Mechanisms Suggesting a Relationship between Vitamin D and Erectile Dysfunction: An Overview
Abstract
:1. Introduction
2. Vitamin D and Endothelial Function
3. Vitamin D and Erectile Dysfunction: Relationship with Diabetes Mellitus
4. Vitamin D and Erectile Dysfunction: Relationship with Blood Hypertension
5. Vitamin D and Erectile Dysfunction: Relationship with Hypercholesterolemia
6. Vitamin D and Erectile Dysfunction: Relationship to End-Stage Chronic Renal Disease
7. Vitamin D and Erectile Dysfunction: The Role of Testicular Function
8. Limits
9. Conclusions
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Kessler, A.; Sollie, S.; Challacombe, B.; Briggs, K.; Van Hemelrijck, M. The global prevalence of erectile dysfunction: A review. BJU Int. 2019, 124, 587–599. [Google Scholar] [CrossRef]
- Wagner, G.; Fugl-Meyer, K.; Fugl-Meyer, A. Impact of erectile dysfunction on quality of life: Patient and partner perspectives. Int. J. Impot. Res. 2000, 12 (Suppl. S4), S144–S146. [Google Scholar] [CrossRef]
- Elterman, D.S.; Bhattacharyya, S.K.; Mafilios, M.; Woodward, E.; Nitschelm, K.; Burnett, A.L. The Quality of Life and Economic Burden of Erectile Dysfunction. Res. Rep. Urol. 2021, 13, 79–86. [Google Scholar] [CrossRef]
- Lyngdorf, P.; Hemmingsen, L. Epidemiology of erectile dysfunction and its risk factors: A practice-based study in Denmark. Int. J. Impot. Res. 2004, 16, 105–111. [Google Scholar] [CrossRef]
- Allen, M.S.; Walter, E.E. Erectile Dysfunction: An Umbrella Review of Meta-Analyses of Risk-Factors, Treatment, and Prevalence Outcomes. J. Sex. Med. 2019, 16, 531–541. [Google Scholar] [CrossRef]
- Panchatsharam, P.K.; Durland, J.; Zito, P.M. Physiology, Erection. In StatPearls; StatPearls Publishing: Treasure Island, FL, USA, 2022. [Google Scholar]
- Cyr, A.R.; Huckaby, L.V.; Shiva, S.S.; Zuckerbraun, B.S. Nitric Oxide and Endothelial Dysfunction. Crit. Care Clin. 2020, 36, 307–321. [Google Scholar] [CrossRef]
- Shamloul, R.; Ghanem, H. Erectile dysfunction. Lancet 2013, 381, 153–165. [Google Scholar] [CrossRef] [PubMed]
- Holick, M.F. Vitamin D Deficiency. N. Engl. J. Med. 2007, 357, 266–281. [Google Scholar] [CrossRef]
- Holick, M.F.; Binkley, N.C.; Bischoff-Ferrari, H.A.; Gordon, C.M.; Hanley, D.A.; Heaney, R.P.; Murad, M.H.; Weaver, C.M. Evaluation, Treatment, and Prevention of Vitamin D Deficiency: An Endocrine Society Clinical Practice Guideline. Med. J. Clin. Endocrinol. Metab. 2011, 96, 1911–1930. [Google Scholar] [CrossRef]
- Orwoll, E.; Nielson, C.M.; Marshall, L.M.; Lambert, L.; Holton, K.F.; Hoffman, A.R.; Barrett-Connor, E.; Shikany, J.M.; Dam, T.; Cauley, J.A.; et al. Vitamin D Deficiency in Older Men. J. Clin. Endocrinol. Metab. 2009, 94, 1214–1222. [Google Scholar] [CrossRef]
- MacLaughlin, J.; Holick, M.F. Aging decreases the capacity of human skin to produce vitamin D3. J. Clin. Investig. 1985, 76, 1536–1538. [Google Scholar] [CrossRef]
- Webb, A.R.; Kazantzidis, A.; Kift, R.C.; Farrar, M.D.; Wilkinson, J.; Rhodes, L.E. Colour Counts: Sunlight and Skin Type as Drivers of Vitamin D Deficiency at UK Latitudes. Nutrients 2018, 10, 457. [Google Scholar] [CrossRef]
- Kim, H.S.; Cho, M.C. Low Serum 25-Hydroxyvitamin D Level as a Potential Risk Factor of Erectile Dysfunction in Elderly Men with Moderate to Severe Lower Urinary Tract Symptoms. World J. Men’s Health 2022, 40, 139. [Google Scholar] [CrossRef] [PubMed]
- Canguven, O.; Al Malki, A.H. Vitamin D and Male Erectile Function: An Updated Review. World J. Men’s Health 2021, 39, 31–37. [Google Scholar] [CrossRef]
- Barassi, A.; Pezzilli, R.; Colpi, G.M.; Romanelli, M.M.C.; D’Eril, G.V.M. Vitamin D and Erectile Dysfunction. J. Sex. Med. 2014, 11, 2792–2800. [Google Scholar] [CrossRef] [PubMed]
- Wu, X.; Zhang, Y.; Zhang, W.; Liu, G.; Jiang, H.; Huang, H.; Zhang, X. The relationship between serum 25-hydroxy vitamin D and arteriogenic erectile dysfunction. Andrologia 2022, 54, e14568. [Google Scholar] [CrossRef]
- Farag, Y.M.; Guallar, E.; Zhao, D.; Kalyani, R.R.; Blaha, M.J.; Feldman, D.; Martin, S.S.; Lutsey, P.L.; Billups, K.L.; Michos, E.D. Vitamin D deficiency is independently associated with greater prevalence of erectile dysfunction: The National Health and Nutrition Examination Survey (NHANES) 2001–2004. Atherosclerosis 2016, 252, 61–67. [Google Scholar] [CrossRef]
- Wei, Y.; Chen, P.; Chen, Q.; Zhu, H. Serum vitamin D levels and erectile dysfunction: A systematic review and meta-analysis. Andrologia 2018, 51, e13211. [Google Scholar] [CrossRef] [PubMed]
- Crafa, A.; Cannarella, R.; Condorelli, R.A.; La Vignera, S.; Calogero, A.E. Is There an Association Between Vitamin D Deficiency and Erectile Dysfunction? A Systematic Review and Meta-Analysis. Nutrients 2020, 12, 1411. [Google Scholar] [CrossRef] [PubMed]
- Terentes-Printzios, D.; Ioakeimidis, N.; Rokkas, K.; Vlachopoulos, C. Interactions between erectile dysfunction, cardiovascular disease and cardiovascular drugs. Nat. Rev. Cardiol. 2021, 19, 59–74. [Google Scholar] [CrossRef]
- Montorsi, P.; Montorsi, F.; Schulman, C.C. Is Erectile Dysfunction the “Tip of the Iceberg” of a Systemic Vascular Disorder? Eur. Urol. 2003, 44, 352–354. [Google Scholar] [CrossRef]
- Aversa, A.; Bruzziches, R.; Francomano, D.; Natali, M.; Gareri, P.; Spera, G. Endothelial dysfunction and erectile dysfunction in the aging man. Int. J. Urol. 2009, 17, 38–47. [Google Scholar] [CrossRef]
- Corona, G.G.; Rastrelli, G.; Di Pasquale, G.; Sforza, A.; Mannucci, E.; Maggi, M. Endogenous Testosterone Levels and Cardiovascular Risk: Meta-Analysis of Observational Studies. J. Sex. Med. 2018, 15, 1260–1271. [Google Scholar] [CrossRef]
- Wang, L.; Song, Y.; Manson, J.E.; Pilz, S.; März, W.; Michaëlsson, K.; Lundqvist, A.; Jassal, S.K.; Barrett-Connor, E.; Zhang, C.; et al. Circulating 25-Hydroxy-Vitamin D and Risk of Cardiovascular Disease: A meta-analysis of prospective studies. Circ. Cardiovasc. Qual. Outcomes 2012, 5, 819–829. [Google Scholar] [CrossRef]
- Grandi, N.C.; Breitling, L.P.; Brenner, H. Vitamin D and cardiovascular disease: Systematic review and meta-analysis of prospective studies. Prev. Med. 2010, 51, 228–233. [Google Scholar] [CrossRef]
- Cure, M.C.; Cüre, E.; Yuce, S.; Yazici, T.; Karakoyun, I.; Efe, H. Mean Platelet Volume and Vitamin D Level. Ann. Lab. Med. 2014, 34, 98–103. [Google Scholar] [CrossRef]
- Silvagno, F.; De Vivo, E.; Attanasio, A.; Gallo, V.; Mazzucco, G.; Pescarmona, G.P. Mitochondrial Localization of Vitamin D Receptor in Human Platelets and Differentiated Megakaryocytes. PLoS ONE 2010, 5, e8670. [Google Scholar] [CrossRef]
- Crafa, A.; Condorelli, R.A.; Mongioì, L.M.; Cannarella, R.; Barbagallo, F.; Aversa, A.; Izzo, G.; Perri, A.; Calogero, A.E.; La Vignera, S. Mean Platelet Volume as a Marker of Vasculogenic Erectile Dysfunction and Future Cardiovascular Risk. J. Clin. Med. 2020, 9, 2513. [Google Scholar] [CrossRef] [PubMed]
- Korzonek-Szlacheta, I.; Hudzik, B.; Nowak, J.; Szkodziński, J.; Nowak, J.; Gąsior, M.; Zubelewicz-Szkodzińska, B. Mean platelet volume is associated with serum 25-hydroxyvitamin D concentrations in patients with stable coronary artery disease. Heart Vessel. 2018, 33, 1275–1281. [Google Scholar] [CrossRef] [PubMed]
