Circular RNAs and Their Role in Male Infertility: A Systematic Review
Abstract
:1. Introduction
2. Materials and Methods
2.1. Search Strategy
2.2. Screening, Eligibility, and Inclusion/Exclusion Criteria
2.3. Data Extraction and Analysis
3. Results
3.1. Study Selection and Study Characteristics
3.2. Azoospermia (n = 7)
3.3. Asthenozoospermia (n = 3)
3.4. Oligoasthenozoospermia (n = 1)
3.5. A Mixed Sample of Infertile Men (n = 1)
3.6. Normozoospermia (n = 1)
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Krausz, C.; Riera-Escamilla, A. Genetics of Male Infertility. Nat. Rev. Urol. 2018, 15, 369–384. [Google Scholar] [CrossRef] [PubMed]
- Kamiński, P.; Baszyński, J.; Jerzak, I.; Kavanagh, B.P.; Nowacka-Chiari, E.; Polanin, M.; Szymański, M.; Woźniak, A.; Kozera, W. External and Genetic Conditions Determining Male Infertility. Int. J. Mol. Sci. 2020, 21, 5274. [Google Scholar] [CrossRef]
- Levine, H.; Jørgensen, N.; Martino-Andrade, A.; Mendiola, J.; Weksler-Derri, D.; Jolles, M.; Pinotti, R.; Swan, S.H. Temporal Trends in Sperm Count: A Systematic Review and Meta-Regression Analysis of Samples Collected Globally in the 20th and 21st Centuries. Hum. Reprod. Update 2023, 29, 157–176. [Google Scholar] [CrossRef]
- World Health Organization. Infertility Prevalence Estimates, 1990–2021; WHO: Geneva, Switzerland, 2023. [Google Scholar]
- Kumar, N.; Singh, A. Trends of Male Factor Infertility, an Important Cause of Infertility: A Review of Literature. J. Hum. Reprod. Sci. 2015, 8, 191–196. [Google Scholar] [CrossRef]
- Ravitsky, V.; Kimmins, S. The Forgotten Men: Rising Rates of Male Infertility Urgently Require New Approaches for Its Prevention, Diagnosis and Treatment. Biol. Reprod. 2019, 101, 872–874. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- He, C.; Wang, K.; Gao, Y.; Wang, C.; Li, L.; Liao, Y.; Hu, K.; Liang, M. Roles of Noncoding RNA in Reproduction. Front. Genet. 2021, 12, 2513. [Google Scholar] [CrossRef]
- Mukherjee, A.; Koli, S.; Reddy, K.V.R. Regulatory Non-Coding Transcripts in Spermatogenesis: Shedding Light on ‘Dark Matter’. Andrology 2014, 2, 360–369. [Google Scholar] [CrossRef]
- Kyrgiafini, M.A.; Sarafidou, T.; Mamuris, Z. The Role of Long Noncoding RNAs on Male Infertility: A Systematic Review and In Silico Analysis. Biology 2022, 11, 1510. [Google Scholar] [CrossRef]
- Barbu, M.G.; Thompson, D.C.; Suciu, N.; Voinea, S.C.; Cretoiu, D.; Predescu, D.V. The Roles of MicroRNAs in Male Infertility. Int. J. Mol. Sci. 2021, 22, 2910. [Google Scholar] [CrossRef]
- Greene, J.; Baird, A.M.; Brady, L.; Lim, M.; Gray, S.G.; McDermott, R.; Finn, S.P. Circular RNAs: Biogenesis, Function and Role in Human Diseases. Front. Mol. Biosci. 2017, 4, 38. [Google Scholar] [CrossRef] [Green Version]
- Chen, L.; Yang, L. Regulation of CircRNA Biogenesis. RNA Biol. 2015, 12, 381–388. [Google Scholar] [CrossRef] [PubMed]
- Zhou, W.Y.; Cai, Z.R.; Liu, J.; Wang, D.S.; Ju, H.Q.; Xu, R.H. Circular RNA: Metabolism, Functions and Interactions with Proteins. Mol. Cancer 2020, 19, 1–19. [Google Scholar] [CrossRef] [PubMed]
- Guria, A.; Sharma, P.; Natesan, S.; Pandi, G. Circular RNAs—The Road Less Traveled. Front. Mol. Biosci. 2020, 6, 146. [Google Scholar] [CrossRef] [Green Version]
