]
- Morikis, V.A.; Chen, S.J.; Madigan, J.; Jo, M.H.; Werba, L.C.; Ha, T.; Simon, S.I. β2-Integrin Adhesive Bond Tension under Shear Stress Modulates Cytosolic Calcium Flux and Neutrophil Inflammatory Response. Cells 2022, 11, 2822. [Google Scholar] [CrossRef]
- Kaboord, B.; Perr, M. Isolation of Proteins and Protein Complexes by Immunoprecipitation. In 2D PAGE: Sample Preparation and Fractionation; Posch, A., Ed.; Humana Press: Totowa, NJ, USA, 2008; pp. 349–364. ISBN 978-1-60327-064-9. [Google Scholar]
- Evans, R.; Lellouch, A.C.; Svensson, L.; McDowall, A.; Hogg, N. The integrin LFA-1 signals through ZAP-70 to regulate expression of high-affinity LFA-1 on T lymphocytes. Blood 2011, 117, 3331–3342. [Google Scholar] [CrossRef]
- Kumar, S.; Xu, J.; Perkins, C.; Guo, F.; Snapper, S.; Finkelman, F.D.; Zheng, Y.; Filippi, M.-D. Cdc42 regulates neutrophil migration via crosstalk between WASp, CD11b, and microtubules. Blood 2012, 120, 3563–3574. [Google Scholar] [CrossRef]
- Xiong, Y.-M.; Chen, J.; Zhang, L. Modulation of CD11b/CD18 Adhesive Activity by Its Extracellular, Membrane-Proximal Regions. J. Immunol. 2003, 171, 1042–1050. [Google Scholar] [CrossRef]
- Wang, J.-X.; Bair, A.M.; King, S.L.; Shnayder, R.; Huang, Y.-F.; Shieh, C.-C.; Soberman, R.J.; Fuhlbrigge, R.C.; Nigrovic, P.A. Ly6G ligation blocks recruitment of neutrophils via a β2-integrin–dependent mechanism. Blood 2012, 120, 1489. [Google Scholar] [CrossRef]
- Piccardoni, P.; Manarini, S.; Federico, L.; Bagoly, Z.; Pecce, R.; Martelli, N.; Piccoli, A.; Totani, L.; Cerletti, C.; Evangelista, V. SRC-dependent outside-in signalling is a key step in the process of autoregulation of β2 integrins in polymorphonuclear cells. Biochem. J. 2004, 380, 57–65. [Google Scholar] [CrossRef] [PubMed]
- Lukácsi, S.; Nagy-Baló, Z.; Erdei, A.; Sándor, N.; Bajtay, Z. The role of CR3 (CD11b/CD18) and CR4 (CD11c/CD18) in complement-mediated phagocytosis and podosome formation by human phagocytes. Immunol. Lett. 2017, 189, 64–72. [Google Scholar] [CrossRef] [PubMed]
- Xu, S.; Wang, J.; Wang, J.-H.; Springer, T.A. Distinct recognition of complement iC3b by integrins α X β 2 and α M β2. Proc. Natl. Acad. Sci. USA 2017, 114, 3403–3408. [Google Scholar] [CrossRef] [PubMed]
- Fan, Z.; McArdle, S.; Marki, A.; Mikulski, Z.; Gutierrez, E.; Engelhardt, B.; Deutsch, U.; Ginsberg, M.; Groisman, A.; Ley, K. Neutrophil recruitment limited by high-affinity bent β2 integrin binding ligand in cis. Nat. Commun. 2016, 7, 12658. [Google Scholar] [CrossRef]
- Lämmermann, T.; Germain, R.N. The multiple faces of leukocyte interstitial migration. Semin. Immunopathol. 2014, 36, 227–251. [Google Scholar] [CrossRef]
- Brown, A.F. Neutrophil granulocytes: Adhesion and locomotion on collagen substrata and in collagen matrices. J. Cell Sci. 1982, 58, 455–467. [Google Scholar] [CrossRef]
- Friedl, P.; Weigelin, B. Interstitial leukocyte migration and immune function. Nat. Immunol. 2008, 9, 960–969. [Google Scholar] [CrossRef]
