Extrinsic and Intrinsic Factors Determine Expression Levels of Gap Junction-Forming Connexins in the Mammalian Retina
Abstract
:1. Introduction
1.1. GJs and Connexin Building Blocks
1.2. GJs in the Retina
1.3. Connexin Composition of Retinal GJs
2. Postnatal Changes in Connexin Expression
3. Light Adaptation-Induced Changes in Connexin Expression Levels
4. Circadian Rhythmicity and GJ Function
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Farquhar, M.G.; Palade, G.E. Cell junctions in amphibian skin. J. Cell Biol. 1965, 26, 263–291. [Google Scholar] [CrossRef] [Green Version]
- Furshpan, E.J.; Potter, D.D. Mechanism of Nerve-Impulse Transmission at a Crayfish Synapse. Nature 1957, 180, 342–343. [Google Scholar] [CrossRef] [PubMed]
- Rosenbluth, J. Smooth Muscle: An Ultrastructural Basis for the Dynamics of Its Contraction. Science 1965, 148, 1337–1339. [Google Scholar] [CrossRef] [PubMed]
- Watanabe, A. The interaction of electrical activity among neurons of lobster cardiac ganglion. Jpn. J. Physiol. 1958, 8, 305–318. [Google Scholar] [CrossRef] [PubMed]
- Brightman, M.W.; Reese, T.S. Junctions between intimately apposed cell membranes in the vertebrate brain. J. Cell Biol. 1969, 40, 648–677. [Google Scholar] [CrossRef]
- Raviola, E.; Gilula, N.B. Gap Junctions between Photoreceptor Cells in the Vertebrate Retina. Proc. Natl. Acad. Sci. USA 1973, 70, 1677–1681. [Google Scholar] [CrossRef]
- Cruciani, V.; Mikalsen, S.-O. The Vertebrate Connexin Family. Cell. Mol. Life Sci. 2006, 63, 1125–1140. [Google Scholar] [CrossRef] [PubMed]
- Söhl, G.; Willecke, K. An Update on Connexin Genes and Their Nomenclature in Mouse and Man. Cell Commun. Adhes. 2003, 10, 173–180. [Google Scholar] [CrossRef]
- De Boer, T.P.; Van Der Heyden, M.A.G. Xenopus Connexins: How Frogs Bridge the Gap. Differentiation 2005, 73, 330–340. [Google Scholar] [CrossRef]
- Marc, R.E.; Liu, W.L.; Muller, J.F. Gap Junctions in the Inner Plexiform Layer of the Goldfish Retina. Vis. Res. 1988, 28, 9–24. [Google Scholar] [CrossRef]
- Mills, S.L.; Massey, S.C. Differential Properties of Two Gap Junctional Pathways Made by AII Amacrine Cells. Nature 1995, 377, 734–737. [Google Scholar] [CrossRef] [PubMed]
- Raviola, E.; Gilula, N.B. Intramembrane Organization of Specialized Contacts in the Outer Plexiform Layer of the Retina. A Freeze-Fracture Study in Monkeys and Rabbits. J. Cell Biol. 1975, 65, 192–222. [Google Scholar] [CrossRef] [PubMed]
- Vaney, D.I. Many Diverse Types of Retinal Neurons Show Tracer Coupling When Injected with Biocytin or Neurobiotin. Neurosci. Lett. 1991, 125, 187–190. [Google Scholar] [CrossRef]
- Xin, D.; Bloomfield, S.A. Tracer Coupling Pattern of Amacrine and Ganglion Cells in the Rabbit Retina. J. Comp. Neurol. 1997, 383, 512–528. [Google Scholar] [CrossRef]
- Bloomfield, S.A.; Völgyi, B. The Diverse Functional Roles and Regulation of Neuronal Gap Junctions in the Retina. Nat. Rev. Neurosci. 2009, 10, 495–506. [Google Scholar] [CrossRef]