- Hossain, S.T.; Malhotra, A.; Deutscher, M.P. How RNase R Degrades Structured RNA: ROLE OF THE HELICASE ACTIVITY AND THE S1 DOMAIN*. J. Biol. Chem. 2016, 291, 7877. [Google Scholar] [CrossRef] [Green Version]
- Jeck, W.; Sorrentino, J.; Wang, K.; Slevin, M.; Burd, C.; Liu, J.; Marzluff, W.; Sharpless, N. Circular RNAs Are Abundant, Conserved, and Associated with ALU Repeats. Rna 2013, 19, 141–157. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Panda, A.C. Circular RNAs Act as MiRNA Sponges. Adv. Exp. Med. Biol. 2018, 1087, 67–79. [Google Scholar] [CrossRef]
- Huang, A.; Zheng, H.; Wu, Z.; Chen, M.; Huang, Y. Circular RNA-Protein Interactions: Functions, Mechanisms, and Identification. Theranostics 2020, 10, 3503. [Google Scholar] [CrossRef]
- Shao, T.; Pan, Y.H.; Xiong, X.D. Circular RNA: An Important Player with Multiple Facets to Regulate Its Parental Gene Expression. Mol. Ther. Nucleic Acids 2021, 23, 369. [Google Scholar] [CrossRef]
- Patop, I.L.; Wüst, S.; Kadener, S. Past, Present, and Future of CircRNAs. EMBO J. 2019, 38, e100836. [Google Scholar] [CrossRef]
- Quan, G.; Li, J. Circular RNAs: Biogenesis, Expression and Their Potential Roles in Reproduction. J. Ovarian Res. 2018, 11, 9. [Google Scholar] [CrossRef] [Green Version]
- Page, M.J.; McKenzie, J.E.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.M.; Akl, E.A.; Brennan, S.E.; et al. The PRISMA 2020 Statement: An Updated Guideline for Reporting Systematic Reviews. BMJ 2021, 372, n71. [Google Scholar] [CrossRef] [PubMed]
- Ross, C.; Morriss, A.; Khairy, M.; Khalaf, Y.; Braude, P.; Coomarasamy, A.; El-Toukhy, T. A Systematic Review of the Effect of Oral Antioxidants on Male Infertility. Reprod. Biomed. Online 2010, 20, 711–723. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, H.; Liang, C.; Wang, X.; Liu, Y.; Yang, Z.; Shen, M.; Han, C.; Ren, C. The Prognostic Value of CircRNAs for Gastric Cancer: A Systematic Review and Meta-Analysis. Cancer Med. 2020, 9, 9096–9106. [Google Scholar] [CrossRef] [PubMed]
- Liu, B.; Song, F.; Yang, Q.; Zhou, Y.; Shao, C.; Shen, Y.; Zhao, Z.; Tang, Q.; Hou, Y.; Xie, J. Characterization of Tissue-Specific Biomarkers with the Expression of CircRNAs in Forensically Relevant Body Fluids. Int. J. Legal Med. 2019, 133, 1321–1331. [Google Scholar] [CrossRef]
- Wang, S.; Wang, Z.; Tao, R.; He, G.; Liu, J.; Li, C.; Hou, Y. The Potential Use of Piwi-Interacting RNA Biomarkers in Forensic Body Fluid Identification: A Proof-of-Principle Study. Forensic Sci. Int. Genet. 2019, 39, 129–135. [Google Scholar] [CrossRef]
- Liu, B.; Yang, Q.; Meng, H.; Shao, C.; Jiang, J.; Xu, H.; Sun, K.; Zhou, Y.; Yao, Y.; Zhou, Z.; et al. Development of a Multiplex System for the Identification of Forensically Relevant Body Fluids. Forensic Sci. Int. Genet. 2020, 47, 102312. [Google Scholar] [CrossRef]
- Liang, X.; Han, X.; Liu, C.; Du, W.; Zhong, P.; Huang, L.; Huang, M.; Fu, L.; Liu, C.; Chen, L. Integrating the Salivary Microbiome in the Forensic Toolkit by 16S RRNA Gene: Potential Application in Body Fluid Identification and Biogeographic Inference. Int. J. Legal Med. 2022, 136, 975–985. [Google Scholar] [CrossRef]
