Shapes and Patterns of Heme-Binding Motifs in Mammalian Heme-Binding Proteins
Abstract
:1. Introduction
2. Materials and Methods
2.1. Peptide Synthesis, Purification, and Analytics
2.2. Analysis of Heme-Binding Peptides by UV/vis Spectroscopy
2.3. Structural Analysis
3. Results
3.1. Experimental Results from UV/vis Studies
3.2. Structure Evaluation Using Computational Tools
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Tsiftsoglou, A.S.; Tsamadou, A.I.; Papadopoulou, L.C. Heme as Key Regulator of Major Mammalian Cellular Functions: Molecular, Cellular, and Pharmacological Aspects. Pharmacol. Ther. 2006, 111, 327–345. [Google Scholar] [CrossRef]
- Donegan, R.K.; Moore, C.M.; Hanna, D.A.; Reddi, A.R. Handling Heme: The Mechanisms Underlying the Movement of Heme within and between Cells. Free Radic. Biol. Med. 2019, 133, 88–100. [Google Scholar] [CrossRef]
- Severance, S.; Hamza, I. Trafficking of Heme and Porphyrins in Metazoa. Chem. Rev. 2009, 109, 4596–4616. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Roumenina, L.T.; Dimitrov, J.D. Assessment of the Breadth of Binding Promiscuity of Heme towards Human Proteins. Biol. Chem. 2022, 403, 1083–1090. [Google Scholar] [CrossRef] [PubMed]
- Brewitz, H.H.; Kühl, T.; Goradia, N.; Galler, K.; Popp, J.; Neugebauer, U.; Ohlenschläger, O.; Imhof, D. Role of the Chemical Environment beyond the Coordination Site: Structural Insight into FeIII Protoporphyrin Binding to Cysteine-Based Heme-Regulatory Protein Motifs. ChemBioChem 2015, 16, 2216–2224. [Google Scholar] [CrossRef] [PubMed]
- Kühl, T.; Wißbrock, A.; Goradia, N.; Sahoo, N.; Galler, K.; Neugebauer, U.; Popp, J.; Heinemann, S.H.; Ohlenschläger, O.; Imhof, D. Analysis of Fe(III) Heme Binding to Cysteine-Containing Heme-Regulatory Motifs in Proteins. ACS Chem. Biol. 2013, 8, 1785–1793. [Google Scholar] [CrossRef]
- Humayun, F.; Domingo-Fernández, D.; Paul George, A.A.; Hopp, M.T.; Syllwasschy, B.F.; Detzel, M.S.; Hoyt, C.T.; Hofmann-Apitius, M.; Imhof, D. A Computational Approach for Mapping Heme Biology in the Context of Hemolytic Disorders. Front. Bioeng. Biotechnol. 2020, 8, 74. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schubert, E.; Florin, N.; Duthie, F.; Henning Brewitz, H.; Kühl, T.; Imhof, D.; Hagelueken, G.; Schiemann, O. Spectroscopic Studies on Peptides and Proteins with Cysteine-Containing Heme Regulatory Motifs (HRM). J. Inorg. Biochem. 2015, 148, 49–56. [Google Scholar] [CrossRef]
- Zhang, L. Heme Biology: The Secret Life of Heme in Regulating Diverse Biological Processes, 1st ed.; World Scientific: Singapore, 2011; pp. 139–196. [Google Scholar]
- Brewitz, H.H.; Goradia, N.; Schubert, E.; Galler, K.; Kühl, T.; Syllwasschy, B.; Popp, J.; Neugebauer, U.; Hagelueken, G.; Schiemann, O.; et al. Heme Interacts with Histidine- and Tyrosine-Based Protein Motifs and Inhibits Enzymatic Activity of Chloramphenicol Acetyltransferase from Escherichia Coli. Biochim. Biophys. Acta-Gen. Subj. 2016, 1860, 1343–1353. [Google Scholar] [CrossRef]
- Syllwasschy, B.F.; Beck, M.S.; Družeta, I.; Hopp, M.T.; Ramoji, A.; Neugebauer, U.; Nozinovic, S.; Menche, D.; Willbold, D.; Ohlenschläger, O.; et al. High-Affinity Binding and Catalytic Activity of His/Tyr-Based Sequences: Extending Heme-Regulatory Motifs beyond CP. Biochim. Biophys. Acta-Gen. Subj. 2020, 1864, 129603. [Google Scholar] [CrossRef]
- Kühl, T.; Imhof, D. Regulatory Fe(II/III) Heme: The Reconstruction of a Molecule’s Biography. Chembiochem 2014, 15, 2024–2035. [Google Scholar] [CrossRef] [PubMed]
- Kühl, T.; Sahoo, N.; Nikolajski, M.; Schlott, B.; Heinemann, S.H.; Imhof, D. Determination of Hemin-Binding Characteristics of Proteins by a Combinatorial Peptide Library Approach. ChemBioChem 2011, 12, 2846–2855. [Google Scholar] [CrossRef] [PubMed]
- Huang, T.J.; McCoubrey, W.K.; Maines, M.D. Heme Oxygenase-2 Interaction with Metalloporphyrins: Function of Heme Regulatory Motifs. Antioxid. Redox Signal. 2001, 3, 685–696. [Google Scholar] [CrossRef] [PubMed]