- Bloomfield, S.A.; Völgyi, B. Function and Plasticity of Homologous Coupling between AII Amacrine Cells. Vis. Res. 2004, 44, 3297–3306. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dacheux, R.; Raviola, E. Horizontal Cells in the Retina of the Rabbit. J. Neurosci. 1982, 2, 1486–1493. [Google Scholar] [CrossRef]
- Nelson, R. Cat Cones Have Rod Input: A Comparison of the Response Properties of Cones and Horizontal Cell Bodies in the Retina of the Cat. J. Comp. Neurol. 1977, 172, 109–135. [Google Scholar] [CrossRef]
- Schneeweis, D.; Schnapf, J. Photovoltage of Rods and Cones in the Macaque Retina. Science 1995, 268, 1053–1056. [Google Scholar] [CrossRef]
- Smith, R.G.; Vardi, N. Simulation of the Aii Amacrine Cell of Mammalian Retina: Functional Consequences of Electrical Coupling and Regenerative Membrane Properties. Vis. Neurosci. 1995, 12, 851–860. [Google Scholar] [CrossRef] [Green Version]
- Völgyi, B.; Deans, M.R.; Paul, D.L.; Bloomfield, S.A. Convergence and Segregation of the Multiple Rod Pathways in Mammalian Retina. J. Neurosci. 2004, 24, 11182–11192. [Google Scholar] [CrossRef] [Green Version]
- Brivanlou, I.H.; Warland, D.K.; Meister, M. Mechanisms of Concerted Firing among Retinal Ganglion Cells. Neuron 1998, 20, 527–539. [Google Scholar] [CrossRef] [Green Version]
- DeVries, S.H. Correlated Firing in Rabbit Retinal Ganglion Cells. J. Neurophysiol. 1999, 81, 908–920. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hu, E.H.; Bloomfield, S.A. Gap Junctional Coupling Underlies the Short-Latency Spike Synchrony of Retinal α Ganglion Cells. J. Neurosci. 2003, 23, 6768–6777. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mastronarde, D.N. Correlated Firing of Cat Retinal Ganglion Cells. I. Spontaneously Active Inputs to X- and Y-Cells. J. Neurophysiol. 1983, 49, 303–324. [Google Scholar] [CrossRef] [PubMed]
- Völgyi, B.; Pan, F.; Paul, D.L.; Wang, J.T.; Huberman, A.D.; Bloomfield, S.A. Gap Junctions Are Essential for Generating the Correlated Spike Activity of Neighboring Retinal Ganglion Cells. PLoS ONE 2013, 8, e69426. [Google Scholar] [CrossRef] [Green Version]
- Güldenagel, M.; Söhl, G.; Plum, A.; Traub, O.; Teubner, B.; Weiler, R.; Willecke, K. Expression Patterns of Connexin Genes in Mouse Retina. J. Comp. Neurol. 2000, 425, 193–201. [Google Scholar] [CrossRef] [PubMed]
- Petrasch-Parwez, E.; Habbes, H.-W.; Weickert, S.; Löbbecke-Schumacher, M.; Striedinger, K.; Wieczorek, S.; Dermietzel, R.; Epplen, J.T. Fine-Structural Analysis and Connexin Expression in the Retina of a Transgenic Model of Huntington’s Disease: Retinal Degeneration in R6/2 Transgenic Mice. J. Comp. Neurol. 2004, 479, 181–197. [Google Scholar] [CrossRef]
- Hombach, S.; Janssen-Bienhold, U.; Sohl, G.; Schubert, T.; Bussow, H.; Ott, T.; Weiler, R.; Willecke, K. Functional Expression of Connexin57 in Horizontal Cells of the Mouse Retina. Eur. J. Neurosci. 2004, 19, 2633–2640. [Google Scholar] [CrossRef]
- Massey, S.C.; O’Brien, J.J.; Trexler, E.B.; Li, W.; Keung, J.W.; Mills, S.L.; O’Brien, J. Multiple Neuronal Connexins in the Mammalian Retina. Cell Commun. Adhes. 2003, 10, 425–430. [Google Scholar] [CrossRef]