- Culha, M.G.; Atalay, H.A.; Canat, H.L.; Alkan, I.; Ozbir, S.; Can, O.; Otunctemur, A. The relationship between erectile dysfunction severity, mean platelet volume and vitamin D levels. Aging Male 2018, 23, 173–178. [Google Scholar] [CrossRef]
- Condorelli, R.A.; Calogero, A.E.; Vicari, E.; Duca, Y.; Favilla, V.; Morgia, G.; Cimino, S.; La Vignera, S. Endothelial progenitor cells and erectile dysfunction: A brief review on diagnostic significance and summary of our experience. Aging Male 2013, 16, 29–32. [Google Scholar] [CrossRef]
- Schröder-Heurich, B.; von Hardenberg, S.; Brodowski, L.; Kipke, B.; Meyer, N.; Borns, K.; von Kaisenberg, C.S.; Brinkmann, H.; Claus, P.; von Versen-Höynck, F. Vitamin D improves endothelial barrier integrity and counteracts inflammatory effects on endothelial progenitor cells. FASEB J. 2019, 33, 9142–9153. [Google Scholar] [CrossRef] [PubMed]
- Grundmann, M.; Haidar, M.; Placzko, S.; Niendorf, R.; Darashchonak, N.; Hubel, C.A.; Von Versen-Höynck, F. Vitamin D improves the angiogenic properties of endothelial progenitor cells. Am. J. Physiol. Physiol. 2012, 303, C954–C962. [Google Scholar] [CrossRef]
- Jia, X.; Xu, J.; Gu, Y.; Gu, X.; Li, W.; Wang, Y. Vitamin D suppresses oxidative stress-induced microparticle release by human umbilical vein endothelial cells. Biol. Reprod. 2016, 96, 199–210. [Google Scholar] [CrossRef]
- Kim, D.-H.; Meza, C.A.; Clarke, H.; Kim, J.-S.; Hickner, R.C. Vitamin D and Endothelial Function. Nutrients 2020, 12, 575. [Google Scholar] [CrossRef]
- Markiewicz, M.; Richard, E.; Marks, N.; Ludwicka-Bradley, A. Impact of Endothelial Microparticles on Coagulation, Inflammation, and Angiogenesis in Age-Related Vascular Diseases. J. Aging Res. 2013, 2013, 734509. [Google Scholar] [CrossRef]
- Akarsu, M.; Atalay, H.A.; Canat, L.; Ozcan, M.; Arman, Y.; Aydın, S.; Cil, E.; Kutlu, O.; Tükek, T. Endocan is markedly overexpressed in severe erectile dysfunction. Andrologia 2017, 50, e12912. [Google Scholar] [CrossRef]
- Kose, M.; Senkal, N.; Tukek, T.; Cebeci, T.; Atalar, S.C.; Altinkaynak, M.; Arici, H.; Genc, S.; Catma, Y.; Kocaaga, M.; et al. Severe vitamin D deficiency is associated with endothelial inflammation in healthy individuals even in the absence of subclinical atherosclerosis. Eur. Rev. Med. Pharmacol. Sci. 2022, 26, 7046–7052. [Google Scholar] [CrossRef]
- Atis, O.; Keles, M.; Cankaya, E.; Dogan, H.; Aksoy, H.; Akcay, F. Vitamin D Treatment Effect on Serum Endocan and High-Sensitivity C-Reactive Protein Levels in Renal Transplant Patients. Prog. Transplant. 2016, 26, 335–339. [Google Scholar] [CrossRef]
- Gupta, N.; Malik, S.; Giri, S.; Madhu, S.V.; Rathi, V.; Banerjee, B.D. Relationship of levels of Vitamin D with flow-mediated dilatation of brachial artery in patients of myocardial infarction and healthy control: A case-control study. Indian J. Endocrinol. Metab. 2016, 20, 684–689. [Google Scholar] [CrossRef]
- Qasemi, R.; Ghavamzadeh, S.; Faghfouri, A.H.; Valizadeh, N.; Mohammadi, A.; Sayyadi, H. The effect of vitamin D supplementation on flow-mediated dilatation, oxidized LDL and intracellular adhesion molecule 1 on type 2 diabetic patients with hypertension: A randomized, placebo-controlled, double-blind trial. Diabetes Metab. Syndr. Clin. Res. Rev. 2021, 15, 102200. [Google Scholar] [CrossRef]
- Zhang, J.-H.; Li, W.; Wang, C.-Y.; Zhang, A.-N.; Jia, B.-Z.; Li, Y.-W.; Shi, Z.-D.; Tang, K.-F.; Han, C.-H. Correlation analysis of carotid artery intima-media thickness, serum 25(OH)D and men with erectile dysfunction. Front. Endocrinol. 2022, 13, 1027430. [Google Scholar] [CrossRef]
- Amer, M.; Narotsky, D.L.; Qayyum, R. 25-Hydroxyvitamin D and Ankle-Brachial Blood Pressure Index in Adults without Peripheral Artery Disease. Clin. Transl. Sci. 2014, 7, 391–395. [Google Scholar] [CrossRef] [PubMed]
- Mohammad, S.; Mishra, A.; Ashraf, M.Z. Emerging Role of Vitamin D and its Associated Molecules in Pathways Related to Pathogenesis of Thrombosis. Biomolecules 2019, 9, 649. [Google Scholar] [CrossRef]
- Prietl, B.; Treiber, G.; Pieber, T.R.; Amrein, K. Vitamin D and Immune Function. Nutrients 2013, 5, 2502–2521. [Google Scholar] [CrossRef]
- Akbas, E.M.; Gungor, A.; Ozcicek, A.; Akbas, N.; Askin, S.; Polat, M. Vitamin D and inflammation: Evaluation with neutrophil-to-lymphocyte ratio and platelet-to-lymphocyte ratio. Arch. Med. Sci. 2016, 4, 721–727. [Google Scholar] [CrossRef]
- Zhang, Y.; Feng, X.; Wu, X.; Zhang, W.; Dai, Y.; Jiang, H.; Zhang, X. A systematic review and meta-analysis of the relationship between erectile dysfunction and the neutrophil-to-lymphocyte and platelet-to-lymphocyte ratios. Andrologia 2021, 54, e14337. [Google Scholar] [CrossRef]
- Ventimiglia, E.; Cazzaniga, W.; Pederzoli, F.; Frego, N.; Chierigo, F.; Capogrosso, P.; Boeri, L.; Dehò, F.; Abbate, C.; Moretti, D.; et al. The role of neutrophil-to-lymphocyte ratio in men with erectile dysfunction-preliminary findings of a real-life cross-sectional study. Andrology 2018, 6, 559–563. [Google Scholar] [CrossRef]
- Tabatabaeizadeh, S.; Avan, A.; Bahrami, A.; Khodashenas, E.; Esmaeili, H.; Ferns, G.A.; Abdizadeh, M.F.; Ghayour-Mobarhan, M. High Dose Supplementation of Vitamin D Affects Measures of Systemic Inflammation: Reductions in High Sensitivity C-Reactive Protein Level and Neutrophil to Lymphocyte Ratio (NLR) Distribution. J. Cell. Biochem. 2017, 118, 4317–4322. [Google Scholar] [CrossRef]
- Agbalalah, T.; Hughes, S.F.; Freeborn, E.J.; Mushtaq, S. Impact of vitamin D supplementation on endothelial and inflammatory markers in adults: A systematic review. J. Steroid Biochem. Mol. Biol. 2017, 173, 292–300. [Google Scholar] [CrossRef]
- Tabrizi, R.; Vakili, S.; Lankarani, K.B.; Akbari, M.; Jamilian, M.; Mahdizadeh, Z.; Mirhosseini, N.; Asemi, Z. The Effects of Vitamin D Supplementation on Markers Related to Endothelial Function Among Patients with Metabolic Syndrome and Related Disorders: A Systematic Review and Meta-Analysis of Clinical Trials. Horm. Metab. Res. 2018, 50, 587–596. [Google Scholar] [CrossRef] [PubMed]
- Hussin, A.M.; Ashor, A.; Schoenmakers, I.; Hill, T.; Mathers, J.C.; Siervo, M. Effects of vitamin D supplementation on endothelial function: A systematic review and meta-analysis of randomised clinical trials. Eur. J. Nutr. 2016, 56, 1095–1104. [Google Scholar] [CrossRef]
- Pincombe, N.L.; Pearson, M.J.; Smart, N.A.; King, N.; Dieberg, G. Effect of vitamin D supplementation on endothelial function—An updated systematic review with meta-analysis and meta-regression. Nutr. Metab. Cardiovasc. Dis. 2019, 29, 1261–1272. [Google Scholar] [CrossRef] [PubMed]
- Upala, S.; Sanguankeo, A.; Congrete, S.; Jaruvongvanich, V. Effect of cholecalciferol supplementation on arterial stiffness: A systematic review and meta-analysis. Scand. Cardiovasc. J. 2016, 50, 230–235. [Google Scholar] [CrossRef]
- Beveridge, L.A.; Khan, F.; Struthers, A.D.; Armitage, J.; Barchetta, I.; Bressendorff, I.; Cavallo, M.G.; Clarke, R.; Dalan, R.; Dreyer, G.; et al. Effect of Vitamin D Supplementation on Markers of Vascular Function: A Systematic Review and Individual Participant Meta-Analysis. J. Am. Heart Assoc. 2018, 7, e008273. [Google Scholar] [CrossRef]
- Stojanović, M.; Radenković, M. Vitamin D Versus Placebo in Improvement of Endothelial Dysfunction: A Meta-Analysis of Randomized Clinical Trials. Cardiovasc. Ther. 2015, 33, 145–154. [Google Scholar] [CrossRef]