- Westberg, J.A.; Jiang, J.; Andersson, L.C. Stanniocalcin 1 Binds Hemin through a Partially Conserved Heme Regulatory Motif. Biochem. Biophys. Res. Commun. 2011, 409, 266–269. [Google Scholar] [CrossRef]
- Wißbrock, A.; George, A.A.P.; Brewitz, H.H.; Kühl, T.; Imhof, D. The Molecular Basis of Transient Heme-Protein Interactions: Analysis, Concept and Implementation. Biosci. Rep. 2019, 39, BSR20181940. [Google Scholar] [CrossRef]
- Tang, X.D.; Xu, R.; Reynolds, M.F.; Garcia, M.L.; Heinemann, S.H.; Hoshi, T. Haem Can Bind to and Inhibit Mammalian Calcium-Dependent Slo1 BK Channels. Nature 2003, 425, 531–535. [Google Scholar] [CrossRef]
- Li, T.; Bonkovsky, H.L.; Guo, J. Structural Analysis of Heme Proteins: Implications for Design and Prediction. BMC Struct. Biol. 2011, 11, 13. [Google Scholar] [CrossRef] [Green Version]
- Shimizu, T. Binding of Cysteine Thiolate to the Fe(III) Heme Complex Is Critical for the Function of Heme Sensor Proteins. J. Inorg. Biochem. 2012, 108, 171–177. [Google Scholar] [CrossRef]
- Wißbrock, A.; Goradia, N.B.; Kumar, A.; Paul George, A.A.; Kühl, T.; Bellstedt, P.; Ramachandran, R.; Hoffmann, P.; Galler, K.; Popp, J.; et al. Structural Insights into Heme Binding to IL-36α Proinflammatory Cytokine. Sci. Rep. 2019, 9, 16893. [Google Scholar] [CrossRef] [Green Version]
- Paul George, A.A.; Lacerda, M.; Syllwasschy, B.F.; Hopp, M.T.; Wißbrock, A.; Imhof, D. HeMoQuest: A Webserver for Qualitative Prediction of Transient Heme Binding to Protein Motifs. BMC Bioinform. 2020, 21, 124. [Google Scholar] [CrossRef]
- Hopp, M.T.; Alhanafi, N.; Paul George, A.A.; Hamedani, N.S.; Biswas, A.; Oldenburg, J.; Pötzsch, B.; Imhof, D. Molecular Insights and Functional Consequences of the Interaction of Heme with Activated Protein C. Antioxid. Redox Signal. 2021, 34, 32–48. [Google Scholar] [CrossRef]
- Hopp, M.-T.; Rathod, D.C.; Winn, K.H.; Ambast, S.; Imhof, D. Novel Insights into Heme Binding to Hemoglobin. Biol. Chem. 2022, 403, 1055–1066. [Google Scholar] [CrossRef]
- Pîrnău, A.; Bogdan, M. Investigation of the interaction between Naproxen and Human Serum Albumin. Rom. J. Biophys. 2008, 18, 49–55. [Google Scholar]
- Bateman, A.; Martin, M.J.; Orchard, S.; Magrane, M.; Ahmad, S.; Alpi, E.; Bowler-Barnett, E.H.; Britto, R.; Bye-A-Jee, H.; Cukura, A.; et al. UniProt: The Universal Protein Knowledgebase in 2023. Nucleic Acids Res. 2023, 51, D523–D531. [Google Scholar] [CrossRef]
- Berman, H.M.; Westbrook, J.; Feng, Z.; Gilliland, G.; Bhat, T.N.; Weissig, H.; Shindyalov, I.N.; Bourne, P.E. The Protein Data Bank. Nucleic Acids Res. 2000, 28, 235–242. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jumper, J.; Evans, R.; Pritzel, A.; Green, T.; Figurnov, M.; Ronneberger, O.; Tunyasuvunakool, K.; Bates, R.; Žídek, A.; Potapenko, A.; et al. Highly Accurate Protein Structure Prediction with AlphaFold. Nature 2021, 596, 583–589. [Google Scholar] [CrossRef] [PubMed]
- Pettersen, E.F.; Goddard, T.D.; Huang, C.C.; Couch, G.S.; Greenblatt, D.M.; Meng, E.C.; Ferrin, T.E. UCSF Chimera--a Visualization System for Exploratory Research and Analysis. J. Comput. Chem. 2004, 25, 1605–1612. [Google Scholar] [CrossRef] [Green Version]
- Nishitani, Y.; Okutani, H.; Takeda, Y.; Uchida, T.; Iwai, K.; Ishimori, K. Specific Heme Binding to Heme Regulatory Motifs in Iron Regulatory Proteins and Its Functional Significance. J. Inorg. Biochem. 2019, 198, 110726. [Google Scholar] [CrossRef]
- Yamanaka, K.; Ishikawa, H.; Megumi, Y.; Tokunaga, F.; Kanie, M.; Rouault, T.A.; Morishima, I.; Minato, N.; Ishimori, K.; Iwai, K. Identification of the Ubiquitin-Protein Ligase That Recognizes Oxidized IRP2. Nat. Cell Biol. 2003, 5, 336–340. [Google Scholar] [CrossRef]
- Ishikawa, H.; Kato, M.; Hori, H.; Ishimori, K.; Kirisako, T.; Tokunaga, F.; Iwai, K. Involvement of Heme Regulatory Motif in Heme-Mediated Ubiquitination and Degradation of IRP2. Mol. Cell 2005, 19, 171–181. [Google Scholar] [CrossRef]