- Deans, M.R.; Volgyi, B.; Goodenough, D.A.; Bloomfield, S.A.; Paul, D.L. Connexin36 Is Essential for Transmission of Rod-Mediated Visual Signals in the Mammalian Retina. Neuron 2002, 36, 703–712. [Google Scholar] [CrossRef] [Green Version]
- Feigenspan, A.; Teubner, B.; Willecke, K.; Weiler, R. Expression of Neuronal Connexin36 in AII Amacrine Cells of the Mammalian Retina. J. Neurosci. 2001, 21, 230–239. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Feigenspan, A.; Janssen-Bienhold, U.; Hormuzdi, S.; Monyer, H.; Degen, J.; Söhl, G.; Willecke, K.; Ammermüller, J.; Weiler, R. Expression of Connexin36 in Cone Pedicles and OFF-Cone Bipolar Cells of the Mouse Retina. J. Neurosci. 2004, 24, 3325–3334. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Han, Y.; Massey, S.C. Electrical Synapses in Retinal ON Cone Bipolar Cells: Subtype-Specific Expression of Connexins. Proc. Natl. Acad. Sci. USA 2005, 102, 13313–13318. [Google Scholar] [CrossRef] [PubMed]
- Lee, E.-J.; Han, J.-W.; Kim, H.-J.; Kim, I.-B.; Lee, M.-Y.; Oh, S.-J.; Chung, J.-W.; Chun, M.-H. The Immunocytochemical Localization of Connexin 36 at Rod and Cone Gap Junctions in the Guinea Pig Retina. Eur. J. Neurosci. 2003, 18, 2925–2934. [Google Scholar] [CrossRef]
- Mills, S.L.; O’Brien, J.J.; Li, W.; O’Brien, J.; Massey, S.C. Rod Pathways in the Mammalian Retina Use Connexin 36. J. Comp. Neurol. 2001, 436, 336–350. [Google Scholar] [CrossRef]
- Lin, B.; Jakobs, T.C.; Masland, R.H. Different Functional Types of Bipolar Cells Use Different Gap-Junctional Proteins. J. Neurosci. 2005, 25, 6696–6701. [Google Scholar] [CrossRef] [Green Version]
- Maxeiner, S.; Dedek, K.; Janssen-Bienhold, U.; Ammermüller, J.; Brune, H.; Kirsch, T.; Pieper, M.; Degen, J.; Krüger, O.; Willecke, K.; et al. Deletion of Connexin45 in Mouse Retinal Neurons Disrupts the Rod/Cone Signaling Pathway between AII Amacrine and ON Cone Bipolar Cells and Leads to Impaired Visual Transmission. J. Neurosci. 2005, 25, 566–576. [Google Scholar] [CrossRef] [Green Version]
- Hidaka, S.; Akahori, Y.; Kurosawa, Y. Dendrodendritic Electrical Synapses between Mammalian Retinal Ganglion Cells. J. Neurosci. 2004, 24, 10553–10567. [Google Scholar] [CrossRef]
- Schubert, T.; Degen, J.; Willecke, K.; Hormuzdi, S.G.; Monyer, H.; Weiler, R. Connexin36 Mediates Gap Junctional Coupling of Alpha-Ganglion Cells in Mouse Retina. J. Comp. Neurol. 2005, 485, 191–201. [Google Scholar] [CrossRef]
- Schubert, T.; Maxeiner, S.; Krüger, O.; Willecke, K.; Weiler, R. Connexin45 Mediates Gap Junctional Coupling of Bistratified Ganglion Cells in the Mouse Retina. J. Comp. Neurol. 2005, 490, 29–39. [Google Scholar] [CrossRef]
- Völgyi, B.; Abrams, J.; Paul, D.L.; Bloomfield, S.A. Morphology and Tracer Coupling Pattern of Alpha Ganglion Cells in the Mouse Retina. J. Comp. Neurol. 2005, 492, 66–77. [Google Scholar] [CrossRef] [Green Version]