- Kouidrat, Y.; Pizzol, D.; Cosco, T.; Thompson, T.; Carnaghi, M.; Bertoldo, A.; Solmi, M.; Stubbs, B.; Veronese, N. High prevalence of erectile dysfunction in diabetes: A systematic review and meta-analysis of 145 studies. Diabet. Med. 2017, 34, 1185–1192. [Google Scholar] [CrossRef]
- Defeudis, G.; Mazzilli, R.; Tenuta, M.; Rossini, G.; Zamponi, V.; Olana, S.; Faggiano, A.; Pozzilli, P.; Isidori, A.M.; Gianfrilli, D. Erectile dysfunction and diabetes: A melting pot of circumstances and treatments. Diabetes/Metabolism Res. Rev. 2021, 38, e3494. [Google Scholar] [CrossRef]
- Rosen, C.J.; Adams, J.S.; Bikle, D.D.; Black, D.M.; Demay, M.B.; Manson, J.E.; Murad, M.H.; Kovacs, C.S. The Nonskeletal Effects of Vitamin D: An Endocrine Society Scientific Statement. Endocr. Rev. 2012, 33, 456–492. [Google Scholar] [CrossRef]
- Grammatiki, M.; Rapti, E.; Karras, S.; Ajjan, R.A.; Kotsa, K. Vitamin D and diabetes mellitus: Causal or casual association? Rev. Endocr. Metab. Disord. 2017, 18, 227–241. [Google Scholar] [CrossRef]
- Garbossa, S.G.; Folli, F. Vitamin D, sub-inflammation and insulin resistance. A window on a potential role for the interaction between bone and glucose metabolism. Rev. Endocr. Metab. Disord. 2017, 18, 243–258. [Google Scholar] [CrossRef]
- Zhukouskaya, V.V.; Eller-Vainicher, C.; Shepelkevich, A.P.; Dydyshko, Y.; Cairoli, E.; Chiodini, I. Bone health in type 1 diabetes: Focus on evaluation and treatment in clinical practice. J. Endocrinol. Investig. 2015, 38, 941–950. [Google Scholar] [CrossRef]
- Maddaloni, E.; Cavallari, I.; Napoli, N.; Conte, C. Vitamin D and Diabetes Mellitus. Front Horm Res. 2018, 50, 161–176. [Google Scholar] [CrossRef] [PubMed]
- Wolden-Kirk, H.; Overbergh, L.; Christesen, H.T.; Brusgaard, K.; Mathieu, C. Vitamin D and diabetes: Its importance for beta cell and immune function. Mol. Cell. Endocrinol. 2011, 347, 106–120. [Google Scholar] [CrossRef] [PubMed]
- Zeitz, U.; Weber, K.; Soegiarto, D.W.; Wolf, E.; Balling, R.; Erben, R.G. Impaired insulin secretory capacity in mice lacking a functional vitamin D receptor. FASEB J. 2003, 17, 333–568. [Google Scholar] [CrossRef]
- Sultan, M.; Twito, O.; Tohami, T.; Ramati, E.; Neumark, E.; Rashid, G. Vitamin D diminishes the high platelet aggregation of type 2 diabetes mellitus patients. Platelets 2018, 30, 120–125. [Google Scholar] [CrossRef]
- Yiu, Y.-F.; Chan, Y.-H.; Yiu, K.-H.; Siu, C.-W.; Li, S.-W.; Wong, L.-Y.; Lee, S.W.L.; Tam, S.; Wong, E.W.K.; Cheung, B.M.Y.; et al. Vitamin D Deficiency Is Associated with Depletion of Circulating Endothelial Progenitor Cells and Endothelial Dysfunction in Patients with Type 2 Diabetes. J. Clin. Endocrinol. Metab. 2011, 96, E830–E835. [Google Scholar] [CrossRef]
- Afzal, S.; Bojesen, S.E.; Nordestgaard, B.G. Low 25-Hydroxyvitamin D and Risk of Type 2 Diabetes: A Prospective Cohort Study and Metaanalysis. Clin. Chem. 2013, 59, 381–391. [Google Scholar] [CrossRef]
- Ye, Z.; Sharp, S.J.; Burgess, S.; Scott, R.A.; Imamura, F.; Langenberg, C.; Wareham, N.J.; Forouhi, N.G. Association between circulating 25-hydroxyvitamin D and incident type 2 diabetes: A mendelian randomisation study. Lancet Diabetes Endocrinol. 2014, 3, 35–42. [Google Scholar] [CrossRef]
- Yu, L.; Zhai, Y.; Shen, S. Association between vitamin D and prediabetes: A PRISMA-compliant meta-analysis. Medicine 2020, 99, e19034. [Google Scholar] [CrossRef]
- Song, Y.; Wang, L.; Pittas, A.G.; Del Gobbo, L.C.; Zhang, C.; Manson, J.E.; Hu, F.B. Blood 25-Hydroxy Vitamin D Levels and Incident Type 2 Diabetes: A meta-analysis of prospective studies. Diabetes Care 2013, 36, 1422–1428. [Google Scholar] [CrossRef]
- Forouhi, N.G.; Ye, Z.; Rickard, A.P.; Khaw, K.T.; Luben, R.; Langenberg, C.; Wareham, N.J. Circulating 25-hydroxyvitamin D concentration and the risk of type 2 diabetes: Results from the European Prospective Investigation into Cancer (EPIC)-Norfolk cohort and updated meta-analysis of prospective studies. Diabetologia 2012, 55, 2173–2182. [Google Scholar] [CrossRef] [PubMed]
- Lee, C.J.; Iyer, G.; Liu, Y.; Kalyani, R.R.; Bamba, N.; Ligon, C.B.; Varma, S.; Mathioudakis, N. The effect of vitamin D supplementation on glucose metabolism in type 2 diabetes mellitus: A systematic review and meta-analysis of intervention studies. J. Diabetes Complicat. 2017, 31, 1115–1126. [Google Scholar] [CrossRef]
- Niroomand, M.; Fotouhi, A.; Irannejad, N.; Hosseinpanah, F. Does high-dose vitamin D supplementation impact insulin resistance and risk of development of diabetes in patients with pre-diabetes? A double-blind randomized clinical trial. Diabetes Res. Clin. Pract. 2018, 148, 1–9. [Google Scholar] [CrossRef]
- Zhang, Y.; Tan, H.; Tang, J.; Li, J.; Chong, W.; Hai, Y.; Feng, Y.; Lunsford, L.D.; Xu, P.; Jia, D.; et al. Effects of Vitamin D Supplementation on Prevention of Type 2 Diabetes in Patients With Prediabetes: A Systematic Review and Meta-analysis. Diabetes Care 2020, 43, 1650–1658. [Google Scholar] [CrossRef]
- Zhang, Y.; Xue, Y.; Zhang, D.; Liu, Y.; Xu, Z.; Gao, J.; Li, W.; Li, X. Effect of Vitamin D Supplementation on Glycemic Control in Prediabetes: A Meta-Analysis. Nutrients 2021, 13, 4464. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Liu, Y.; Zheng, Y.; Wang, P.; Zhang, Y. The Effect of Vitamin D Supplementation on Glycemic Control in Type 2 Diabetes Patients: A Systematic Review and Meta-Analysis. Nutrients 2018, 10, 375. [Google Scholar] [CrossRef]
- Sahebi, R.; Rezayi, M.; Emadzadeh, M.; Salehi, M.; Tayefi, M.; Parizadeh, S.M.; Behboodi, N.; Rastgar-Moghadam, A.; Khorassani, J.K.; Khorassani, S.K.; et al. The effects of vitamin D supplementation on indices of glycemic control in Iranian diabetics: A systematic review and meta-analysis. Complement. Ther. Clin. Pract. 2019, 34, 294–304. [Google Scholar] [CrossRef]
- Mirhosseini, N.; Vatanparast, H.; Mazidi, M.; Kimball, S.M. The Effect of Improved Serum 25-Hydroxyvitamin D Status on Glycemic Control in Diabetic Patients: A Meta-Analysis. J. Clin. Endocrinol. Metab. 2017, 102, 3097–3110. [Google Scholar] [CrossRef] [PubMed]
- Wu, C.; Qiu, S.; Zhu, X.; Li, L. Vitamin D supplementation and glycemic control in type 2 diabetes patients: A systematic review and meta-analysis. Metabolism 2017, 73, 67–76. [Google Scholar] [CrossRef]
- Poolsup, N.; Suksomboon, N.; Plordplong, N. Effect of vitamin D supplementation on insulin resistance and glycaemic control in prediabetes: A systematic review and meta-analysis. Diabet. Med. 2015, 33, 290–299. [Google Scholar] [CrossRef] [PubMed]
- Krul-Poel, Y.H.M.; ter Wee, M.M.; Lips, P.; Simsek, S. Management of Endocrine Disease: The effect of vitamin D supplementation on glycaemic control in patients with type 2 diabetes mellitus: A systematic review and meta-analysis. Eur. J. Endocrinol. 2017, 176, R1–R14. [Google Scholar] [CrossRef]
- Liu, G.; Wu, X.; Zhang, Y.; Zhang, W.; Jiang, H.; Dai, Y.; Zhang, X. Serum Vitamin D Level and Erectile Dysfunction in Type 2 Diabetes Mellitus: A Systematic Review and Meta-Analysis. Urol. Int. 2022, 106, 1025–1032. [Google Scholar] [CrossRef]
- Seftel, A.D.; Sun, P.; Swindle, R. The prevalence of hypertension, hyperlipidemia, diabetes mellitus and depres-sion in men with erectile dysfunction. J. Urol. 2004, 171 Pt 1, 2341–2345. [Google Scholar] [CrossRef]