- Tan, Z.; Sun, Y.; Liu, M.; Xia, L.; Cao, F.; Qi, Y.; Song, Y. Retracted: Naringenin Inhibits Cell Migration, Invasion, and Tumor Growth by Regulating CircFOXM1/MiR-3619-5p/SPAG5 Axis in Lung Cancer. Cancer Biother. Radiopharm. 2020, 35, e826–e838. [Google Scholar] [CrossRef]
- Fan, X.; Wang, Y. Circular RNA CircSPATA6 Inhibits the Progression of Oral Squamous Cell Carcinoma Cells by Regulating TRAF6 via MiR-182. Cancer Manag. Res. 2021, 13, 1817–1829. [Google Scholar] [CrossRef]
- Yang, X.; Li, Y.; Zhang, Y.; Liu, J. Circ_0000745 Promotes Acute Lymphoblastic Leukemia Progression through Mediating MiR-494-3p/NET1 Axis. Hematology 2022, 27, 11–22. [Google Scholar] [CrossRef]
- Reinoso-Sánchez, J.F.; Baroli, G.; Duranti, G.; Scaricamazza, S.; Sabatini, S.; Valle, C.; Morlando, M.; Casero, R.A.; Bozzoni, I.; Mariottini, P.; et al. Emerging Role for Linear and Circular Spermine Oxidase RNAs in Skeletal Muscle Physiopathology. Int. J. Mol. Sci. 2020, 21, 8227. [Google Scholar] [CrossRef]
- Wang, Y.; Wang, X.; Xu, Q.; Yin, J.; Wang, H.; Zhang, L. CircRNA, LncRNA, and MRNA Profiles of Umbilical Cord Blood Exosomes from Preterm Newborns Showing Bronchopulmonary Dysplasia. Eur. J. Pediatr. 2022, 181, 3345. [Google Scholar] [CrossRef]
- Sun, K.; Wei, Q.; Zang, C.; Sun, R.; Jiang, D.; Sun, X. Identifying Circular RNA Splicing Sites Based on Convolutional Neural Networks and Recurrent Neural Networks. Prog. Biochem. Biophys. 2021, 48, 328–335. [Google Scholar]
- Xiao, Y.; Chen, D.; Peng, D.; Li, Z.; Qu, S.; Zhang, R.; Liu, G.; Zheng, Y.; Tan, M.; Xue, J.; et al. Establishment of a Co-Analysis System for Personal Identification and Body Fluid Identification: A Preliminary Report. Int. J. Legal Med. 2022, 136, 1565–1575. [Google Scholar] [CrossRef] [PubMed]
- Manfrevola, F.; Chioccarelli, T.; Cobellis, G.; Fasano, S.; Ferraro, B.; Sellitto, C.; Marella, G.; Pierantoni, R.; Chianese, R. CircRNA Role and CircRNA-Dependent Network (CeRNET) in Asthenozoospermia. Front. Endocrinol. 2020, 11, 395. [Google Scholar] [CrossRef] [PubMed]
- Manfrevola, F.; Ferraro, B.; Sellitto, C.; Rocco, D.; Fasano, S.; Pierantoni, R.; Chianese, R. CRISP2, CATSPER1 and PATE1 Expression in Human Asthenozoospermic Semen. Cells 2021, 10, 1956. [Google Scholar] [CrossRef] [PubMed]
- Lv, M.Q.; Zhou, L.; Ge, P.; Li, Y.X.; Zhang, J.; Zhou, D.X. Over-Expression of Hsa_circ_0000116 in Patients with Non-Obstructive Azoospermia and Its Predictive Value in Testicular Sperm Retrieval. Andrology 2020, 8, 1834–1843. [Google Scholar] [CrossRef]
- Yue, D.; Yang, R.; Xiong, C.; Yang, R. Functional Prediction and Profiling of Exosomal CircRNAs Derived from Seminal Plasma for the Diagnosis and Treatment of Oligoasthenospermia. Exp. Ther. Med. 2022, 24, 649. [Google Scholar] [CrossRef]
- Gao, L.; Chang, S.; Xia, W.; Wang, X.; Zhang, C.; Cheng, L.; Liu, X.; Chen, L.; Shi, Q.; Huang, J.; et al. Circular RNAs from BOULE Play Conserved Roles in Protection against Stress-Induced Fertility Decline. Sci. Adv. 2020, 6, eabb7426. [Google Scholar] [CrossRef]
- Oluwayiose, O.A.; Houle, E.; Whitcomb, B.W.; Suvorov, A.; Rahil, T.; Sites, C.K.; Krawetz, S.A.; Visconti, P.; Pilsner, J.R. Altered Non-Coding RNA Profiles of Seminal Plasma Extracellular Vesicles of Men with Poor Semen Quality Undergoing in Vitro Fertilization Treatment. Andrology 2022, 11, 677–686. [Google Scholar] [CrossRef]