- Weitz, S.H.; Gong, M.; Barr, I.; Weiss, S.; Guo, F. Processing of MicroRNA Primary Transcripts Requires Heme in Mammalian Cells. Proc. Natl. Acad. Sci. USA 2014, 111, 1861–1866. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mense, S.M.; Zhang, L. Heme: A Versatile Signaling Molecule Controlling the Activities of Diverse Regulators Ranging from Transcription Factors to MAP Kinases. Cell Res. 2006, 16, 681–692. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Miksanova, M.; Igarashi, J.; Minami, M.; Sagami, I.; Yamauchi, S.; Kurokawa, H.; Shimizu, T. Characterization of Heme-Regulated EIF2α Kinase: Roles of the N-Terminal Domain in the Oligomeric State, Heme Binding, Catalysis, and Inhibition. Biochemistry 2006, 45, 9894–9905. [Google Scholar] [CrossRef] [PubMed]
- Barr, I.; Smith, A.T.; Senturia, R.; Chen, Y.; Scheidemantle, B.D.; Burstyn, J.N.; Guo, F. DiGeorge Critical Region 8 (DGCR8) Is a Double-Cysteine-Ligated Heme Protein. J. Biol. Chem. 2011, 286, 16716–16725. [Google Scholar] [CrossRef] [Green Version]
- Lathrop, J.T.; Timko, M.P. Regulation by Heme of Mitochondrial Protein Transport through a Conserved Amino Acid Motif. Adv. Sci. 1993, 259, 522–526. [Google Scholar] [CrossRef] [PubMed]
- Munakata, H.; Sun, J.Y.; Yoshida, K.; Nakatani, T.; Honda, E.; Hayakawa, S.; Furuyama, K.; Hayashi, N. Role of the Heme Regulatory Motif in the Heme-Mediated Inhibition of Mitochondrial Import of 5-Aminolevulinate Synthase. J. Biochem. 2004, 136, 233–238. [Google Scholar] [CrossRef] [PubMed]
- Kubota, Y.; Nomura, K.; Katoh, Y.; Yamashita, R.; Kaneko, K.; Furuyama, K. Novel Mechanisms for Heme-Dependent Degradation of ALAS1 Protein as a Component of Negative Feedback Regulation of Heme Biosynthesis. J. Biol. Chem. 2016, 291, 20516–20529. [Google Scholar] [CrossRef] [Green Version]
- Goodfellow, B.J.; Dias, J.S.; Ferreira, G.C.; Henklein, P.; Wray, V.; Macedo, A.L. The Solution Structure and Heme Binding of the Presequence of Murine 5-Aminolevulinate Synthase. FEBS Lett. 2001, 505, 325–331. [Google Scholar] [CrossRef] [Green Version]
- Atamna, H.; Frey, W.H. A Role for Heme in Alzheimer’s Disease: Heme Binds Amyloid β and Has Altered Metabolism. Proc. Natl. Acad. Sci. USA 2004, 101, 11153–11158. [Google Scholar] [CrossRef] [Green Version]
- Atamna, H.; Frey, W.H.; Ko, N. Human and Rodent Amyloid-β Peptides Differentially Bind Heme: Relevance to the Human Susceptibility to Alzheimer’s Disease. Arch. Biochem. Biophys. 2009, 487, 59–65. [Google Scholar] [CrossRef]
- Pramanik, D.; Dey, S.G. Active Site Environment of Heme-Bound Amyloid β Peptide Associated with Alzheimers Disease. J. Am. Chem. Soc. 2011, 133, 81–87. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Y.; Wang, J.; Liu, L.; Wang, R.; Lai, X.; Xu, M. Interaction between Amyloid-β Peptide and Heme Probed by Electrochemistry and Atomic Force Microscopy. ACS Chem. Neurosci. 2013, 4, 535–539. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wißbrock, A.; Kühl, T.; Silbermann, K.; Becker, A.J.; Ohlenschläger, O.; Imhof, D. Synthesis and Evaluation of Amyloid β Derived and Amyloid β Independent Enhancers of the Peroxidase-like Activity of Heme. J. Med. Chem. 2017, 60, 373–385. [Google Scholar] [CrossRef]
- Hu, R.-G.; Wang, H.; Xia, Z.; Varshavsky, A. The N-End Rule Pathway Is a Sensor of Heme. Proc. Natl. Acad. Sci. USA 2008, 105, 76–81. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yang, F.; Xia, X.; Lei, H.Y.; Wang, E.D. Hemin Binds to Human Cytoplasmic Arginyl-TRNA Synthetase and Inhibits Its Catalytic Activity. J. Biol. Chem. 2010, 285, 39437–39446. [Google Scholar] [CrossRef] [Green Version]
- Ogawa, K.; Sun, J.; Taketani, S.; Nakajima, O.; Nishitani, C.; Sassa, S.; Hayashi, N.; Yamamoto, M.; Shibahara, S.; Fujita, H.; et al. Heme Mediates Derepression of Maf Recognition Element through Direct Binding to Transcription Repressor Bach1. EMBO J. 2001, 20, 2835–2843. [Google Scholar] [CrossRef] [Green Version]
- Hira, S.; Tomita, T.; Matsui, T.; Igarashi, K.; Ikeda-Saito, M. Bach1, a Heme-Dependent Transcription Factor, Reveals Presence of Multiple Heme Binding Sites with Distinct Coordination Structure. IUBMB Life 2007, 59, 542–551. [Google Scholar] [CrossRef]