- Wang, X.-Y.; Huang, W.; Zhang, Y. Relation between hypertension and erectile dysfunction: A meta-analysisof cross-section studies. Int. J. Impot. Res. 2018, 30, 141–146. [Google Scholar] [CrossRef]
- de Oliveira, A.A.; Nunes, K.P. Hypertension and Erectile Dysfunction: Breaking Down the Challenges. Am. J. Hypertens. 2020, 34, 134–142. [Google Scholar] [CrossRef]
- Grimm, R.H.; Grandits, G.A.; Prineas, R.J.; McDonald, R.H.; Lewis, C.E.; Flack, J.M.; Yunis, C.; Svendsen, K.; Liebson, P.R.; Elmer, P.J.; et al. Long-term Effects on Sexual Function of Five Antihypertensive Drugs and Nutritional Hygienic Treatment in Hypertensive Men and Women. Hypertension 1997, 29 Pt 1, 8–14. [Google Scholar] [CrossRef] [PubMed]
- Tomaschitz, A.; Pilz, S.; Ritz, E.; Grammer, T.; Drechsler, C.; Boehm, B.O.; März, W. Independent association between 1,25-dihydroxyvitamin D, 25-hydroxyvitamin D and the renin–angiotensin system: The Ludwigshafen Risk and Cardiovascular Health (LURIC) study. Clin. Chim. Acta 2010, 411, 1354–1360. [Google Scholar] [CrossRef]
- Li, Y.C.; Qiao, G.; Uskokovic, M.; Xiang, W.; Zheng, W.; Kong, J. Vitamin D: A negative endocrine regulator of the renin–angiotensin system and blood pressure. J. Steroid Biochem. Mol. Biol. 2004, 89–90, 387–392. [Google Scholar] [CrossRef]
- Carrara, D.; Bruno, R.M.; Bacca, A.V.; Taddei, S.; Duranti, E.; Ghiadoni, L.; Bernini, G. Cholecalciferol treatment downregulates renin–angiotensin system and improves endothelial function in essential hypertensive patients with hypovitaminosid D. J. Hypertens. 2016, 34, 2199–2205. [Google Scholar] [CrossRef]
- Soleimani, M. Insulin resistance and hypertension: New insights. Kidney Int. 2015, 87, 497–499. [Google Scholar] [CrossRef]
- Borissova, A.; Tankova, T.; Kirilov, G.; Dakovska, L.; Kovacheva, R. The effect of vitamin D3 on insulin secretion and peripheral insulin sensitivity in type 2 diabetic patients. Int. J. Clin. Pract. 2003, 57, 258–261. [Google Scholar] [CrossRef] [PubMed]
- Jafari, T.; Fallah, A.A.; Rostampour, N.; Mahmoodnia, L. Vitamin D ameliorates systolic but not diastolic blood pressure in patients with type 2 diabetes: Results from a meta-analysis of randomized controlled trials. Int. J. Vitam. Nutr. Res. 2018, 88, 90–99. [Google Scholar] [CrossRef]
- Pilz, S.; Tomaschitz, A.; Ritz, E.; Pieber, T.R. Vitamin D status and arterial hypertension: A systematic review. Nat. Rev. Cardiol. 2009, 6, 621–630. [Google Scholar] [CrossRef] [PubMed]
- Zhang, D.; Cheng, C.; Wang, Y.; Sun, H.; Yu, S.; Xue, Y.; Liu, Y.; Li, W.; Li, X. Effect of Vitamin D on Blood Pressure and Hypertension in the General Population: An Update Meta-Analysis of Cohort Studies and Randomized Controlled Trials. Prev. Chronic Dis. 2020, 17, E03. [Google Scholar] [CrossRef] [PubMed]
- Mokhtari, E.; Hajhashemy, Z.; Saneei, P. Serum Vitamin D Levels in Relation to Hypertension and Pre-hypertension in Adults: A Systematic Review and Dose–Response Meta-Analysis of Epidemiologic Studies. Front. Nutr. 2022, 9, 829307. [Google Scholar] [CrossRef]
- Kunutsor, S.K.; Apekey, T.A.; Steur, M. Vitamin D and risk of future hypertension: Meta-analysis of 283,537 participants. Eur. J. Epidemiology 2013, 28, 205–221. [Google Scholar] [CrossRef]
- Qi, D.; Nie, X.-L.; Wu, S.; Cai, J. Vitamin D and hypertension: Prospective study and meta-analysis. PLoS ONE 2017, 12, e0174298. [Google Scholar] [CrossRef]
- Pittas, A.G.; Chung, M.; Trikalinos, T.; Mitri, J.; Brendel, M.; Patel, K.; Lichtenstein, A.H.; Lau, J.; Balk, E.M. Systematic Review: Vitamin D and Cardiometabolic Outcomes. Ann. Intern. Med. 2010, 152, 307–314. [Google Scholar] [CrossRef]
- Burgaz, A.; Orsini, N.; Larsson, S.C.; Wolk, A. Blood 25-hydroxyvitamin D concentration and hypertension: A meta-analysis. J. Hypertens. 2011, 29, 636–645. [Google Scholar] [CrossRef]
- Elamin, M.B.; Abu Elnour, N.O.; Elamin, K.B.; Fatourechi, M.M.; Alkatib, A.A.; Almandoz, J.P.; Liu, H.; Lane, M.A.; Mullan, R.J.; Hazem, A.; et al. Vitamin D and Cardiovascular Outcomes: A Systematic Review and Meta-Analysis. J. Clin. Endocrinol. Metab. 2011, 96, 1931–1942. [Google Scholar] [CrossRef]
- Qi, D.; Nie, X.; Cai, J. The effect of vitamin D supplementation on hypertension in non-CKD populations: A systemic review and meta-analysis. Int. J. Cardiol. 2016, 227, 177–186. [Google Scholar] [CrossRef]
- Farapti, F.; Fadilla, C.; Yogiswara, N.; Adriani, M. Effects of vitamin D supplementation on 25(OH)D concentrations and blood pressure in the elderly: A systematic review and meta-analysis. F1000Research 2020, 9, 633. [Google Scholar] [CrossRef] [PubMed]
- Golzarand, M.; Shab-Bidar, S.; Koochakpoor, G.; Speakman, J.R.; Djafarian, K. Effect of vitamin D3 supplementation on blood pressure in adults: An updated meta-analysis. Nutr. Metab. Cardiovasc. Dis. 2016, 26, 663–673. [Google Scholar] [CrossRef] [PubMed]
- He, S.; Hao, X. The effect of vitamin D3 on blood pressure in people with vitamin D deficiency: A system review and meta-analysis. Medicine 2019, 98, e15284. [Google Scholar] [CrossRef] [PubMed]
- Kunutsor, S.K.; Burgess, S.; Munroe, P.B.; Khan, H. Vitamin D and high blood pressure: Causal association or epiphenomenon? Eur. J. Epidemiol. 2013, 29, 1–14. [Google Scholar] [CrossRef]
- Wu, L.; Sun, D. Effects of calcium plus vitamin D supplementation on blood pressure: A systematic review and meta-analysis of randomized controlled trials. J. Hum. Hypertens. 2017, 31, 547–554. [Google Scholar] [CrossRef]
- Witham, M.D.; Nadir, M.A.; Struthers, A.D. Effect of vitamin D on blood pressure: A systematic review and meta-analysis. J. Hypertens. 2009, 27, 1948–1954. [Google Scholar] [CrossRef]
- Morvaridzadeh, M.; Sepidarkish, M.; Fazelian, S.; Rahimlou, M.; Omidi, A.; Ardehali, S.H.; Sanoobar, M.; Heshmati, J. Effect of Calcium and Vitamin D Co-supplementation on Blood Pressure: A Systematic Review and Meta-Analysis. Clin. Ther. 2020, 42, e45–e63. [Google Scholar] [CrossRef]
- Wu, S.H.; Ho, S.C.; Zhong, L. Effects of Vitamin D Supplementation on Blood Pressure. South. Med. J. 2010, 103, 729–737. [Google Scholar] [CrossRef]
- Lewis, R.W.; Fugl-Meyer, K.S.; Corona, G.; Hayes, R.D.; Laumann, E.O.; Moreira, E.D.; Rellini, A.H.; Segraves, T. Original Articles: Definitions/Epidemiology/Risk Factors for Sexual Dysfunction. J. Sex. Med. 2010, 7 Pt 2, 1598–1607. [Google Scholar] [CrossRef]
- Feldman, H.A.; Goldstein, I.; Hatzichristou, D.G.; Krane, R.J.; McKinlay, J.B. Impotence and Its Medical and Psychosocial Correlates: Results of the Massachusetts Male Aging Study. J. Urol. 1994, 151, 54–61. [Google Scholar] [CrossRef]
- Wei, M.; Macera, C.A.; Davis, D.R.; Hornung, C.A.; Nankin, H.A.; Blair, S.N. Total Cholesterol and High Density Lipoprotein Cholesterol as Important Predictors of Erectile Dysfunction. Am. J. Epidemiol. 1994, 140, 930–937. [Google Scholar] [CrossRef]
- Cui, Y.; Zong, H.; Yan, H.; Zhang, Y. The Effect of Statins on Erectile Dysfunction: A Systematic Review and Meta-Analysis. J. Sex. Med. 2014, 11, 1367–1375. [Google Scholar] [CrossRef]
- Wang, K.-J.; Cai, X.; Tian, Y.; Wu, T.; Cao, C.-X.; Bu, S.-Y. The role of statins in erectile dysfunction: A systematic review and meta-analysis. Asian J. Androl. 2014, 16, 461–466. [Google Scholar] [CrossRef] [PubMed]
- Su, H.; Lu, Y.; Ma, C.; Li, H.; Su, X. Impact of atorvastatin on erectile dysfunction: A meta-analysis and systematic review. Andrologia 2022, 54, e14408. [Google Scholar] [CrossRef]