- Bo, H.; Liu, Z.; Tang, R.; Gong, G.; Wang, X.; Zhang, H.; Zhu, F.; Zhou, D.; Zhu, W.; Tan, Y.; et al. Testicular Biopsies Microarray Analysis Reveals CircRNAs Are Involved in the Pathogenesis of Non-Obstructive Azoospermia. Aging 2020, 12, 2610–2625. [Google Scholar] [CrossRef] [PubMed]
- Ge, P.; Zhang, J.; Zhou, L.; Lv, M.; Li, Y.; Wang, J.; Zhou, D. CircRNA Expression Profile and Functional Analysis in Testicular Tissue of Patients with Non-Obstructive Azoospermia. Reprod. Biol. Endocrinol. 2019, 17, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Liu, L.; Li, F.; Wen, Z.; Li, T.; Lv, M.; Zhao, X.; Zhang, W.; Liu, J.; Wang, L.; Ma, X. Preliminary Investigation of the Function of Hsa_circ_0049356 in Nonobstructive Azoospermia Patients. Andrologia 2020, 52, e13814. [Google Scholar] [CrossRef]
- Zhang, Z.; Wu, H.; Zheng, L.; Zhang, H.T.; Yang, Y.Z.; Mao, J.M.; Liu, D.F.; Zhao, L.M.; Liang, H.; Jiang, H. Identification and Characterization of Circular RNAs in the Testicular Tissue of Patients with Non-Obstructive Azoospermia. Asian J. Androl. 2022, 24, 660–665. [Google Scholar] [CrossRef] [PubMed]
- Ji, C.; Wang, Y.; Wei, X.; Zhang, X.; Cong, R.; Yao, L.; Qin, C.; Song, N. Potential of Testis-Derived Circular RNAs in Seminal Plasma to Predict the Outcome of Microdissection Testicular Sperm Extraction in Patients with Idiopathic Non-Obstructive Azoospermia. Hum. Reprod. 2021, 36, 2649–2660. [Google Scholar] [CrossRef]
- Zhu, F.; Luo, Y.; Bo, H.; Gong, G.; Tang, R.; Fan, J.; Zhang, H.; Liu, G.; Zhu, W.; Tan, Y.; et al. Trace the Profile and Function of Circular RNAs in Sertoli Cell Only Syndrome. Genomics 2021, 113, 1845–1854. [Google Scholar] [CrossRef]
- Wosnitzer, M.; Goldstein, M.; Hardy, M.P. Spermatogenesis Review of Azoospermia. Rev. Azoospermia 2014, 4, e28218. [Google Scholar] [CrossRef] [Green Version]
- Shinoda, G.; De Soysa, T.Y.; Seligson, M.T.; Yabuuchi, A.; Fujiwara, Y.; Huang, P.Y.; Hagan, J.P.; Gregory, R.I.; Moss, E.G.; Daley, G.Q. Lin28a Regulates Germ Cell Pool Size and Fertility. Stem Cells 2013, 31, 1001. [Google Scholar] [CrossRef] [Green Version]
- Hunter, R.H.F. Temperature Gradients in Female Reproductive Tissues. Reprod. Biomed. Online 2012, 24, 377–380. [Google Scholar] [CrossRef] [Green Version]
- Nixon, B.; Bromfield, E.G.; Cui, J.; De Iuliis, G.N. Heat Shock Protein A2 (HSPA2): Regulatory Roles in Germ Cell Development and Sperm Function. Adv. Anat. Embryol. Cell Biol. 2017, 222, 67–93. [Google Scholar] [CrossRef]
- Vickram, A.S.; Srikumar, P.S.; Srinivasan, S.; Jeyanthi, P.; Anbarasu, K.; Thanigaivel, S.; Nibedita, D.; Jenila Rani, D.; Rohini, K. Seminal Exosomes—An Important Biological Marker for Various Disorders and Syndrome in Human Reproduction. Saudi J. Biol. Sci. 2021, 28, 3607. [Google Scholar] [CrossRef]
- Chioccarelli, T.; Manfrevola, F.; Ferraro, B.; Sellitto, C.; Cobellis, G.; Migliaccio, M.; Fasano, S.; Pierantoni, R.; Chianese, R. Expression Patterns of Circular RNAs in High Quality and Poor Quality Human Spermatozoa. Front. Endocrinol. 2019, 10, 435. [Google Scholar] [CrossRef]
- Liu, M.; Wang, Q.; Shen, J.; Yang, B.B.; Ding, X. Circbank: A Comprehensive Database for CircRNA with Standard Nomenclature. RNA Biol. 2019, 16, 899–905. [Google Scholar] [CrossRef]