- Lämmermann, T.; Bader, B.L.; Monkley, S.J.; Worbs, T.; Wedlich-Söldner, R.; Hirsch, K.; Keller, M.; Förster, R.; Critchley, D.R.; Fässler, R.; et al. Rapid leukocyte migration by integrin-independent flowing and squeezing. Nature 2008, 453, 51–55. [Google Scholar] [CrossRef]
- Toyjanova, J.; Flores-Cortez, E.; Reichner, J.S.; Franck, C. Matrix Confinement Plays a Pivotal Role in Regulating Neutrophil-generated Tractions, Speed, and Integrin Utilization. J. Biol. Chem. 2015, 290, 3752–3763. [Google Scholar] [CrossRef]
- Mizgerd, J.P.; Horwitz, B.H.; Quillen, H.C.; Scott, M.L.; Doerschuk, C.M. Effects of CD18 Deficiency on the Emigration of Murine Neutrophils During Pneumonia. J. Immunol. 1999, 163, 995–999. [Google Scholar] [CrossRef]
- Palmer, C.S.; Kimmey, J.M. Neutrophil Recruitment in Pneumococcal Pneumonia. Front. Cell. Infect. Microbiol. 2022, 12, 574. [Google Scholar] [CrossRef] [PubMed]
- Doerschuk, C.M.; Tasaka, S.; Wang, Q. CD11/CD18-Dependent and -Independent Neutrophil Emigration in the Lungs: How Do Neutrophils Know Which Route to Take? Am. J. Respir. Cell Mol. Biol. 2000, 23, 133–136. [Google Scholar] [CrossRef] [PubMed]
- Mileski, W.; Harlan, J.; Rice, C.; Winn, R. Streptococcus pneumoniae-stimulated macrophages induce neutrophils to emigrate by a CD18-independent mechanism of adherence. Circ. Shock 1990, 31, 259–267. [Google Scholar] [PubMed]
- Zenaro, E.; Pietronigro, E.; Della Bianca, V.; Piacentino, G.; Marongiu, L.; Budui, S.; Turano, E.; Rossi, B.; Angiari, S.; Dusi, S.; et al. Neutrophils promote Alzheimer’s disease–like pathology and cognitive decline via LFA-1 integrin. Nat. Med. 2015, 21, 880–886. [Google Scholar] [CrossRef]
- Orlova, V.V.; Choi, E.Y.; Xie, C.; Chavakis, E.; Bierhaus, A.; Ihanus, E.; Ballantyne, C.M.; Gahmberg, C.G.; Bianchi, M.E.; Nawroth, P.P.; et al. A novel pathway of HMGB1-mediated inflammatory cell recruitment that requires Mac-1-integrin. EMBO J. 2007, 26, 1129–1139. [Google Scholar] [CrossRef]
- Tak, T.; Karnam, G.; Boon, L.; Viveen, M.; Meyaard, L.; Koenderman, L.; Pillay, J.; Rygiel, T.P.; Bastian, O.W.; Coenjaerts, F.E. Neutrophil-mediated Suppression of Influenza-induced Pathology Requires CD11b/CD18 (MAC-1). Am. J. Respir. Cell Mol. Biol. 2018, 58, 492–499. [Google Scholar] [CrossRef]
- Kadioglu, A.; De Filippo, K.; Bangert, M.; Fernandes, V.E.; Richards, L.; Jones, K.; Andrew, P.W.; Hogg, N. The Integrins Mac-1 and α4β1 Perform Crucial Roles in Neutrophil and T Cell Recruitment to Lungs during Streptococcus pneumoniae Infection. J. Immunol. 2011, 186, 5907–5915. [Google Scholar] [CrossRef]
- Haist, M.; Ries, F.; Gunzer, M.; Bednarczyk, M.; Siegel, E.; Kuske, M.; Grabbe, S.; Radsak, M.; Bros, M.; Teschner, D. Neutrophil-Specific Knockdown of β2 Integrins Impairs Antifungal Effector Functions and Aggravates the Course of Invasive Pulmonal Aspergillosis. Front. Immunol. 2022, 13, 823121. [Google Scholar] [CrossRef]
- Kevil, C.G.; Hicks, M.J.; He, X.; Zhang, J.; Ballantyne, C.M.; Raman, C.; Schoeb, T.R.; Bullard, D.C. Loss of LFA-1, but not Mac-1, Protects MRL/MpJ-Faslpr Mice from Autoimmune Disease. Am. J. Pathol. 2004, 165, 609–616. [Google Scholar] [CrossRef]