- Li, S.; He, Y.; Lin, S.; Hao, L.; Ye, Y.; Lv, L.; Sun, Z.; Fan, H.; Shi, Z.; Li, J.; et al. Increase of circulating cholesterol in vitamin D deficiency is linked to reduced vitamin D receptor activity via the Insig-2/SREBP-2 pathway. Mol. Nutr. Food Res. 2016, 60, 798–809. [Google Scholar] [CrossRef]
- Wang, X.X.; Jiang, T.; Shen, Y.; Santamaria, H.; Solis, N.; Arbeeny, C.; Levi, M. Vitamin D receptor agonist doxercalciferol modulates dietary fat-induced renal disease and renal lipid metabolism. Am. J. Physiol. Physiol. 2011, 300, F801–F810. [Google Scholar] [CrossRef]
- Larrick, B.M.; Kim, K.-H.; Donkin, S.S.; Teegarden, D. 1,25-Dihydroxyvitamin D regulates lipid metabolism and glucose utilization in differentiated 3T3-L1 adipocytes. Nutr. Res. 2018, 58, 72–83. [Google Scholar] [CrossRef] [PubMed]
- Cho, H.-J.; Kang, H.-C.; Choi, S.-A.; Ju, Y.-C.; Lee, H.-S.; Park, H.-J. The Possible Role of Ca2+ on the Activation of Microsomal Triglyceride Transfer Protein in Rat Hepatocytes. Biol. Pharm. Bull. 2005, 28, 1418–1423. [Google Scholar] [CrossRef]
- Zemel, M.B.; Shi, H.; Greer, B.; Dirienzo, D.; Zemel, P.C.; Lee, E.; Jung, D.Y.; Kim, J.H.; Patel, P.R.; Hu, X.; et al. Regulation of adiposity by dietary calcium. FASEB J. 2000, 14, 1132–1138. [Google Scholar] [CrossRef] [PubMed]
- Howard, B.V. Insulin resistance and lipid metabolism. Am. J. Cardiol. 1999, 84, 28J–32J. [Google Scholar] [CrossRef] [PubMed]
- Bahadorpour, S.; Hajhashemy, Z.; Saneei, P. Serum 25-hydroxyvitamin D levels and dyslipidemia: A systematic review and dose-response meta-analysis of epidemiologic studies. Nutr. Rev. 2022, 81, 1–25. [Google Scholar] [CrossRef]
- Alanouti, F.; Abboud, M.; Papandreou, D.; Mahboub, N.; Haidar, S.; Rizk, R. Effects of Vitamin D Supplementation on Lipid Profile in Adults with the Metabolic Syndrome: A Systematic Review and Meta-Analysis of Randomized Controlled Trials. Nutrients 2020, 12, 3352. [Google Scholar] [CrossRef]
- Tabrizi, R.; Moosazadeh, M.; Lankarani, K.B.; Akbari, M.; Heydari, S.T.; Kolahdooz, F.; Samimi, M.; Asemi, Z. The effects of vitamin D supplementation on metabolic profiles and liver function in patients with non-alcoholic fatty liver disease: A systematic review and meta-analysis of randomized controlled trials. Diabetes Metab. Syndr. Clin. Res. Rev. 2017, 11, S975–S982. [Google Scholar] [CrossRef]
- Jafari, T.; Fallah, A.A.; Barani, A. Effects of vitamin D on serum lipid profile in patients with type 2 diabetes: A meta-analysis of randomized controlled trials. Clin. Nutr. 2016, 35, 1259–1268. [Google Scholar] [CrossRef] [PubMed]
- Luo, J.; Li, T.; Yuan, J. Effectiveness of vitamin D supplementation on lipid profile in polycystic ovary syndrome women: A meta-analysis of randomized controlled trials. Ann. Palliat. Med. 2021, 10, 114–129. [Google Scholar] [CrossRef]
- Jin, B.; Qian, L.; Fu, X.; Zhu, J.; Shu, J. Influence of vitamin D supplementation on lipid levels in polycystic ovary syndrome patients: A meta-analysis of randomized controlled trials. J. Int. Med. Res. 2020, 48, 300060520935313. [Google Scholar] [CrossRef]
- Milajerdi, A.; Ostadmohammadi, V.; Amirjani, S.; Kolahdooz, F.; Asemi, Z. The effects of vitamin D treatment on glycemic control, serum lipid profiles, and C-reactive protein in patients with chronic kidney disease: A systematic review and meta-analysis of randomized controlled trials. Int. Urol. Nephrol. 2019, 51, 1567–1580. [Google Scholar] [CrossRef]
- Morvaridzadeh, M.; Agah, S.; Alibakhshi, P.; Heydari, H.; Hoseini, A.S.; Palmowski, A.; Toupchian, O.; Abdollahi, S.; Rezamand, G.; Heshmati, J. Effects of Calcium and Vitamin D Co-supplementation on the Lipid Profile: A Systematic Review and Meta-analysis. Clin. Ther. 2021, 43, 274–296. [Google Scholar] [CrossRef]
- Ostadmohammadi, V.; Milajerdi, A.; Ghayour-Mobarhan, M.; Ferns, G.; Taghizadeh, M.; Badehnoosh, B.; Mirzaei, H.; Asemi, Z. The Effects of Vitamin D Supplementation on Glycemic Control, Lipid Profiles and C-Reactive Protein Among Patients with Cardiovascular Disease: A Systematic Review and Meta-Analysis of Randomized Controlled Trials. Curr. Pharm. Des. 2019, 25, 201–210. [Google Scholar] [CrossRef]
- Zhang, W.; Yi, J.; Liu, D.; Wang, Y.; Jamilian, P.; Gaman, M.-A.; Prabahar, K.; Fan, J. The effect of vitamin D on the lipid profile as a risk factor for coronary heart disease in postmenopausal women: A meta-analysis and systematic review of randomized controlled trials. Exp. Gerontol. 2022, 161, 111709. [Google Scholar] [CrossRef] [PubMed]
- Dibaba, D.T. Effect of vitamin D supplementation on serum lipid profiles: A systematic review and meta-analysis. Nutr. Rev. 2019, 77, 890–902. [Google Scholar] [CrossRef]
- Wang, H.; Xia, N.; Yang, Y.; Peng, D.-Q. Influence of vitamin D supplementation on plasma lipid profiles: A meta-analysis of randomized controlled trials. Lipids Health Dis. 2012, 11, 42. [Google Scholar] [CrossRef] [PubMed]
- Pyrgidis, N.; Mykoniatis, I.; Nigdelis, M.P.; Kalyvianakis, D.; Memmos, E.; Sountoulides, P.; Hatzichristou, D. Prevalence of Erectile Dysfunction in Patients With End-Stage Renal Disease: A Systematic Review and Meta-Analysis. J. Sex. Med. 2020, 18, 113–120. [Google Scholar] [CrossRef]
- Pyrgidis, N.; Mykoniatis, I.; Sokolakis, I.; Minopoulou, I.; Nigdelis, M.P.; Sountoulides, P.; Verze, P.; Hatzichristodoulou, G.; Hatzichristou, D. Renal Transplantation Improves Erectile Function in Patients with End-Stage Renal Disease: A Systematic Review and Meta-Analysis. J. Urol. 2021, 205, 1009–1017. [Google Scholar] [CrossRef]
- Fiuk, J.V.; Tadros, N.N. Erectile dysfunction in renal failure and transplant patients. Transl. Androl. Urol. 2019, 8, 155–163. [Google Scholar] [CrossRef]
- Dou, D.; Yang, B.; Gan, H.; Xie, D.; Lei, H.; Ye, N. Vitamin D supplementation for the improvement of vascular function in patients with chronic kidney disease: A meta-analysis of randomized controlled trials. Int. Urol. Nephrol. 2019, 51, 851–858. [Google Scholar] [CrossRef]
- Lundwall, K.; Jacobson, S.H.; Jörneskog, G.; Spaak, J. Treating endothelial dysfunction with vitamin D in chronic kidney disease: A meta-analysis. BMC Nephrol. 2018, 19, 247. [Google Scholar] [CrossRef] [PubMed]
- Hu, X.; Shang, J.; Yuan, W.; Zhang, S.; Jiang, Y.; Zhao, B.; Duan, Y.; Xiao, J.; Zhao, Z. Effects of paricalcitol on cardiovascular outcomes and renal function in patients with chronic kidney disease. Herz 2017, 43, 518–528. [Google Scholar] [CrossRef]
- Hu, C.; Wu, X. Effect of Vitamin D Supplementation on Vascular Function and Inflammation in Patients with Chronic Kidney Disease: A Controversial Issue. Ther. Apher. Dial. 2019, 24, 265–274. [Google Scholar] [CrossRef]
- Isidori, A.M.; Giannetta, E.; Gianfrilli, D.; Greco, E.A.; Bonifacio, V.; Aversa, A.; Isidori, A.; Fabbri, A.; Lenzi, A. Effects of testosterone on sexual function in men: Results of a meta-analysis. Clin. Endocrinol. 2005, 63, 381–394. [Google Scholar] [CrossRef]
- Yassin, A.A.; Saad, F. Testosterone and Erectile Dysfunction. J. Androl. 2008, 29, 593–604. [Google Scholar] [CrossRef] [PubMed]
- Corona, G.; Isidori, A.M.; Aversa, A.; Burnett, A.L.; Maggi, M. Endocrinologic Control of Men’s Sexual Desire and Arousal/Erection. J. Sex. Med. 2016, 13, 317–337. [Google Scholar] [CrossRef]