- Wu, W.; Ji, P.; Zhao, F. CircAtlas: An Integrated Resource of One Million Highly Accurate Circular RNAs from 1070 Vertebrate Transcriptomes. Genome Biol. 2020, 21, 1–14. [Google Scholar] [CrossRef] [PubMed]
- Misir, S.; Wu, N.; Yang, B.B. Specific Expression and Functions of Circular RNAs. Cell Death Differ. 2022, 29, 481–491. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Xia, G.; Tan, Y.; Shuai, J. Expression Profile of Circular RNAs in Continuous Light-Induced Ovarian Dysfunction. Ecotoxicol. Environ. Saf. 2022, 242, 113861. [Google Scholar] [CrossRef] [PubMed]
- Zhou, P.L.; Wu, Z.; Zhang, W.; Xu, M.; Ren, J.; Zhang, Q.; Sun, Z.; Han, X. Circular RNA Hsa_circ_0000277 Sequesters MiR-4766-5p to Upregulate LAMA1 and Promote Esophageal Carcinoma Progression. Cell Death Dis. 2021, 12, 676. [Google Scholar] [CrossRef]
- Cheng, J.; Zhang, R.; Yan, M.; Li, Y. Circular RNA Hsa_circ_0000277 Promotes Tumor Progression and DDP Resistance in Esophageal Squamous Cell Carcinoma. BMC Cancer 2022, 22, 238. [Google Scholar] [CrossRef]
- Lai, M.; Li, D.; Liu, M.; Zhang, R.; Wang, L.; Peng, W.; Xu, H.; Wu, S.; Liang, S.; Gu, Y.; et al. CircFAM114A2 Inhibits the Progression of Hepatocellular Carcinoma via MiR-630/HHIP Axis. Cancer Med. 2023, 12, 12553–12568. [Google Scholar] [CrossRef]
- Boguenet, M.; Bouet, P.E.; Spiers, A.; Reynier, P.; May-Panloup, P. Mitochondria: Their Role in Spermatozoa and in Male Infertility. Hum. Reprod. Update 2021, 27, 697–719. [Google Scholar] [CrossRef]
- Shamsi, M.B.; Kumar, R.; Bhatt, A.; Bamezai, R.N.K.; Kumar, R.; Gupta, N.P.; Das, T.K.; Dada, R. Mitochondrial DNA Mutations in Etiopathogenesis of Male Infertility. Indian J. Urol. 2008, 24, 150–154. [Google Scholar] [PubMed]
- Al Zoubi, M.S.; Al-Talafha, A.M.; Al Sharu, E.; Al-Trad, B.; Alzu’Bi, A.; AbuAlarjah, M.I.; Shehab, Q.; Alsmadi, M.; Al-Batayneh, K.M. Correlation of Sperm Mitochondrial DNA 7345 Bp and 7599 Bp Deletions with Asthenozoospermia in Jordanian Population. J. Reprod. Infertil. 2021, 22, 165–172. [Google Scholar] [CrossRef]
- Wang, Y.M.; Zhao, Q.W.; Sun, Z.Y.; Lin, H.P.; Xu, X.; Cao, M.; Fu, Y.J.; Zhao, X.J.; Ma, X.M.; Ye, Q. Circular RNA Hsa_circ_0003823 Promotes the Tumor Progression, Metastasis and Apatinib Resistance of Esophageal Squamous Cell Carcinoma by MiR-607/CRISP3 Axis. Int. J. Biol. Sci. 2022, 18, 5787–5808. [Google Scholar] [CrossRef] [PubMed]
- Verduci, L.; Tarcitano, E.; Strano, S.; Yarden, Y.; Blandino, G. CircRNAs: Role in Human Diseases and Potential Use as Biomarkers. Cell Death Dis. 2021, 12, 468. [Google Scholar] [CrossRef]
- Alteri, A.; Del Vecchio, G.; Fabozzi, G.; Amendola, M.; Piscitelli, C.; Colicchia, A.; Presutti, C.; Gianini, P. Identification of Circular RNAs in Human Spermatozoa. Hum. Reprod. 2017, 32, 432. [Google Scholar]
- Dong, W.W.; Li, H.M.; Qing, X.R.; Huang, D.H.; Li, H.G. Identification and Characterization of Human Testis Derived Circular RNAs and Their Existence in Seminal Plasma. Sci. Rep. 2016, 6, 39080. [Google Scholar] [CrossRef] [Green Version]
- Ragusa, M.; Barbagallo, D.; Chioccarelli, T.; Manfrevola, F.; Cobellis, G.; Di Pietro, C.; Brex, D.; Battaglia, R.; Fasano, S.; Ferraro, B.; et al. CircNAPEPLD Is Expressed in Human and Murine Spermatozoa and Physically Interacts with Oocyte MiRNAs. RNA Biol. 2019, 16, 1237. [Google Scholar] [CrossRef]