- Pérez De Sevilla Müller, L.; Dedek, K.; Janssen-Bienhold, U.; Meyer, A.; Kreuzberg, M.M.; Lorenz, S.; Willecke, K.; Weiler, R. Expression and Modulation of Connexin30.2, a Novel Gap Junction Protein in the Mouse Retina. Vis. Neurosci. 2010, 27, 91–101. [Google Scholar] [CrossRef] [PubMed]
- Kihara, A.H.; Santos, T.O.; Osuna-Melo, E.J.; Paschon, V.; Vidal, K.S.M.; Akamine, P.S.; Castro, L.M.; Resende, R.R.; Hamassaki, D.E.; Britto, L.R.G. Connexin-mediated Communication Controls Cell Proliferation and Is Essential in Retinal Histogenesis. Int. J. Dev. Neurosci. 2010, 28, 39–52. [Google Scholar] [CrossRef] [PubMed]
- Kihara, A.H.; Mantovani De Castro, L.; Belmonte, M.A.; Yan, C.Y.I.; Moriscot, A.S.; Hamassaki, D.E. Expression of Connexins 36, 43, and 45 during Postnatal Development of the Mouse Retina. J. Neurobiol. 2006, 66, 1397–1410. [Google Scholar] [CrossRef]
- Kovács-Öller, T.; Raics, K.; Orbán, J.; Nyitrai, M.; Völgyi, B. Developmental Changes in the Expression Level of Connexin36 in the Rat Retina. Cell Tissue Res. 2014, 358, 289–302. [Google Scholar] [CrossRef]
- Güldenagel, M.; Ammermüller, J.; Feigenspan, A.; Teubner, B.; Degen, J.; Söhl, G.; Willecke, K.; Weiler, R. Visual Transmission Deficits in Mice with Targeted Disruption of the Gap Junction Gene Connexin36. J. Neurosci. 2001, 21, 6036–6044. [Google Scholar] [CrossRef] [Green Version]
- Potter, D.D.; Furshpan, E.J.; Lennox, E.S. Connections between Cells of the Developing Squid as Revealed by Electrophysiological Methods. Proc. Natl. Acad. Sci. USA 1966, 55, 328–336. [Google Scholar] [CrossRef] [PubMed]
- Warner, A. Gap Junctions in Development—A Perspective. Semin. Cell Biol. 1992, 3, 81–91. [Google Scholar] [CrossRef]
- Gimlich, R.L.; Kumar, N.M.; Gilula, N.B. Sequence and Developmental Expression of MRNA Coding for a Gap Junction Protein in Xenopus. J. Cell Biol. 1988, 107, 1065–1073. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gimlich, R.L.; Kumar, N.M.; Gilula, N.B. Differential Regulation of the Levels of Three Gap Junction MRNAs in Xenopus Embryos. J. Cell Biol. 1990, 110, 597–605. [Google Scholar] [CrossRef] [Green Version]
- Nishi, M.; Kumar, N.M.; Gilula, N.B. Developmental Regulation of Gap Junction Gene Expression during Mouse Embryonic Development. Dev. Biol. 1991, 146, 117–130. [Google Scholar] [CrossRef]
- Belliveau, D.J.; Kidder, G.M.; Naus, C.C.G. Expression of Gap Junction Genes during Postnatal Neural Development. Dev. Genet. 1991, 12, 308–317. [Google Scholar] [CrossRef] [PubMed]
- Matsumoto, A.; Arai, Y.; Urano, A.; Hyodo, S. Androgen Regulates Gap Junction MRNA Expression in Androgen-Sensitive Motoneurons in the Rat Spinal Cord. Neurosci. Lett. 1991, 131, 159–162. [Google Scholar] [CrossRef]
- Matsumoto, A.; Arai, Y.; Urano, A.; Hyodo, S. Cellular Localization of Gap Junction MRNA in the Neonatal Rat Brain. Neurosci. Lett. 1991, 124, 225–228. [Google Scholar] [CrossRef] [PubMed]
- Micevych, P.E.; Abelson, L. Distribution of MRNAs Coding for Liver and Heart Gap Junction Proteins in the Rat Central Nervous System. J. Comp. Neurol. 1991, 305, 96–118. [Google Scholar] [CrossRef] [PubMed]