- Zenke-Kawasaki, Y.; Dohi, Y.; Katoh, Y.; Ikura, T.; Ikura, M.; Asahara, T.; Tokunaga, F.; Iwai, K.; Igarashi, K. Heme Induces Ubiquitination and Degradation of the Transcription Factor Bach1. Mol. Cell. Biol. 2007, 27, 6962–6971. [Google Scholar] [CrossRef] [Green Version]
- Segawa, K.; Watanabe-Matsui, M.; Matsui, T.; Igarashi, K.; Murayama, K. Functional Heme Binding to the Intrinsically Disordered C-Terminal Region of Bach1, a Transcriptional Repressor. Tohoku J. Exp. Med. 2018, 247, 153–159. [Google Scholar] [CrossRef] [Green Version]
- Watanabe-Matsui, M.; Muto, A.; Matsui, T.; Itoh-Nakadai, A.; Nakajima, O.; Murayama, K.; Yamamoto, M.; Ikeda-Saito, M.; Igarashi, K. Heme Regulates B-Cell Differentiation, Antibody Class Switch, and Heme Oxygenase-1 Expression in B Cells as a Ligand of Bach2. Blood 2011, 117, 5438–5448. [Google Scholar] [CrossRef] [Green Version]
- Watanabe-Matsui, M.; Matsumoto, T.; Matsui, T.; Ikeda-Saito, M.; Muto, A.; Murayama, K.; Igarashi, K. Heme Binds to an Intrinsically Disordered Region of Bach2 and Alters Its Conformation. Arch. Biochem. Biophys. 2015, 565, 25–31. [Google Scholar] [CrossRef]
- Suenaga, T.; Watanabe-Matsui, M.; Uejima, T.; Shima, H.; Matsui, T.; Ikeda-Saito, M.; Shirouzu, M.; Igarashi, K.; Murayama, K. Charge-State-Distribution Analysis of Bach2 Intrinsically Disordered Heme Binding Region. J. Biochem. 2016, 160, 291–298. [Google Scholar] [CrossRef] [Green Version]
- Williams, S.E.J.; Wootton, P.; Mason, H.S.; Bould, J.; Iles, D.E.; Riccardi, D.; Peers, C.; Kemp, P.J. Hemoxygenase-2 Is an Oxygen Sensor for a Calcium-Sensitive Potassium Channel. Science 2004, 306, 2093–2097. [Google Scholar] [CrossRef] [PubMed]
- Horrigan, F.T.; Heinemann, S.H.; Hoshi, T. Heme Regulates Allosteric Activation of the Slo1 BK Channel. J. Gen. Physiol. 2005, 126, 7–21. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jaggar, J.H.; Li, A.; Parfenova, H.; Liu, J.; Umstot, E.S.; Dopico, A.M.; Leffler, C.W. Heme Is a Carbon Monoxide Receptor for Large-Conductance Ca 2+-Activated K+ Channels. Circ. Res. 2005, 97, 805–812. [Google Scholar] [CrossRef] [Green Version]
- Yi, L.; Morgan, J.T.; Ragsdale, S.W. Identification of a Thiol/Disulfide Redox Switch in the Human BK Channel That Controls Its Affinity for Heme and CO. J. Biol. Chem. 2010, 285, 20117–20127. [Google Scholar] [CrossRef] [Green Version]
- Dimitrov, J.D.; Roumenina, L.T.; Doltchinkova, V.R.; Vassilev, T.L. Iron Ions and Haeme Modulate the Binding Properties of Complement Subcomponent C1q and of Immunoglobulins. Scand. J. Immunol. 2007, 65, 230–239. [Google Scholar] [CrossRef]
- Roumenina, L.T.; Radanova, M.; Atanasov, B.P.; Popov, K.T.; Kaveri, S.V.; Lacroix-Desmazes, S.; Frémeaux-Bacchi, V.; Dimitrov, J.D. Heme Interacts with C1q and Inhibits the Classical Complement Pathway. J. Biol. Chem. 2011, 286, 16459–16469. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Frimat, M.; Tabarin, F.; Dimitrov, J.D.; Poitou, C.; Halbwachs-Mecarelli, L.; Fremeaux-Bacchi, V.; Roumenina, L.T. Complement Activation by Heme as a Secondary Hit for Atypical Hemolytic Uremic Syndrome. Blood 2013, 122, 282–292. [Google Scholar] [CrossRef] [Green Version]
- Lukat-Rodgers, G.S.; Correia, C.; Botuyan, M.V.; Mer, G.; Rodgers, K.R. Heme-Based Sensing by the Mammalian Circadian Protein, CLOCK. Inorg. Chem. 2010, 49, 6349–6365. [Google Scholar] [CrossRef] [Green Version]
- Meier, M.; Janosik, M.; Kery, V.; Kraus, J.P.; Burkhard, P. Structure of Human Cystathionine β-Synthase: A Unique Pyridoxal 5′-Phosphate-Dependent Heme Protein. EMBO J. 2001, 20, 3910–3916. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Taoka, S.; Lepore, B.W.; Kabil, Ö.; Ojha, S.; Ringe, D.; Banerjee, R. Human Cystathionine β-Synthase Is a Heme Sensor Protein. Evidence That the Redox Sensor Is Heme and Not the Vicinal Cysteines in the CXXC Motif Seen in the Crystal Structure of the Truncated Enzyme. Biochemistry 2002, 41, 10454–10461. [Google Scholar] [CrossRef] [PubMed]