- Tang, C.; Xie, Y.; Yu, T.; Liu, N.; Wang, Z.; Woolsey, R.J.; Tang, Y.; Zhang, X.; Qin, W.; Zhang, Y.; et al. M6A-Dependent Biogenesis of Circular RNAs in Male Germ Cells. Cell Res. 2020, 30, 211–228. [Google Scholar] [CrossRef]
- Liu, L.; Li, T.; Li, F.; Zhao, X.; Zhang, R.; Liu, J.; Zhang, W.; Lu, J.; Zhang, X.; Ma, X. The Influence of L-Carnitine on the Expression of MiRNAs in Asthenospermia Spermatozoa and the Network Regulation of the Associated Molecules. Andrologia 2020, 52, e13478. [Google Scholar] [CrossRef]
Inclusion Criteria | Exclusion Criteria |
---|---|
Studies in the English language | Studies not in the English language |
Human male adult participants | Cell lines, animal, and plant studies |
Experimental studies reporting DE circRNAs and aiming at associating circRNAs with male infertility | Reviews, meta-analyses, books, book chapters, letters, commentary articles, editorials, replies, abstracts of conference presentations, etc. |
Studies on other types of noncoding RNAs (miRNAs, lncRNAs, etc.) except for circRNAs |
Reference | Year of Publication | Comparison | Samples | Methodology | Definition of DE | CircRNAs | Derived Genes | Change of Expression |
---|---|---|---|---|---|---|---|---|
Ge et al. [43] | 2019 | NOA vs. OA | Testis | Microarray, qRT-PCR | FC > 2 and p-value < 0.05 | hsa_circ_0058058 (hsa_circATIC_002) | ATIC | UP |
hsa_circ_0008045 (hsa_circMGLL_009) | MGLL | UP | ||||||
hsa_circ_0023313 (hsa_circPPFIA1_001) | PPFIA1 | UP | ||||||
hsa_circ_0061817 (hsa_circC2CD2_004) | C2CD2 | DOWN | ||||||
hsa_circ_0002023 (hsa_circCDC25A_005) | CDC25A | DOWN | ||||||
hsa_circ_0008533 (hsa_circCLTCL1_021) | CLTCL1 | DOWN | ||||||
Bo et al. [42] | 2020 | NOA vs. OA | Testis | Microarray, qRT-PCR | FC ≥ 1.5 and p-value < 0.05 | hsa_circRNA_402130 | NA | DOWN |
hsa_circRNA_072697 | NA | UP | ||||||
hsa_circRNA_030050 | NA | UP | ||||||
hsa_circRNA_100812 | NA | DOWN | ||||||
hsa_circRNA_406168 | NA | DOWN | ||||||
Zhang et al. [45] | 2022 | NOA vs. OA | Testis | Array, qRT-PCR | FC > 2 and p-value < 0.05 | hsa_ circ_0137890 | NA | DOWN |
hsa_circ_0136298 (hsa_circCSMD1_051) | CSMD1 | DOWN | ||||||
hsa_circ_0007273 (hsa_circRAB11FIP5_002) | RAB11FIP5 | DOWN | ||||||
Zhu et al. [47] | 2021 | SCOS (NOA) vs. OA | Testis | Microarray, qRT-PCR | FC > 2 and p-value < 0.05 | hsa_circRNA_101222 | ΝA | DOWN |
hsa_circRNA_001387 | ΝA | DOWN | ||||||
hsa_circRNA_103486 | ΝA | DOWN | ||||||
hsa_circRNA_001153 | ΝA | UP | ||||||
hsa_circRNA_101373 | ΝA | UP | ||||||
hsa_circRNA_103864 | ΝA | UP | ||||||
Lv et al. [38] | 2020 | NOA vs. OA | Testis | qRT-PCR | p-value < 0.05 | hsa_circ_0000116 (hsa_circMAN1A2_006) | MAN1A2 | UP |
SCOS vs. HS and OA | UP | |||||||
Liu et al. [44] | 2020 | NOA vs. Healthy | Whole Blood | qRT-PCR | p-value < 0.05 | hsa_circ_0049356 (hsa_circCARM1_014) | CARM1 | UP |
SP | DOWN | |||||||
Ji et al. [46] | 2021 | NOA with successful sperm retrieval vs. NOA with non-successful sperm retrieval | SP and Testis | RNA sequencing, qRT-PCR | |log2 (FC)| > 1 and q-value < 0.05 | hsa_circ_0000277 (hsa_circPDE3B_001) | PDE3B | UP |
hsa_circ_0060394 (hsa_circZHX3_008) | ZHX3 | UP | ||||||