- Hull, E.M.; Lorrain, D.S.; Du, J.; Matuszewich, L.; Lumley, L.A.; Putnam, S.K.; Moses, J. Hormone-neurotransmitter interactions in the control of sexual behavior. Behav. Brain Res. 1999, 105, 105–116. [Google Scholar] [CrossRef] [PubMed]
- Waldkirch, E.; Ückert, S.; Schultheiss, D.; Geismar, U.; Bruns, C.; Scheller, F.; Jonas, U.; Becker, A.J.; Stief, C.G.; Hedlund, P. Non-genomic effects of androgens on isolated human vascular and nonvascular penile erectile tissue. BJU Int. 2007, 101, 71–75. [Google Scholar] [CrossRef]
- Reilly, C.M.; Lewis, R.W.; Stopper, V.S.; Mills, T.M. Androgenic maintenance of the rat erectile response via a non-nitric-oxide-dependent pathway. J. Androl. 1998, 18, 588–594. [Google Scholar]
- Jensen, M.B.; Nielsen, J.E.; Jørgensen, A.; Meyts, E.R.-D.; Kristensen, D.M.; Jørgensen, N.; Skakkebaek, N.E.; Juul, A.; Leffers, H. Vitamin D receptor and vitamin D metabolizing enzymes are expressed in the human male reproductive tract. Hum. Reprod. 2010, 25, 1303–1311. [Google Scholar] [CrossRef]
- Cheng, J.B.; Levine, M.A.; Bell, N.H.; Mangelsdorf, D.J.; Russell, D.W. Genetic evidence that the human CYP2R1 enzyme is a key vitamin D 25-hydroxylase. Proc. Natl. Acad. Sci. USA 2004, 101, 7711–7715. [Google Scholar] [CrossRef] [PubMed]
- Foresta, C.; Strapazzon, G.; De Toni, L.; Perilli, L.; Di Mambro, A.; Muciaccia, B.; Sartori, L.; Selice, R. Bone Mineral Density and Testicular Failure: Evidence for a Role of Vitamin D 25-Hydroxylase in Human Testis. J. Clin. Endocrinol. Metab. 2011, 96, E646–E652. [Google Scholar] [CrossRef]
- D’andrea, S.; Martorella, A.; Coccia, F.; Castellini, C.; Minaldi, E.; Totaro, M.; Parisi, A.; Francavilla, F.; Barbonetti, A. Relationship of Vitamin D status with testosterone levels: A systematic review and meta-analysis. Endocrine 2020, 72, 49–61. [Google Scholar] [CrossRef] [PubMed]
- Bouillon, R.; Carmeliet, G.; Verlinden, L.; van Etten, E.; Verstuyf, A.; Luderer, H.F.; Lieben, L.; Mathieu, C.; Demay, M. Vitamin D and Human Health: Lessons from Vitamin D Receptor Null Mice. Endocr. Rev. 2008, 29, 726–776. [Google Scholar] [CrossRef]
- Hofer, D.; Münzker, J.; Schwetz, V.; Ulbing, M.; Hutz, K.; Stiegler, P.; Zigeuner, R.; Pieber, T.R.; Müller, H.; Obermayer-Pietsch, B. Testicular Synthesis and Vitamin D Action. J. Clin. Endocrinol. Metab. 2014, 99, 3766–3773. [Google Scholar] [CrossRef] [PubMed]
- Trummer, C.; Pilz, S.; Schwetz, V.; Obermayer-Pietsch, B.R.; Lerchbaum, E. Vitamin D, PCOS and androgens in men: A systematic review. Endocr. Connect. 2018, 7, R95–R113. [Google Scholar] [CrossRef]
- Marnani, E.H.; Mollahosseini, M.; Gheflati, A.; Ghadiri-Anari, A.; Nadjarzadeh, A. The effect of vitamin D supplementation on the androgenic profile in men: A systematic review and meta-analysis of clinical trials. Andrologia 2019, 51, e13343. [Google Scholar] [CrossRef]
- Tajar, A.; Forti, G.; O’Neill, T.W.; Lee, D.M.; Silman, A.J.; Finn, J.D.; Bartfai, G.; Boonen, S.; Casanueva, F.F.; Giwercman, A.; et al. Characteristics of Secondary, Primary, and Compensated Hypogonadism in Aging Men: Evidence from the European Male Ageing Study. J. Clin. Endocrinol. Metab. 2010, 95, 1810–1818. [Google Scholar] [CrossRef]
- Travison, T.G.; Araujo, A.B.; Kupelian, V.; O’donnell, A.B.; McKinlay, J.B. The Relative Contributions of Aging, Health, and Lifestyle Factors to Serum Testosterone Decline in Men. J. Clin. Endocrinol. Metab. 2006, 92, 549–555. [Google Scholar] [CrossRef]
- Johnson, J.A.; Grande, J.P.; Roche, P.C.; Kumar, R. Immunohistochemical detection and distribution of the 1,25-dihydroxyvitamin D3 receptor in rat reproductive tissues. Histochem. 1996, 105, 7–15. [Google Scholar] [CrossRef]
- Corbett, S.T.; Hill, O.; Nangia, A.K. Vitamin D receptor found in human sperm. Urology 2006, 68, 1345–1349. [Google Scholar] [CrossRef]
- Arab, A.; Hadi, A.; Moosavian, S.P.; Askari, G.; Nasirian, M. The association between serum vitamin D, fertility and semen quality: A systematic review and meta-analysis. Int. J. Surg. 2019, 71, 101–109. [Google Scholar] [CrossRef]
- Adamczewska, D.; Słowikowska-Hilczer, J.; Walczak-Jędrzejowska, R. The Association between Vitamin D and the Components of Male Fertility: A Systematic Review. Biomedicines 2022, 11, 90. [Google Scholar] [CrossRef] [PubMed]
- Makris, K.; Bhattoa, H.P.; Cavalier, E.; Phinney, K.; Sempos, C.T.; Ulmer, C.Z.; Vasikaran, S.D.; Vesper, H.; Heijboer, A.C. Recommendations on the measurement and the clinical use of vitamin D metabolites and vitamin D binding protein—A position paper from the IFCC Committee on bone metabolism. Clin. Chim. Acta 2021, 517, 171–197. [Google Scholar] [CrossRef]
- Demirci, A.; Çakan, M.; Topçuoğlu, M. Whether Adding Vitamin D to Tadalafil 5 mg Treatment Is Useful in Patients with Erectile Dysfunction and Vitamin D Deficiency? Urol. Int. 2021, 105, 514–519. [Google Scholar] [CrossRef]
- Ermec, B.; Culha, M.G.; Kocak, G.; Canat, L.; Otunctemur, A.; Altunrende, F. The effect of vitamin D replacement in patients with lower urinary tract complaint/erectile dysfunction resistant to Tadalafil 5 mg treatment: A pilot clinical study. Andrologia 2022, 54, e14473. [Google Scholar] [CrossRef] [PubMed]
First Author and Year of Publication | N° of Studies Included and Study Design | Total Sample Size | Outcome Assessed | Main Findings |
---|---|---|---|---|
Beveridge et al., 2018 [56] | 31 RCTs | 2751 | Effects of vitamin D supplementation on FMD, plethysmography, AI PWV, central aortic BP, acetylcholine iontophoresis, and laser Doppler perfusion imaging | Vitamin D supplementation showed no improvement in these parameters |
Hussin et al., 2017 [53] | 16 RCTs | 1177 | Effects of vitamin D supplementation on endothelial function measured by ultrasound, venous occlusion plethysmography, photoplethysmography, pulse wave velocity, pulse amplitude tonometry, and laser Doppler flowmetry | No correlation between EF and vitamin D supplementation |
Pincombe et al., 2019 [54] | 26 RCTs | 2808 | Effects of vitamin D supplementation on endothelial function assessed by FMD, PWI, and AI | Vitamin D supplementation showed no improvement in EF |
Tabrizi et al., 2018 [52] | 21 RCTs | 1604 | Effects of vitamin D supplementation on endothelial function assessed by FMD, PWI, and AI in patients with metabolic syndrome and related disorders | Vitamin D supplementation seems to improve FMD, but it does not seem to affect PWI and AI |
Stojanovic et al., 2015 [57] | 8 RCTs | 529 | Effects of vitamin D supplementation on FMD | Supplementation with vitamin D did not improve FMD, with exception of patients with high SBP |
Upala et al., 2016 [55] | 7 RCTs | 547 | Effects of vitamin D supplementation on PWV and AI | Vitamin D supplementation showed no improvement in these parameters |
First Author and Year of Publication | N° of Studies Included and Study Design | Total Sample Size | Outcome Assessed | Main Findings |
---|---|---|---|---|
Afzal et al., 2012 [69] | 14 observational studies | 72,204 | Association between levels of 25(OH)D and risk of DM2 | The odds ratio for DM2 was 1.50 for the bottom vs. the top quartile of 25(OH)D |
Forouhi et al., 2012 [73] | 11 prospective studies | 59,325 | Association between levels of 25(OH)D and risk of DM2 | Inverse association between circulating 25(OH)D and incident DM2 |