- Weeks, C.L.; Singh, S.; Madzelan, P.; Banerjee, R.; Spiro, T.G. Heme Regulation of Human Cystathionine β-Synthase Activity: Insights from Fluorescence and Raman Spectroscopy. J. Am. Chem. Soc. 2009, 131, 12809–12816. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kumar, A.; Wißbrock, A.; Goradia, N.; Bellstedt, P.; Ramachandran, R.; Imhof, D.; Ohlenschläger, O. Heme Interaction of the Intrinsically Disordered N-Terminal Peptide Segment of Human Cystathionine-β-Synthase. Sci. Rep. 2018, 8, 2474. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Faller, M.; Matsunaga, M.; Yin, S.; Loo, J.A.; Guo, F. Heme Is Involved in MicroRNA Processing. Nat. Struct. Mol. Biol. 2007, 14, 23–29. [Google Scholar] [CrossRef]
- Igarashi, K.; Murase, M.; Iizuka, A.; Pichierri, F.; Martinkova, M.; Shimizu, T.; Igarashi, J.; Murase, M.; Iizuka, A.; Pichierri, F.; et al. Elucidation of the Heme Binding Site of Heme-Regulated Eukaryotic Initiation Factor 2α Kinase and the Role of the Regulatory Motif in Heme Sensing by Spectroscopic and Catalytic Studies of Mutant Proteins. J. Biol. Chem. 2008, 283, 18782–18791. [Google Scholar] [CrossRef] [Green Version]
- Green, D.; Furby, F.H.; Berndt, M.C. The Interaction of the VIII/von Willebrand Factor Complex with Hematin. Thromb. Haemost. 1986, 56, 277–282. [Google Scholar]
- Repessé, Y.; Dimitrov, J.D.; Peyron, I.; Moshai, E.F.; Kiger, L.; Dasgupta, S.; Delignat, S.; Marden, M.C.; Kaveri, S.V.; Lacroix-Desmazes, S. Heme Binds to Factor VIII and Inhibits Its Interaction with Activated Factor IX. J. Thromb. Haemost. 2012, 10, 1062–1071. [Google Scholar] [CrossRef]
- Orino, K. Functional Binding Analysis of Human Fibrinogen as an Iron- and Heme-Binding Protein. BioMetals 2013, 26, 789–794. [Google Scholar] [CrossRef]
- Ke, Z.; Huang, Q. Haem-Assisted Dityrosine-Cross-Linking of Fibrinogen under Non-Thermal Plasma Exposure: One Important Mechanism of Facilitated Blood Coagulation. Sci. Rep. 2016, 6, 26982. [Google Scholar] [CrossRef] [Green Version]
- Grdisa, M.; White, M.K. Expression of Glyceraldehyde-3-Phosphate Dehydrogenase during Differentiation of HD3 Cells. Eur. J. Cell Biol. 1996, 71, 177–182. [Google Scholar] [PubMed]
- Campanale, N.; Nickel, C.; Daubenberger, C.A.; Wehlan, D.A.; Gorman, J.J.; Klonis, N.; Becker, K.; Tilley, L. Identification and Characterization of Heme-Interacting Proteins in the Malaria Parasite, Plasmodium Falciparum. J. Biol. Chem. 2003, 278, 27354–27361. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Famin, O.; Ginsburg, H. The Treatment of Plasmodium Falciparum -Infected Erythrocytes with Chloroquine Leads to Accumulation of Ferriprotoporphyrin IX Bound to Particular Parasite Proteins and to the Inhibition of the Parasite’s 6-Phosphogluconate Dehydrogenase. Parasite 2003, 10, 39–50. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chakravarti, R.; Aulak, K.S.; Fox, P.L.; Stuehr, D.J. GAPDH Regulates Cellular Heme Insertion into Inducible Nitric Oxide Synthase. Proc. Natl. Acad. Sci. USA 2010, 107, 18004–18009. [Google Scholar] [CrossRef] [Green Version]
- Hannibal, L.; Collins, D.; Brassard, J.; Chakravarti, R.; Vempati, R.; Dorlet, P.; Santolini, J.; Dawson, J.H.; Stuehr, D.J. Heme Binding Properties of Glyceraldehyde-3-Phosphate Dehydrogenase. Biochemistry 2012, 51, 8514–8529. [Google Scholar] [CrossRef] [Green Version]
- McCoubrey, W.K.; Huang, T.J.; Maines, M.D. Heme Oxygenase-2 Is a Hemoprotein and Binds Heme through Heme Regulatory Motifs That Are Not Involved in Heme Catalysis. J. Biol. Chem. 1997, 272, 12568–12574. [Google Scholar] [CrossRef] [Green Version]
- Yi, L.; Ragsdale, S.W. Evidence That the Heme Regulatory Motifs in Heme Oxygenase-2 Serve as a Thiol/Disulfide Redox Switch Regulating Heme Binding. J. Biol. Chem. 2007, 282, 21056–21067. [Google Scholar] [CrossRef] [Green Version]
- Yi, L.; Jenkins, P.M.; Leichert, L.I.; Jakob, U.; Martens, J.R.; Ragsdale, S.W. Heme Regulatory Motifs in Heme Oxygenase-2 Form a Thiol/Disulfide Redox Switch That Responds to the Cellular Redox State. J. Biol. Chem. 2009, 284, 20556–20561. [Google Scholar] [CrossRef] [Green Version]