hsa_circ_0007773 (hsa_circFAM114A2_005) | FAM114A2 | UP |
Reference | Year of Publication | Comparison | Samples | Methodology | Definition of DE | CircRNAs | Derived Genes | Change of Expression |
---|---|---|---|---|---|---|---|---|
Manfrevola et al. [36] | 2020 | B vs. A SPZ (“Bad” vs. “Good quality” SPZ from Asthenozoospermic) | Semen | Microarray, qRT-PCR | FC ≥ 1.5 and p-value ≤ 0.05 | circMCC | MCC | UP |
circPAPPA2 | PAPPA2 | UP | ||||||
circSLC25A26 | SLC25A26 | UP | ||||||
circCANX | CANX | UP | ||||||
circDDX17 | DDX17 | UP | ||||||
circHDAC3 | HDAC3 | UP | ||||||
circHDAC3 | HDAC3 | UP | ||||||
circDYNC1H1 | DYNC1H1 | UP | ||||||
circFABP6 | FABP6 | UP | ||||||
circTADA2A | TADA2A | DOWN | ||||||
circPEX1 | PEX1 | DOWN | ||||||
circATF | ATF | DOWN | ||||||
circUSP54 | USP54 | DOWN | ||||||
circCLSPN | CLSPN | DOWN | ||||||
circTRMT2B | TRMT2B | DOWN | ||||||
circCIT | CIT | DOWN | ||||||
circEPS15 | EPS15 | DOWN | ||||||
circPTBP3 | PTBP3 | DOWN | ||||||
Manfrevola et al. [37] | 2021 | B vs. A SPZ (“Bad” vs. “Good quality” SPZ from Asthenozoospermic) | Semen | qRT-PCR | p-value < 0.05 | circTRIM2 | TRIM2 | DOWN |
circEPS15 | EPS15 | DOWN | ||||||
circRERE | RERE | DOWN | ||||||
circSEPT10 | SEPT10 | DOWN | ||||||
Gao et al. [40] | 2020 | Asthenozoospermia vs. Normozoospermia | Semen | qRT-PCR | p-value < 0.05 | circBoule RNAs (circEx3–6 and circEx2–7) | BOULE | DOWN |
Reference | Year of Publication | Comparison | Samples | Methodology | Definition of DE | CircRNAs | Derived Genes | Change of Expression |
---|---|---|---|---|---|---|---|---|
Yue et al. [39] | 2022 | OAZ vs. Healthy | Exosomes (SP) | RNA sequencing, qRT-PCR | FC > 2 and p-value < 0.05 | chr3:132050491–132051188 + (novel) | NA | UP |
hsa_circ_0005584 (hsa_circMBD2_003) | MBD2 | UP | ||||||
hsa_circ_0003823 (hsa_circCEP70_005) | CEP70 | UP | ||||||
hsa_circ_0125759 (hsa_circNEK1_026) | NEK1 | UP | ||||||
hsa_circ_0009142 (hsa_circCAP1_006) | CAP1 | UP | ||||||
chr12:130827535–130846146 + (novel) | NA | DOWN | ||||||
hsa_circ_0002452 (hsa_circPUM1_023) | PUM1 | DOWN |
Reference | Year of Publication | Comparison | Samples | Methodology | Definition of DE | CircRNAs | Derived Genes | Change of Expression |
---|---|---|---|---|---|---|---|---|
Oluwayiose et al. [41] | 2022 | “Poor semen” vs. Nomozoospermic | EVs (SP) | sRNA seq | FC ≥ 1.5 and FDR < 0.05 | hsa_circ_0009013 (hsa_circACAP2_004) | ACAP2 | UP |
hsa_circ_0123184 (hsa_circACAP2_003) | ACAP2 | UP | ||||||
hsa_circ_0114168 (hsa_circZZZ3_001) | ZZZ3 | DOWN | ||||||
hsa_circ_0139507 (hsa_circRAB40A_003) | RAB40A | UP | ||||||
hsa_circ_0139505 (hsa_circLL0XNC01–250H12.3_001) | ENSG00000234405 (lnc-TCEAL4–2) | UP | ||||||
hsa_circ_0139508 (hsa_circTCONS_00017354_001) | ENSG00000264869 (lnc-CCDC102B-5) | UP | ||||||
hsa_circ_0001488 (hsa_circPDE4D_012) | PDE4D | DOWN | ||||||
hsa_circ_0005447 (hsa_circXXYLT1_007) | XXYLT1 | UP | ||||||
hsa_circ_0135261 (hsa_circVPS13B_041) | VPS13B | UP | ||||||
hsa_circ_0103367 (hsa_circC15orf41_007) | C15orf41 | DOWN | ||||||
hsa_circ_0126706 (hsa_circ_chr4_00008) | Intergenic | UP | ||||||
hsa_circ_0009684 (hsa_circUBE4B_002) | UBE4B | DOWN | ||||||
hsa_circ_0096701 (hsa_circGRM5_002) | GRM5 | UP | ||||||
hsa_circ_0119752 (hsa_circMEMO1_001) | MEMO1 | DOWN | ||||||