- Mizgerd, B.J.P.; Kubo, H.; Kutkoski, G.J.; Bhagwan, S.D.; Scharffetter-kochanek, K.; Beaudet, A.L.; Doerschuk, C.M. Neutrophil Emigration in the Skin, Lungs, and Peritoneum: Different Requirements for CD11/CD18 Revealed by CD18-deficient Mice. J. Exp. Med. 1997, 186, 1357–1364. [Google Scholar] [CrossRef]
- Coxon, A.; Rieu, P.; Barkalow, F.J.; Askari, S.; Sharpe, A.H.; Von Andrian, U.H.; Arnaout, M.A.; Mayadas, T.N. A Novel Role for the β2 Integrin CD11b/CD18 in Neutrophil Apoptosis: A Homeostatic Mechanism in Inflammation. Immunity 1996, 5, 653–666. [Google Scholar] [CrossRef] [PubMed]
- Kranig, S.A.; Lajqi, T.; Tschada, R.; Braun, M.; Kuss, N.; Pöschl, J.; Hudalla, H. Leukocyte Infiltration of Cremaster Muscle in Mice Assessed by Intravital Microscopy. J. Vis. Exp. 2020, 2020, e60509. [Google Scholar] [CrossRef]
- Phillipson, M.; Heit, B.; Colarusso, P.; Liu, L.; Ballantyne, C.M.; Kubes, P. Intraluminal crawling of neutrophils to emigration sites: A molecularly distinct process from adhesion in the recruitment cascade. J. Exp. Med. 2006, 203, 2569–2575. [Google Scholar] [CrossRef] [PubMed]
- Lim, K.; Hyun, Y.-M.; Lambert-Emo, K.; Topham, D.J.; Kim, M. Visualization of integrin Mac-1 in vivo. J. Immunol. Methods 2015, 426, 120–127. [Google Scholar] [CrossRef] [PubMed]
- Margraf, A.; Ley, K.; Zarbock, A. Neutrophil Recruitment: From Model Systems to Tissue-Specific Patterns. Trends Immunol. 2019, 40, 613–634. [Google Scholar] [CrossRef]
- Behnen, M.; Leschczyk, C.; Möller, S.; Batel, T.; Klinger, M.; Solbach, W.; Laskay, T. Immobilized Immune Complexes Induce Neutrophil Extracellular Trap Release by Human Neutrophil Granulocytes via FcγRIIIB and Mac-1. J. Immunol. 2014, 193, 1954–1965. [Google Scholar] [CrossRef]
- Loike, J.D.; Cao, L.; Budhu, S.; Marcantonio, E.E.; El Khoury, J.; Hoffman, S.; Yednock, T.A.; Silverstein, S.C. Differential regulation of beta1 integrins by chemoattractants regulates neutrophil migration through fibrin. J. Cell Biol. 1999, 144, 1047–1056. [Google Scholar] [CrossRef]
- Lomakina, E.B.; Waugh, R.E. Adhesion Between Human Neutrophils and Immobilized Endothelial Ligand Vascular Cell Adhesion Molecule 1: Divalent Ion Effects. Biophys. J. 2009, 96, 276–284. [Google Scholar] [CrossRef]
- Senior, R.M.; Gresham, H.D.; Griffin, G.L.; Brown, E.J.; Chung, A.E. Entactin stimulates neutrophil adhesion and chemotaxis through interactions between its Arg-Gly-Asp (RGD) domain and the leukocyte response integrin. J. Clin. Investig. 1992, 90, 2251–2257. [Google Scholar] [CrossRef]
- Murphy, J.F.; Bordet, J.C.; Wyler, B.; Rissoan, M.C.; Chomarat, P.; Defrance, T.; Miossec, P.; McGregor, J.L. The vitronectin receptor (αvβ3) is implicated, in cooperation with P-selectin and platelet-activating factor, in the adhesion of monocytes to activated endothelial cells. Biochem. J. 1994, 304, 537–542. [Google Scholar] [CrossRef]
β2-Integrin | Heterodimer | Other Names | Ligands |
---|---|---|---|
CD11a/CD18 | αLβ2 | LFA-1 | ICAM-1, ICAM-2, LPS |
CD11b/CD18 | αMβ2 | Mac-1, Complement receptor 3 (CR3) | iC3b, fibrinogen, factor X, ICAM-1, LPS |
CD11c/CD18 | αXβ2 | P150,95, Complement receptor 4 (CR4) | Fibrinogen, iC3b, collagen, ICAM-1, LPS, β-glucan |