- Fleischhacker, A.S.; Sharma, A.; Choi, M.; Spencer, A.M.; Bagai, I.; Hoffman, B.M.; Ragsdale, S.W. The C-Terminal Heme Regulatory Motifs of Heme Oxygenase-2 Are Redox-Regulated Heme Binding Sites. Biochemistry 2015, 54, 2709–2718. [Google Scholar] [CrossRef] [Green Version]
- Yang, J.; Kim, K.D.; Lucas, A.; Drahos, K.E.; Santos, C.S.; Mury, S.P.; Capelluto, D.G.S.; Finkielstein, C.V. A Novel Heme-Regulatory Motif Mediates Heme-Dependent Degradation of the Circadian Factor Period 2. Mol. Cell. Biol. 2008, 28, 4697–4711. [Google Scholar] [CrossRef] [Green Version]
- Dimitrov, J.D.; Roumenina, L.T.; Doltchinkova, V.R.; Mihaylova, N.M.; Lacroix-Desmazes, S.; Kaveri, S.V.; Vassilev, T.L. Antibodies Use Heme as a Cofactor to Extend Their Pathogen Elimination Activity and to Acquire New Effector Functions. J. Biol. Chem. 2007, 282, 26696–26706. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Huang, Y.; Yang, Z.; Xu, H.; Zhang, P.; Gao, Z.; Li, H. Insulin Enhances the Peroxidase Activity of Heme by Forming Heme-Insulin Complex: Relevance to Type 2 Diabetes Mellitus. Int. J. Biol. Macromol. 2017, 102, 1009–1015. [Google Scholar] [CrossRef] [PubMed]
- Ogura, M.; Endo, R.; Ishikawa, H.; Takeda, Y.; Uchida, T.; Iwai, K.; Kobayashi, K.; Ishimori, K. Redox-Dependent Axial Ligand Replacement and Its Functional Significance in Heme-Bound Iron Regulatory Proteins. J. Inorg. Biochem. 2018, 182, 238–248. [Google Scholar] [CrossRef] [PubMed]
- Yao, X.; Balamurugan, P.; Arvey, A.; Leslie, C.; Zhang, L. Heme Controls the Regulation of Protein Tyrosine Kinases Jak2 and Src. Biochem. Biophys. Res. Commun. 2010, 403, 30–35. [Google Scholar] [CrossRef] [Green Version]
- Burton, M.J.; Kapetanaki, S.M.; Chernova, T.; Jamieson, A.G.; Dorlet, P.; Santolini, J.; Moody, P.C.E.E.; Mitcheson, J.S.; Davies, N.W.; Schmid, R.; et al. A Heme-Binding Domain Controls Regulation of ATP-Dependent Potassium Channels. Proc. Natl. Acad. Sci. USA 2016, 113, 3785–3790. [Google Scholar] [CrossRef] [Green Version]
- Kimura, I.; Nakayama, Y.; Yamauchi, H.; Konishi, M.; Miyake, A.; Mori, M.; Ohta, M.; Itoh, N.; Fujimoto, M. Neurotrophic Activity of Neudesin, a Novel Extracellular Heme-Binding Protein, Is Dependent on the Binding of Heme to Its Cytochrome b 5-like Heme/Steroid-Binding Domain. J. Biol. Chem. 2008, 283, 4323–4331. [Google Scholar] [CrossRef] [Green Version]
- Kimura, I.; Nakayama, Y.; Konishi, M.; Kobayashi, T.; Mori, M.; Ito, M.; Hirasawa, A.; Tsujimoto, G.; Ohta, M.; Itoh, N.; et al. Neuferricin, a Novel Extracellular Heme-Binding Protein, Promotes Neurogenesis. J. Neurochem. 2010, 112, 1156–1167. [Google Scholar] [CrossRef]
- Airola, M.V.; Du, J.; Dawson, J.H.; Crane, B.R. Heme Binding to the Mammalian Circadian Clock Protein Period 2 Is Non-Specific. Biochemistry 2010, 49, 4327. [Google Scholar] [CrossRef] [Green Version]
- Chernova, T.; Steinert, J.R.; Guerin, C.J.; Nicotera, P.; Forsythe, I.D.; Smith, A.G. Neurite Degeneration Induced by Heme Deficiency Mediated via Inhibition of NMDA Receptor-Dependent Extracellular Signal-Regulated Kinase 1/2 Activation. J. Neurosci. 2007, 27, 8475–8485. [Google Scholar] [CrossRef] [Green Version]
- Kannan, M.; Steinert, J.R.; Forsythe, I.D.; Smith, A.G.; Chernova, T. Mevastatin Accelerates Loss of Synaptic Proteins and Neurite Degeneration in Aging Cortical Neurons in a Heme-Independent Manner. Neurobiol. Aging 2010, 31, 1543–1553. [Google Scholar] [CrossRef]
- Shen, J.; Sheng, X.; Chang, Z.N.; Wu, Q.; Wang, S.; Xuan, Z.; Li, D.; Wu, Y.; Shang, Y.; Kong, X.; et al. Iron Metabolism Regulates P53 Signaling through Direct Heme-P53 Interaction and Modulation of P53 Localization, Stability, and Function. Cell Rep. 2014, 7, 180–193. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shen, J.; Sheng, X.; Chang, Z.N.; Wu, Q.; Xie, D.; Wang, F.; Hu, R. The Heme–P53 Interaction: Linking Iron Metabolism to P53 Signaling and Tumorigenesis. Mol. Cell. Oncol. 2016, 3, 5–7. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Min, L.; Strushkevich, N.V.; Harnastai, I.N.; Iwamoto, H.; Gilep, A.A.; Takemori, H.; Usanov, S.A.; Nonaka, Y.; Hori, H.; Vinson, G.P.; et al. Molecular Identification of Adrenal Inner Zone Antigen as a Heme-Binding Protein. FEBS J. 2005, 272, 5832–5843. [Google Scholar] [CrossRef] [PubMed]