hsa_circ_0130725 (hsa_circ_chr6_00085) | Intergenic | UP | ||||||
hsa_circ_0132863 (hsa_circLHFPL3_002) | LHFPL3 | DOWN | ||||||
hsa_circ_0056159 (hsa_circIL1RN_001) | IL1RN | DOWN | ||||||
hsa_circ_0128521 (hsa_circODZ2_006) | ODZ2 | UP | ||||||
hsa_circ_0063775 (hsa_circLOC150381_001) | LOC150381 | UP | ||||||
hsa_circ_0098728 (hsa_circDIP2B_002) | DIP2B | DOWN | ||||||
hsa_circ_0120217 (hsa_circPPP1R21_035) | PPP1R21 | DOWN | ||||||
hsa_circ_0115951 (hsa_circMORC3_039) | MORC3 | UP | ||||||
hsa_circ_0036948 (hsa_circSLCO3A1_003) | SLCO3A1 | UP | ||||||
hsa_circ_0123091 (hsa_circCLDN1_001) | CLDN1 | UP | ||||||
hsa_circ_0136453 (hsa_circRP11–473J6.1_001) | RP11–473J6.1 | DOWN | ||||||
hsa_circ_0004923 (hsa_circSH3RF3_001) | SH3RF3 | DOWN | ||||||
hsa_circ_0108420 (hsa_circPIK3C3_050) | PIK3C3 | UP | ||||||
hsa_circ_0129336 (hsa_circADAMTS6_048) | ADAMTS6 | DOWN | ||||||
hsa_circ_0132209 (hsa_circRIMS1_009) | RIMS1 | UP | ||||||
hsa_circ_0139547 (hsa_circTMEM164_001) | TMEM164 | UP | ||||||
hsa_circ_0113676 (hsa_circPRKAA2_001) | PRKAA2 | DOWN | ||||||
hsa_circ_0100429 (hsa_circFREM2_001) | FREM2 | DOWN | ||||||
hsa_circ_0024724 (hsa_circGRAMD1B_001) | GRAMD1B | UP | ||||||
hsa_circ_0113744 (hsa_circTCONS_00000081_003) | LINC01748 | DOWN |
Reference | Year of Publication | Comparison | Samples | Methodology | Definition of DE | CircRNAs | Derived Genes | Change of Expression |
---|---|---|---|---|---|---|---|---|
Chioccarelli et al. [53] | 2019 | B vs. A SPZ (“poor quality” vs. “high quality”) | Semen | Microarray | FC > 1.5 and p-value < 0.05 | circANKLE2 | ANKLE2 | UP |
circMTND5 | MTND5 | UP | ||||||
circMLLT3 | MLLT3 | UP | ||||||
circSEC24 | SEC24 | UP | ||||||
circUBA2 | UBA2 | UP | ||||||
circSENP6 | SENP6 | UP | ||||||
circRASA3 | RASA3 | UP | ||||||
circJA760600 | JA760600 | UP | ||||||
circGPBP1L1 | GPBP1L1 | UP | ||||||
circGRB10 | GRB10 | UP | ||||||
circWDR66 | WDR66 | UP | ||||||
circEIF2C2 | EIF2C2 | UP | ||||||
circATF7IP | ATF7IP | UP | ||||||
circPTTG1IP | PTTG1IP | DOWN | ||||||
circKIF2C | KIF2C | DOWN | ||||||
circVMP1 | VMP1 | DOWN | ||||||
circHACE1 | HACE1 | DOWN | ||||||
circZFAT | ZFAT | DOWN | ||||||
circLZIC | LZIC | DOWN | ||||||
circCNOT6L | CNOT6L | DOWN | ||||||
circGUSBP1 | GUSBP1 | DOWN | ||||||
circL3MBTL4 | L3MBTL4 | DOWN | ||||||
circDNAJB6 | DNAJB6 | DOWN | ||||||
circZMYND11 | ZMYND11 | DOWN | ||||||
circZNF148 | ZNF148 | DOWN | ||||||
circUBXN7 | UBXN7 | DOWN |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kyrgiafini, M.-A.; Mamuris, Z. Circular RNAs and Their Role in Male Infertility: A Systematic Review. Biomolecules 2023, 13, 1046. https://doi.org/10.3390/biom13071046
Kyrgiafini M-A, Mamuris Z. Circular RNAs and Their Role in Male Infertility: A Systematic Review. Biomolecules. 2023; 13(7):1046. https://doi.org/10.3390/biom13071046
Chicago/Turabian StyleKyrgiafini, Maria-Anna, and Zissis Mamuris. 2023. "Circular RNAs and Their Role in Male Infertility: A Systematic Review" Biomolecules 13, no. 7: 1046. https://doi.org/10.3390/biom13071046
APA StyleKyrgiafini, M. -A., & Mamuris, Z. (2023). Circular RNAs and Their Role in Male Infertility: A Systematic Review. Biomolecules, 13(7), 1046. https://doi.org/10.3390/biom13071046