- Yamamoto, T.; Shiosaka, S.; Whittaker, M.E.; Hertzberg, E.L.; Nagy, J.I. Gap Junction Protein in Rat Hippocampus: Light Microscope Immunohistochemical Localization. J. Comp. Neurol. 1989, 281, 269–281. [Google Scholar] [CrossRef] [PubMed]
- Kihara, A.H.; Mantovani De Castro, L.; Moriscot, A.S.; Hamassaki, D.E. Prolonged Dark Adaptation Changes Connexin Expression in the Mouse Retina. J. Neurosci. Res. 2006, 83, 1331–1341. [Google Scholar] [CrossRef]
- Kihara, A.H.; Paschon, V.; Akamine, P.S.; Saito, K.C.; Leonelli, M.; Jiang, J.X.; Hamassaki, D.E.; Britto, L.R.G. Differential Expression of Connexins during Histogenesis of the Chick Retina. Dev. Neurobiol. 2008, 68, 1287–1302. [Google Scholar] [CrossRef]
- Kovács-Öller, T. Factors Influencing the Expression of Gap Junction Forming Connexin Proteins in the Retina of Vertebrate Animals. Ph.D. Thesis, University of Pécs, Pécs, Hungary, 2015. [Google Scholar]
- Pan, F.; Keung, J.; Kim, I.-B.; Snuggs, M.B.; Mills, S.L.; O’Brien, J.; Massey, S.C. Connexin 57 Is Expressed by the Axon Terminal Network of B-Type Horizontal Cells in the Rabbit Retina. J. Comp. Neurol. 2012, 520, 2256–2274. [Google Scholar] [CrossRef] [Green Version]
- Dorgau, B.; Herrling, R.; Schultz, K.; Greb, H.; Segelken, J.; Ströh, S.; Bolte, P.; Weiler, R.; Dedek, K.; Janssen-Bienhold, U. Connexin50 Couples Axon Terminals of Mouse Horizontal Cells by Homotypic Gap Junctions: Distribution of Cx50 in Mouse Horizontal Cell. J. Comp. Neurol. 2015, 523, 2062–2081. [Google Scholar] [CrossRef]
- Toychiev, A.H.; Ivanova, E.; Yee, C.W.; Sagdullaev, B.T. Block of Gap Junctions Eliminates Aberrant Activity and Restores Light Responses during Retinal Degeneration. J. Neurosci. 2013, 33, 13972–13977. [Google Scholar] [CrossRef] [PubMed]
- Ivanova, E.; Kovacs-Oller, T.; Sagdullaev, B.T. Vascular Pericyte Impairment and Connexin43 Gap Junction Deficit Contribute to Vasomotor Decline in Diabetic Retinopathy. J. Neurosci. 2017, 37, 7580–7594. [Google Scholar] [CrossRef] [Green Version]
- Kovacs-Oller, T.; Ivanova, E.; Bianchimano, P.; Sagdullaev, B.T. The Pericyte Connectome: Spatial Precision of Neurovascular Coupling Is Driven by Selective Connectivity Maps of Pericytes and Endothelial Cells and Is Disrupted in Diabetes. Cell Discov. 2020, 6, 39. [Google Scholar] [CrossRef]
- Swayne, L.A.; Bennett, S.A.L. Connexins and Pannexins in Neuronal Development and Adult Neurogenesis. BMC Cell Biol. 2016, 17, S10. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hilgen, G. Connexin45 Colocalization Patterns in the Plexiform Layers of the Developing Mouse Retina. J. Anat. 2022, 243, 258–264. [Google Scholar] [CrossRef] [PubMed]
- Laird, D.W. Life Cycle of Connexins in Health and Disease. Biochem. J. 2006, 394, 527–543. [Google Scholar] [CrossRef] [Green Version]
- Zhang, S.; Lyuboslavsky, P.; Dixon, J.A.; Chrenek, M.A.; Sellers, J.T.; Hamm, J.M.; Ribelayga, C.P.; Zhang, Z.; Le, Y.Z.; Iuvone, P.M. Effects of Cone Connexin-36 Disruption on Light Adaptation and Circadian Regulation of the Photopic ERG. Investig. Ophthalmol. Vis. Sci. 2020, 61, 24. [Google Scholar] [CrossRef]