- Kabe, Y.; Nakane, T.; Koike, I.; Yamamoto, T.; Sugiura, Y.; Harada, E.; Sugase, K.; Shimamura, T.; Ohmura, M.; Muraoka, K.; et al. Haem-Dependent Dimerization of PGRMC1/Sigma-2 Receptor Facilitates Cancer Proliferation and Chemoresistance. Nat. Commun. 2016, 7, 11030. [Google Scholar] [CrossRef] [Green Version]
- Yin, L.; Wu, N.; Curtin, J.C.; Qatanani, M.; Szwergold, N.R.; Reid, R.A.; Waitt, G.M.; Parks, D.J.; Pearce, K.H.; Wisely, G.B.; et al. Rev-Erbα, a Heme Sensor That Coordinates Metabolic and Circadian Pathways. Science 2007, 318, 1786–1789. [Google Scholar] [CrossRef]
- Raghuram, S.; Stayrook, K.R.; Huang, P.; Rogers, P.M.; Nosie, A.K.; McClure, D.B.; Burris, L.L.; Khorasanizadeh, S.; Burris, T.P.; Rastinejad, F. Identification of Heme as the Ligand for the Orphan Nuclear Receptors REV-ERBα and REV-ERBβ. Nat. Struct. Mol. Biol. 2007, 14, 1207–1213. [Google Scholar] [CrossRef] [Green Version]
- Marvin, K.A.; Reinking, J.L.; Lee, A.J.; Pardee, K.; Krause, H.M.; Burstyn, J.N. Nuclear Receptors Homo Sapiens Rev-Erbβ and Drosophila Melanogaster E75 Are Thiolate-Ligated Heme Proteins Which Undergo Redox-Mediated Ligand Switching and Bind CO and NO. Biochemistry 2009, 48, 7056–7071. [Google Scholar] [CrossRef] [Green Version]
- Pardee, K.I.; Xu, X.; Reinking, J.; Schuetz, A.; Dong, A.; Liu, S.; Zhang, R.; Tiefenbach, J.; Lajoie, G.; Plotnikov, A.N.; et al. The Structural Basis of Gas-Responsive Transcription by the Human Nuclear Hormone Receptor REV-ERBβ. PLoS Biol. 2009, 7, 384–398. [Google Scholar] [CrossRef]
- Gupta, N.; Ragsdale, S.W. Thiol-Disulfide Redox Dependence of Heme Binding and Heme Ligand Switching in Nuclear Hormone Receptor Rev-Erbβ. J. Biol. Chem. 2011, 286, 4392–4403. [Google Scholar] [CrossRef] [Green Version]
- Carter, E.L.; Gupta, N.; Ragsdale, S.W. High Affinity Heme Binding to a Heme Regulatory Motif on the Nuclear Receptor Rev-Erbβ Leads to Its Degradation and Indirectly Regulates Its Interaction with Nuclear Receptor Corepressor. J. Biol. Chem. 2016, 291, 2196–2222. [Google Scholar] [CrossRef] [Green Version]
- Carter, E.L.; Ramirez, Y.; Ragsdale, S.W. The Heme-Regulatory Motif of Nuclear Receptor Rev-Erbβ Is a Key Mediator of Heme and Redox Signaling in Circadian Rhythm Maintenance and Metabolism. J. Biol. Chem. 2017, 292, 11280–11299. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dias, J.S.; Macedo, A.L.; Ferreira, G.C.; Peterson, F.C.; Volkman, B.F.; Goodfellow, B.J. The First Structure from the SOUL/HBP Family of Heme-Binding Proteins, Murine P22HBP. J. Biol. Chem. 2006, 281, 31553–31561. [Google Scholar] [CrossRef]
- Jiang, J.; Westberg, J.A.; Andersson, L.C. Stanniocalcin 2, Forms a Complex with Heme Oxygenase 1, Binds Hemin and Is a Heat Shock Protein. Biochem. Biophys. Res. Commun. 2012, 421, 274–279. [Google Scholar] [CrossRef] [PubMed]
- Figueiredo, R.T.; Fernandez, P.L.; Mourao-Sa, D.S.; Porto, B.N.; Dutra, F.F.; Alves, L.S.; Oliveira, M.F.; Oliveira, P.L.; Graça-Souza, A.V.; Bozza, M.T. Characterization of Heme as Activator of Toll-like Receptor 4. J. Biol. Chem. 2007, 282, 20221–20229. [Google Scholar] [CrossRef] [Green Version]
- Wakasugi, K. Human Tryptophanyl-TRNA Synthetase Binds with Heme to Enhance Its Aminoacylation Activity. Biochemistry 2007, 46, 11291–11298. [Google Scholar] [CrossRef]
- Hopp, M.T.; Rathod, D.C.; Imhof, D. Host and Viral Proteins Involved in SARS-CoV-2 Infection Differentially Bind Heme. Protein Sci. 2022, 31, e4451. [Google Scholar] [CrossRef] [PubMed]
- Kupke, T.; Klare, J.P.; Brügger, B. Heme Binding of Transmembrane Signaling Proteins Undergoing Regulated Intramembrane Proteolysis. Commun. Biol. 2020, 3, 73. [Google Scholar] [CrossRef] [Green Version]