CD11d/CD18 | αDβ2 | ICAM-3, VCAM-1, fibronectin, vitronectin, fibrinogen |
Disease or Disorder | Category | References |
---|---|---|
Antineutrophil cytoplasmic antibody (ANCA)-associated vasculitis (AAV) | Autoimmune disease | [19] |
Aspergillus fumigatus | Fungal infections | [20,21] |
Atrial fibrillation | Cardiovascular disease | [22] |
Blood-brain barrier inflammation | Acute illness | [23,24] |
Candida albicans | Fungal infections | [25] |
COPD | Chronic disease | [26,27,28] |
Interstitial lung disease (ILD) | Chronic inflammation, autoimmune disease | [29] |
Ischemia-reperfusion injury | Acute injury/Sterile inflammation | [30,31,32,33,34] |
Leukocyte adhesion deficiency (LAD) | Genetic disorder | [35,36,37] |
Myocardial Infarction | Cardiovascular disease/Sterile inflammation | [33,34,38,39] |
Rheumatoid arthritis | Autoimmune disease | [40] |
SARS-CoV-2 | Infectious disease | [41,42] |
Sepsis | Acute illness | [43] |
Sepsis-induced acute lung injury | Acute injury | [44,45] |
Solid organ transplant rejection | Transplant rejection | [46] |
Systemic lupus erythematosus (SLE) | Autoimmune disease | [12,40,47,48] |
Thrombosis | Cardiovascular disease | [49] |
Transfusion-related acute lung injury (TRALI) | Acute injury | [50] |
Trauma/Vascular injury | Acute injury | [51,52,53] |
Wiskott Aldrich syndrome | Genetic disorder | [54,55] |
Cell Line | Requires Differentiation | Endogenous β2-Integrin Expression | Limitations/Drawbacks |
---|---|---|---|
HL60/PLB-985 | Yes—DMSO or retinoic acid (referred to as dHL60s | αLβ2, differentiation required for αMβ2 |
|
K562 | No | No |
|
HoxB8 | Yes—GM-CSF or engraftment into mice | Yes—αLβ2 and αMβ2 |
|
Disease Model | β2-Integrin Dependent | References |
---|---|---|
Alzheimer’s disease | Yes | [185] |
Atrial fibrosis | Yes | [22] |
HMGB1-induced peritonitis | Mac-1: Yes LFA-1: No | [186] |
Influenza | No | [187] |
LTB4-induced intestinal transepithelial migration | Yes | [187] |
Pneumonia | ||
S. pneumonia | Mac-1: yes LFA-1: no | [188] [181] |
P. aeruginosa | Yes | [127,181] |
E. coli LPS | Yes | [181] |
Pulmonary aspergillosis | Yes | [20,189] |
SLE-induced glomerular disease | Mac-1: No LFA-1: Yes | [190] |
Thioglycollate peritonitis | Mac-1: No LFA-1: Yes | [186,191,192] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Conley, H.E.; Sheats, M.K. Targeting Neutrophil β2-Integrins: A Review of Relevant Resources, Tools, and Methods. Biomolecules 2023, 13, 892. https://doi.org/10.3390/biom13060892
Conley HE, Sheats MK. Targeting Neutrophil β2-Integrins: A Review of Relevant Resources, Tools, and Methods. Biomolecules. 2023; 13(6):892. https://doi.org/10.3390/biom13060892
Chicago/Turabian StyleConley, Haleigh E., and M. Katie Sheats. 2023. "Targeting Neutrophil β2-Integrins: A Review of Relevant Resources, Tools, and Methods" Biomolecules 13, no. 6: 892. https://doi.org/10.3390/biom13060892
APA StyleConley, H. E., & Sheats, M. K. (2023). Targeting Neutrophil β2-Integrins: A Review of Relevant Resources, Tools, and Methods. Biomolecules, 13(6), 892. https://doi.org/10.3390/biom13060892