- Li, H.; Chuang, A.Z.; O’Brien, J. Regulation of Photoreceptor Gap Junction Phosphorylation by Adenosine in Zebrafish Retina. Vis. Neurosci. 2014, 31, 237–243. [Google Scholar] [CrossRef] [Green Version]
- Baldridge, W.H.; Vaney, D.I.; Weiler, R. The Modulation of Intercellular Coupling in the Retina. Semin. Cell Dev. Biol. 1998, 9, 311–318. [Google Scholar] [CrossRef]
- Bloomfield, S.A.; Xin, D.; Osborne, T. Light-Induced Modulation of Coupling between AII Amacrine Cells in the Rabbit Retina. Vis. Neurosci. 1997, 14, 565–576. [Google Scholar] [CrossRef] [PubMed]
- Hampson, E.C.; Weiler, R.; Vaney, D.I. PH-Gated Dopaminergic Modulation of Horizontal Cell Gap Junctions in Mammalian Retina. Proc. Biol. Sci. 1994, 255, 67–72. [Google Scholar] [CrossRef] [PubMed]
- He, S.; Weiler, R.; Vaney, D.I. Endogenous Dopaminergic Regulation of Horizontal Cell Coupling in the Mammalian Retina. J. Comp. Neurol. 2000, 418, 33–40. [Google Scholar] [CrossRef]
- Weiler, R.; He, S.; Vaney, D.I. Retinoic Acid Modulates Gap Junctional Permeability Between Horizontal Cells of The Mammalian Retina: Retinoic Acid and Gap Junction Coupling. Eur. J. Neurosci. 1999, 11, 3346–3350. [Google Scholar] [CrossRef]
- Weiler, R.; Pottek, M.; He, S.; Vaney, D.I. Modulation of Coupling between Retinal Horizontal Cells by Retinoic Acid and Endogenous Dopamine. Brain Res. Rev. 2000, 32, 121–129. [Google Scholar] [CrossRef]
- Xin, D.; Bloomfield, S.A. Comparison of the Responses of AII Amacrine Cells in the Dark- and Light-Adapted Rabbit Retina. Vis. Neurosci. 1999, 16, 653–665. [Google Scholar] [CrossRef]
- Xin, D.; Bloomfield, S.A. Effects of Nitric Oxide on Horizontal Cells in the Rabbit Retina. Vis. Neurosci. 2000, 17, 799–811. [Google Scholar] [CrossRef]
- Baldridge, W.H.; Ball, A.K. Background Illumination Reduces Horizontal Cell Receptive-Field Size in Both Normal and 6-Hydroxydopamine-Lesioned Goldfish Retinas. Vis. Neurosci. 1991, 7, 441–450. [Google Scholar] [CrossRef]
- Dong, C.J.; McReynolds, J.S. The Relationship between Light, Dopamine Release and Horizontal Cell Coupling in the Mudpuppy Retina. J. Physiol. 1991, 440, 291–309. [Google Scholar] [CrossRef] [Green Version]
- Mangel, S.C.; Dowling, J.E. Responsiveness and Receptive Field Size of Carp Horizontal Cells Are Reduced by Prolonged Darkness and Dopamine. Science 1985, 229, 1107–1109. [Google Scholar] [CrossRef]
- Mangel, S.C.; Dowling, J.E. The Interplexiform-Horizontal Cell System of the Fish Retina: Effects of Dopamine, Light Stimulation and Time in the Dark. Proc. R. Soc. Lond. B Biol. Sci. 1987, 231, 91–121. [Google Scholar] [CrossRef]
- Umino, O.; Lee, Y.; Dowling, J.E. Effects of Light Stimuli on the Release of Dopamine from Interplexiform Cells in the White Perch Retina. Vis. Neurosci. 1991, 7, 451–458. [Google Scholar] [CrossRef]
- Witkovsky, P.; Shi, X.-P. Slow Light and Dark Adaptation of Horizontal Cells in the Xenopus Retina: A Role for Endogenous Dopamine. Vis. Neurosci. 1990, 5, 405–413. [Google Scholar] [CrossRef] [PubMed]