- Bourne, J.H.; Colicchia, M.; Di, Y.; Martin, E.; Slater, A.; Roumenina, L.T.; Dimitrov, J.D.; Watson, S.P.; Rayes, J. Heme Induces Human and Mouse Platelet Activation through C-Type-Lectin-like Receptor-2. Haematologica 2021, 106, 626–629. [Google Scholar] [CrossRef] [PubMed]
- Oishi, S.; Tsukiji, N.; Otake, S.; Oishi, N.; Sasaki, T.; Shirai, T.; Yoshikawa, Y.; Takano, K.; Shinmori, H.; Inukai, T.; et al. Heme Activates Platelets and Exacerbates Rhabdomyolysis-Induced Acute Kidney Injury via CLEC-2 and GPVI/FcRγ. Blood Adv. 2021, 5, 2017. [Google Scholar] [CrossRef]
- Hopp, M.T.; Paul George, A.A.; Ramoji, A.; Pepanian, A.; Detzel, M.S.; Neugebauer, U.; Imhof, D. A Model Peptide Reveals Insights into the Interaction of Human Hemopexin with Heme. Int. J. Pept. Res. Ther. 2022, 28, 129. [Google Scholar] [CrossRef]
- Homan, R.A.; Jadhav, A.M.; Conway, L.P.; Parker, C.G. A Chemical Proteomic Map of Heme-Protein Interactions. J. Am. Chem. Soc. 2022, 144, 15013–15019. [Google Scholar] [CrossRef] [PubMed]
- Burton, M.J.; Cresser-Brown, J.; Thomas, M.; Portolano, N.; Basran, J.; Freeman, S.L.; Kwon, H.; Bottrill, A.R.; Llansola-Portoles, M.J.; Pascal, A.A.; et al. Discovery of a Heme-Binding Domain in a Neuronal Voltage-Gated Potassium Channel. J. Biol. Chem. 2020, 295, 13277–13286. [Google Scholar] [CrossRef]
- Belcher, J.D.; Zhang, P.; Nguyen, J.; Kiser, Z.M.; Nath, K.A.; Hu, J.; Trent, J.O.; Vercellotti, G.M. Identification of a Heme Activation Site on the MD-2/TLR4 Complex. Front. Immunol. 2020, 11, 1370. [Google Scholar] [CrossRef] [PubMed]
- Gessner, G.; Jamili, M.; Tomczyk, P.; Menche, D.; Schönherr, R.; Hoshi, T.; Heinemann, S.H. Extracellular Hemin Is a Reverse Use-Dependent Gating Modifier of Cardiac Voltage-Gated Na+ Channels. Biol. Chem. 2022, 403, 1067. [Google Scholar] [CrossRef] [PubMed]
- May, O.; Yatime, L.; Merle, N.S.; Delguste, F.; Howsam, M.; Daugan, M.V.; Paul-Constant, C.; Billamboz, M.; Ghinet, A.; Lancel, S.; et al. The Receptor for Advanced Glycation End Products Is a Sensor for Cell-Free Heme. FEBS J. 2021, 288, 3448–3464. [Google Scholar] [CrossRef]
No. | Peptide Sequence | Source | UV/vis Shift [nm] | KD [µM] |
---|---|---|---|---|
1 | AAAACPAAA | control | 364 | 3.77 ± 1.58 |
2 | AAAACAAAA | control | - | n.b. |
3 | AAAAAAAAA | control | - | n.b. |
4 | DESACPYVM | HRI | 364 | 2.74 ± 1.62 |
5 | DESACPVYM | mutant of 4 | 367 | 9.46 ± 1.67 |
6 | TPILCPFHL | IRP2 | 368, 415 | 0.82 ± 0.69, 1.84 ± 1.53 |
7 | SEGGCPLIL | IL-36α | 366 | 2.84 ± 0.98 |
8 | SSIPCLFYK | mutant of DGCR8 | 369 | 0.43 ± 0.35 |
9 | RDQYCSPTK | HTS | 425 | n.sat. |
10 | SGGLPAPSDFKCPIKEEIAITSG | DP8 | 369 | 1.44 ± 0.31 |
11 | TPILCPHFLQPV | mutant of 12 | 367 (≤10 µM heme), 416 | n.sat., 0.32 ± 0.21 (n~2) |
12 | TPILCPFHLQPV | IRP2 | 367 (≤15 µM heme), 414 | n.sat., 0.56 ± 0.44 (n~2) |
13 | TPILCPFLHQPV | mutant of 11 | 369 (≤25 µM heme *), 414 | 0.71 ± 0.22 (n~1) 6.18 ± 1.12 (n~0.5) |
14 | TPILCPFLQHPV | mutant of 11 | 368 (≤25 µM heme *), 416 | 0.94 ± 0.47 (n~0.5), 15.78 ± 1.74 (n~2) |
15 | TPILCPFLQPHV | mutant of 11 | 367 (≤25 µM heme *), 418 | 26.93 ± 2.25 (n~1), 1.16 ± 0.90 (n~2.5) |
16 | LILPCGGES | mutant of 7 | 416 | n.p. |
17 | SEGGPCLIL | mutant of 7 | 416 | n.p. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rathod, D.C.; Vaidya, S.M.; Hopp, M.-T.; Kühl, T.; Imhof, D. Shapes and Patterns of Heme-Binding Motifs in Mammalian Heme-Binding Proteins. Biomolecules 2023, 13, 1031. https://doi.org/10.3390/biom13071031
Rathod DC, Vaidya SM, Hopp M-T, Kühl T, Imhof D. Shapes and Patterns of Heme-Binding Motifs in Mammalian Heme-Binding Proteins. Biomolecules. 2023; 13(7):1031. https://doi.org/10.3390/biom13071031
Chicago/Turabian StyleRathod, Dhruv C., Sonali M. Vaidya, Marie-T. Hopp, Toni Kühl, and Diana Imhof. 2023. "Shapes and Patterns of Heme-Binding Motifs in Mammalian Heme-Binding Proteins" Biomolecules 13, no. 7: 1031. https://doi.org/10.3390/biom13071031
APA StyleRathod, D. C., Vaidya, S. M., Hopp, M. -T., Kühl, T., & Imhof, D. (2023). Shapes and Patterns of Heme-Binding Motifs in Mammalian Heme-Binding Proteins. Biomolecules, 13(7), 1031. https://doi.org/10.3390/biom13071031