Krul-Poel, 2016 [83] | 23 RCTs | 1797 | The effect of vitamin D supplementation on glycemic control in patients with DM2 | No significant effect in change in HbA1c after VD intervention compared with placebo. A favorable effect of VD on fasting glucose in patients with poorly controlled diabetes |
Lee et al., 2017 [74] | 22 RCTs | 2747 | Effect of vitamin D supplementation on glucose metabolism | Modest reduction (−0.32%) in HbA1c in patients treated with VD compared to placebo, greater in those who reached the repletion of vitamin D deficiency (although not significant). No overall differences were found in FBG between the two groups |
Li et al., 2018 [78] | 20 RCTs | 2703 | Effect of vitamin D supplementation on glucose metabolism | No difference in FBG between intervention and control groups. Insignificant difference in the reduction of HbA1c between the two groups. No significant effect on fasting insulin. Larger reduction of HOMA-IR in the intervention group |
Mirhosseini et al., 2017 [80] | 24 prospective clinical trials | 1528 | The effect of vitamin D supplementation and improved vitamin D status on glycemia and insulin resistance in DM2 | Vitamin D supplementation, at a minimum dose of 4000 UI/die, may significantly reduce serum FPG, HbA1c, and HOMA index and could also help to control glycemic response and improve insulin sensitivity in patients with type 2 diabetes |
Poolsup et al., 2016 [82] | 10 RCTs | 1718 | The effect of vitamin D supplementation on insulin resistance and glycemic control in prediabetes | No beneficial effect of vitamin D in improving insulin resistance was identified |
Sahebi et al., 2019 [79] | 37 (27 RCTs and 10 cross-sectional studies) | 1673 | The effects of vitamin D supplementation on HOMA-IR, FBG, HbA1c, QUICKI (quantitative insulin-sensitivity check index), and lipid profile in diabetic patients | Vitamin D supplementation improves FBG, HOMA-IR, and HbA1C in patients with DM |
Song et al., 2013 [72] | 21 prospective studies | 76,220 | Association between 25(OH)D blood levels and incident risk of DM2 | Inverse and significant association between circulating 25(OH)D levels and risk of DM2 was found |
Wu et al., 2017 [81] | 24 RCTs | 1874 | Effect of vitamin D supplementation on glycemic control in patients with DM2 | VD supplementation reduces HbA1c, but has no influence on FBG. However, in patients with 25(OH)D deficiency at baseline, its supplementation reduces FBG, and in patients with BMI < 30, HbA1c is significantly reduced after vitamin D supplementation |
Yu et al., 2020 [71] | 4 observational studies | 3094 | The association between serum levels of 25(OH)D and prediabetes | Low serum 25(OH)D levels are associated with a high risk of prediabetes |
8 RCTs | 865 | Differences in therapeutic effects between patients with prediabetes treated with vitamin D and those treated with placebo | No significant differences in change in HbA1c, HOMA-IR, or FBG between prediabetic patients treated with vitamin D and those treated with placebo; whereas significant differences in change were found in plasma glucose after 2 h oral glucose tolerance test | |
Zhang et al., 2020 [76] | 8 RCTs | 4896 | Effect of vitamin D supplementation on the risk of DM2 in patients with prediabetes | In patients with prediabetes, vitamin D supplementation reduces the risk of progression to diabetes and increases the reversion rate of prediabetes to normoglycemia |
Zhang et al., 2021 [77] | 29 RCTs | 3792 | Effect of vitamin D supplementation on glycemic controls in patients with prediabetes | Oral supplementation of vitamin D improves FBG, HbA1c, and fasting insulin compared with controls among prediabetic patients. Long-term vitamin D supplementation could have additional effects in participants with vitamin D deficiency for 2h-PG, HOMA-IR, and HOMA-B (homeostasis model assessment of β-cell function) |
First Author and Year of Publication | N° of Studies Included and Study Design | Total Sample Size | Outcome Evaluated | Main Findings |
---|---|---|---|---|
Burgaz et al., 2011 [101] | 4 prospective and 14 cross-sectional studies | 78,028 | Correlation between 25(OH)D status and risk of HTN | Inverse correlation between 25(OH)D levels and HTN |
Elamin et al., 2011 [102] | 14 RCTs | 1518 | Effects of vitamin D supplementation on SBP and DBP | No effects of vitamin D supplementation in DBP and SBP |
Farapti et al., 2020 [104] | 12 RCTs | 2468 | Effects of vitamin D supplementation on SBP and DBP in elderly | No difference between vitamin D supplementation group and placebo group. However, when only VDD patients are considered, there is a significant reduction in SBP |
Golzarand et al., 2016 [105] | 30 RCTs | 4744 | Effects of vitamin D supplementation on SBP and DBP | Vitamin D supplementation has no effect on SBP and DBP in the general population. However, when obese and overweight patients are excluded, vitamin D supplementation reduces both SBP and DBP. Moreover, daily vitamin D3 therapy at a dose of >800 IU/day for <6 months in subjects ≥50 years old reduced both SBP and DBP |
He et al., 2019 [106] | 17 RCTs | 1687 | Effects of vitamin D supplementation on SBP and DBP in patients with VDD | No difference in SBP and DBP between vitamin D supplementation group and controls. However, when patients with age >50 years are considered, there is a significant reduction in SBP. In patients with both VDD and hypertension, vitamin D supplementation reduces both SBP and DBP |
Jafari et al., 2018 [94] | 26 RCTs | 1798 | Effects of vitamin D supplementation on SBP and DBP in diabetic patients | Vitamin D supplementation reduces SBP, particularly in patients with levels < 50 nmol/L |
Kunutsor et al., 2013 [98] | 8 observational studies | 283,537 | Correlation between 25(OH)D status and risk of HTN | Inverse association between baseline circulating levels of 25(OH)D and risk of HTN. Decrease in 12% of the risk of future HTN for every 10 ng/mL increment in circulating 25(OH)D levels |
Kunutsor et al., 2014 [107] | 16 RCTs | 1879 | Effects of vitamin D supplementation on SBP and DBP | No effects of vitamin D supplementation on SBP and DBP, with the exception of reduction in DBP in patients with pre-existing cardiometabolic disease |
Mokhtari et al., 2022 [97] | 70 cohort and cross-sectional studies | 32,7701 | Serum 25(OH)D levels in relation to HTN and pre-HTN in adults | Serum 25(OH)D concentrations are inversely related to the risk of HTN in adults in a dose–response manner |
Morvaridzadeh et al., 2020 [110] | 8 RCTs | 17,644 | Effects of calcium and vitamin D co-supplementation on SBP and DBP | No effects on SBP but significant reduction in DBP |
Pittas et al., 2010 [100] | 3 cohort studies | 32,181 | Correlation between 25(OH)D status and risk of HTN | Association between low 25(OH)D levels and risk of HTN |
9 RCTs | 37,162 | Effects of vitamin D supplementation on SBP and DBP | No effects of vitamin D supplementation on DBP and SBP | |
Qi et al., 2016 [103] | 8 RCTs | 917 | The effect of vitamin D supplementation on HTN in non-CKD populations | Vitamin D is not an antihypertensive agent, although it has a moderate SBP-lowering effect |
Qi et al., 2017 [99] | 7 prospective studies | 53,375 | Correlation between 25(OH)D concentrations and incident HTN | Lower serum 25(OH)D concentrations were associated with a greater risk of incident HTN |