- Janssen-Bienhold, U.; Trümpler, J.; Hilgen, G.; Schultz, K.; De Sevilla Müller, L.P.; Sonntag, S.; Dedek, K.; Dirks, P.; Willecke, K.; Weiler, R. Connexin57 Is Expressed in Dendro-Dendritic and Axo-Axonal Gap Junctions of Mouse Horizontal Cells and Its Distribution Is Modulated by Light. J. Comp. Neurol. 2009, 513, 363–374. [Google Scholar] [CrossRef] [PubMed]
- Lasater, E.M.; Dowling, J.E. Dopamine Decreases Conductance of the Electrical Junctions between Cultured Retinal Horizontal Cells. Proc. Natl. Acad. Sci. USA 1985, 82, 3025–3029. [Google Scholar] [CrossRef] [PubMed]
- Piccolino, F.C.; Zingirian, M.; Mosci, C. Classification of Proliferative Diabetic Retinopathy. Graefe’s Arch. Clin. Exp. Ophthalmol. 1987, 225, 245–250. [Google Scholar] [CrossRef]
- McHahon, D.G.; Knapp, A.G.; Dowling, J.E. Horizontal Cell Gap Junctions: Single-Channel Conductance and Modulation by Dopamine. Proc. Natl. Acad. Sci. USA 1989, 86, 7639–7643. [Google Scholar] [CrossRef]
- DeVries, S.H.; Schwartz, E.A. Hemi-Gap-Junction Channels in Solitary Horizontal Cells of the Catfish Retina. J. Physiol. 1992, 445, 201–230. [Google Scholar] [CrossRef] [Green Version]
- Pottek, M.; Schultz, K.; Weiler, R. Effects of Nitric Oxide on the Horizontal Cell Network and Dopamine Release in the Carp Retina. Vis. Res. 1997, 37, 1091–1102. [Google Scholar] [CrossRef] [Green Version]
- Roska, B.; Werblin, F. Vertical Interactions across Ten Parallel, Stacked Representations in the Mammalian Retina. Nature 2001, 410, 583–587. [Google Scholar] [CrossRef]
- Dedek, K.; Schultz, K.; Pieper, M.; Dirks, P.; Maxeiner, S.; Willecke, K.; Weiler, R.; Janssen-Bienhold, U. Localization of Heterotypic Gap Junctions Composed of Connexin45 and Connexin36 in the Rod Pathway of the Mouse Retina. Eur. J. Neurosci. 2006, 24, 1675–1686. [Google Scholar] [CrossRef] [PubMed]
- Kántor, O.; Varga, A.; Nitschke, R.; Naumann, A.; Énzsöly, A.; Lukáts, Á.; Szabó, A.; Németh, J.; Völgyi, B. Bipolar Cell Gap Junctions Serve Major Signaling Pathways in the Human Retina. Brain Struct. Funct. 2017, 222, 2603–2624. [Google Scholar] [CrossRef]
- Hu, E.H.; Pan, F.; Völgyi, B.; Bloomfield, S.A. Light Increases the Gap Junctional Coupling of Retinal Ganglion Cells: Light Increases Coupling between Retinal Ganglion Cells. J. Physiol. 2010, 588, 4145–4163. [Google Scholar] [CrossRef] [PubMed]
- Mills, S.L.; Xia, X.-B.; Hoshi, H.; Firth, S.I.; Rice, M.E.; Frishman, L.J.; Marshak, D.W. Dopaminergic Modulation of Tracer Coupling in a Ganglion-Amacrine Cell Network. Vis. Neurosci. 2007, 24, 593–608. [Google Scholar] [CrossRef] [Green Version]
- Yao, X.; Cafaro, J.; McLaughlin, A.J.; Postma, F.R.; Paul, D.L.; Awatramani, G.; Field, G.D. Gap Junctions Contribute to Differential Light Adaptation across Direction-Selective Retinal Ganglion Cells. Neuron 2018, 100, 216–228.e6. [Google Scholar] [CrossRef] [Green Version]