Witham et al., 2020 [109] | 8 RCT | 475 | Effects of vitamin D supplementation on SBP and DBP | No effects of VD on SBP, while there is slight reduction in DBP |
Wu et al., 2010 [111] | 4 RCTs | 429 | Effects of vitamin D supplementation on SBP and DBP | VD supplementation reduces SBP but not DBP |
Wu et al., 2017 [108] | 8 RCTs | 36,806 | Effects of calcium plus vitamin D co-supplementation on SBP and DBP | No effects of vitamin D on SBP and DBP |
Zhang et al., 2020 [96] | 11 cohort studies | 43,320 | Correlation between 25(OH)D levels and risk of HTN | Inverse relationship between 25(OH)D levels and risk of HTN |
27 RCTs | 3810 | Effect of vitamin D supplementation on BP and HTN in the general population | Supplementation with vitamin D does not lower BP in the general population |
First Author and Year of Publication | N° of Studies Included and Study Design | Total Sample Size | Outcome Evaluated | Main Findings |
---|---|---|---|---|
AlAnouti et al., 2020 [125] | 4 RCTs | 226 | Effect of vitamin D supplementation on serum lipid profiles in patients with metabolic syndrome | No effects of vitamin D supplementation on serum lipid profile |
Bahadorpour et al., 2022 [124] | 57 cross-sectional | 210,575 | Relationship between serum 25(OH)D levels and dyslipidemia | 25(OH)D levels are inversely related to the odds of hypertriglyceridemia, low HDL, and dyslipidemia in a dose–response manner. However, no significant association was observed for high serum LDL or hypercholesterolemia |
2 cohort studies | 8494 | |||
Dibaba et al., 2019 [134] | 41 RCTs | 3434 | Effect of vitamin D supplementation on serum lipid profiles | Vitamin D supplementation improved serum TC, LDL cholesterol, and TGL but not HDL cholesterol levels |
Jafari et al., 2016 [127] | 17 RCTs | 1356 | Effect of vitamin D supplementation on serum lipid profiles in DM2 | Vitamin D supplementation improved serum levels of TC, TGL, and LDL in patients. Moreover, baseline serum 25(OH)D of patients, vitamin D dosage, and intervention duration influence the effect of vitamin D supplementation on lipid profile |
Jin et al., 2020 [129] | 8 RCTs | 467 | Effect of vitamin D supplementation on serum lipid profiles in PCOS patients | Significant reduction in TGL, TC, LDL, and VLDL levels after supplementation. No effect on HDL |
Luo et al., 2021 [128] | 11 RCTs | 667 | Effect of vitamin D supplementation on serum lipid profiles in PCOS patients | Significant reduction in TGL, TC, LDL, and VLDL levels after supplementation. No effect on HDL |
Milajerdi et al., 2019 [130] | 6 RCTs | 323 | Effect of vitamin D supplementation on serum lipid profiles in patients with CKD | Reduction in TGL and TC levels after supplementation. No effects on HDL and LDL |
Morvaridzadeh et al., 2021 [131] | 13 RCTs | 2304 | Effect of vitamin D and calcium co-supplementation on serum lipid profiles | Significant reduction in TGL and TC levels and increase in HDL levels after supplementation |
Ostadmohammadi et al., 2019 [132] | 8 RCTs | 630 | Effect of vitamin D supplementation on serum lipid profiles in patients with CVD | Significant increase in HDL-cholesterol in patients supplemented with vitamin D |
Tabrizi et al., 2017 [126] | 7 RCTs | 452 | Effect of vitamin D supplementation on serum lipid profiles in patients with non-alcoholic fatty liver disease | No effect of vitamin D supplementation on TGL, LDL, and TC |
Wang et al., 2012 [135] | 12 RCTs | 1346 | Effect of vitamin D supplementation on serum lipid profiles | Significant reduction in LDL levels. No effects on the other parameters |
Zhang et al., 2022 [133] | 7 RCTs | 1109 | Effect of vitamin D supplementation on serum lipid profiles in post-menopausal women | Vitamin D supplementation decreases TGL. Moreover, it increases HDL levels when the treatment is under 26 weeks and decreases LDL for doses higher than 400 UI/die |
First Author and Year | N° of Studies Included and Study Design | Total Sample Size | Outcome Assessed | Main Findings |
---|---|---|---|---|
Dou et al., 2019 [139] | 7 RCTs | 429 | Effects of VD supplementation on FMD, PWV, SBP, and DBP in patients with CKD | Supplementation with Cholecalciferol and 2 mcg of paricalcitol was able to improve FMD; supplementation with cholecalciferol reduced PWV, with no effect on SBP and DBP |
Hu et al., 2018 [141] | 21 RCTs | 1894 | Effects of paricalcitol supplementation on cardiovascular risk of patients affected by CKD | Paricalcitol supplementation reduces cardiovascular events compared to placebo |
Hu et al., 2020 [142] | 10 RCTs | 579 | Effects of VD supplementation on FMD, PWI, SBP, DBP, and CRP in patients with CKD | Vitamin D supplementation showed no improvement in these parameters |
Lundwal et al., 2018 [140] | 4 RCTs | 305 | Effects of VD supplementation on FMD in patients with CKD | Short-term intervention with VD is associated with improvements in EF, as measured by FMD |
First Author and Year | N° of Studies Included and Study Design | Total Sample Size | Outcome Assessed | Main Findings |
---|---|---|---|---|
Arab et al.; 2019 [161] | 18 observational studies | 4773 | Association between vitamin D and sperm parameters Difference in serum levels of vitamin D in fertile and infertile subjects | 25(OH)D was significantly associated with sperm motility but not with other sperm parameters 1,25 (OH)2D3 was significantly higher in fertile men compared to infertile patients |
D’Andrea et al., 2020 [152] | 18 observational studies | 9892 men with vitamin D deficiency 10,675 controls | Difference in circulating TT levels between men with and without vitamin D deficiency | A slight, albeit just significant, positive association between 25(OH)D and TT levels was found. However, a very large heterogeneity between the studies was found |
Marnani Hosseini et al., 2019 [156] | 10 RCTs | 1061 | Effect of vitamin D supplementation on TT and SHBG levels | Vitamin D supplementation had no significant effect on TT and SHBG |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Crafa, A.; Cannarella, R.; Barbagallo, F.; Leanza, C.; Palazzolo, R.; Flores, H.A.; La Vignera, S.; Condorelli, R.A.; Calogero, A.E. Mechanisms Suggesting a Relationship between Vitamin D and Erectile Dysfunction: An Overview. Biomolecules 2023, 13, 930. https://doi.org/10.3390/biom13060930
Crafa A, Cannarella R, Barbagallo F, Leanza C, Palazzolo R, Flores HA, La Vignera S, Condorelli RA, Calogero AE. Mechanisms Suggesting a Relationship between Vitamin D and Erectile Dysfunction: An Overview. Biomolecules. 2023; 13(6):930. https://doi.org/10.3390/biom13060930
Chicago/Turabian StyleCrafa, Andrea, Rossella Cannarella, Federica Barbagallo, Claudia Leanza, Roberto Palazzolo, Hunter Ausley Flores, Sandro La Vignera, Rosita A. Condorelli, and Aldo E. Calogero. 2023. "Mechanisms Suggesting a Relationship between Vitamin D and Erectile Dysfunction: An Overview" Biomolecules 13, no. 6: 930. https://doi.org/10.3390/biom13060930
APA StyleCrafa, A., Cannarella, R., Barbagallo, F., Leanza, C., Palazzolo, R., Flores, H. A., La Vignera, S., Condorelli, R. A., & Calogero, A. E. (2023). Mechanisms Suggesting a Relationship between Vitamin D and Erectile Dysfunction: An Overview. Biomolecules, 13(6), 930. https://doi.org/10.3390/biom13060930