- Kothmann, W.W.; Li, X.; Burr, G.S.; O’Brien, J. Connexin 35/36 Is Phosphorylated at Regulatory Sites in the Retina. Vis. Neurosci. 2007, 24, 363–375. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kothmann, W.W.; Massey, S.C.; O’Brien, J. Dopamine-Stimulated Dephosphorylation of Connexin 36 Mediates AII Amacrine Cell Uncoupling. J. Neurosci. 2009, 29, 14903–14911. [Google Scholar] [CrossRef] [Green Version]
- Urschel, S.; Höher, T.; Schubert, T.; Alev, C.; Söhl, G.; Wörsdörfer, P.; Asahara, T.; Dermietzel, R.; Weiler, R.; Willecke, K. Protein Kinase A-Mediated Phosphorylation of Connexin36 in Mouse Retina Results in Decreased Gap Junctional Communication between AII Amacrine Cells. J. Biol. Chem. 2006, 281, 33163–33171. [Google Scholar] [CrossRef] [Green Version]
- Cahill, G.M.; Besharse, J.C. Circadian Clock Functions Localized in Xenopus Retinal Photoreceptors. Neuron 1993, 10, 573–577. [Google Scholar] [CrossRef]
- Adachi, A.; Nogi, T.; Ebihara, S. Phase-Relationship and Mutual Effects between Circadian Rhythms of Ocular Melatonin and Dopamine in the Pigeon1Published on the World Wide Web on 30 March 1998.1. Brain Res. 1998, 792, 361–369. [Google Scholar] [CrossRef]
- Cahill, G.M.; Grace, M.S.; Besharse, J.C. Rhythmic Regulation of Retinal Melatonin: Metabolic Pathways, Neurochemical Mechanisms, and the Ocular Circadian Clock. Cell. Mol. Neurobiol. 1991, 11, 529–560. [Google Scholar] [CrossRef] [PubMed]
- Gabriel, R.; Lesauter, J.; Silver, R.; Garcia-España, A.; Witkovsky, P. Diurnal and Circadian Variation of Protein Kinase C Immunoreactivity in the Rat Retina: Rhythm of PKC Immunoreactivity in Rat Retina. J. Comp. Neurol. 2001, 439, 140–150. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gabriel, R.; Lesauter, J.; Banvolgyi, T.; Petrovics, G.; Silver, R.; Witkovsky, P. AII Amacrine Neurons of the Rat Retina Show Diurnal and Circadian Rhythms of Parvalbumin Immunoreactivity. Cell Tissue Res. 2004, 315, 181–186. [Google Scholar] [CrossRef] [Green Version]
- Anderson, F.E.; Green, C.B. Symphony of Rhythms in the Xenopus laevis Retina. Microsc. Res. Tech. 2000, 50, 360–372. [Google Scholar] [CrossRef] [PubMed]
- Tosini, G.; Menaker, M. Circadian Rhythms in Cultured Mammalian Retina. Science 1996, 272, 419–421. [Google Scholar] [CrossRef]
- Pierce, M.E.; Sheshberadaran, H.; Zhang, Z.; Fox, L.E.; Applebury, M.L.; Takahashi, J.S. Circadian Regulation of Lodopsin Gene Expression in Embryonic Photoreceptors in Retinal Cell Culture. Neuron 1993, 10, 579–584. [Google Scholar] [CrossRef]
- Green, C.B.; Cahill, G.M.; Besharse, J.C. Tryptophan Hydroxylase Is Expressed by Photoreceptors in Xenopus laevis Retina. Vis. Neurosci. 1995, 12, 663–670. [Google Scholar] [CrossRef]
- Ruan, G.-X.; Zhang, D.-Q.; Zhou, T.; Yamazaki, S.; McMahon, D.G. Circadian Organization of the Mammalian Retina. Proc. Natl. Acad. Sci. USA 2006, 103, 9703–9708. [Google Scholar] [CrossRef]
- Kamphuis, W.; Cailotto, C.; Dijk, F.; Bergen, A.; Buijs, R.M. Circadian Expression of Clock Genes and Clock-Controlled Genes in the Rat Retina. Biochem. Biophys. Res. Commun. 2005, 330, 18–26. [Google Scholar] [CrossRef]
- Iuvone, P.M.; Tosini, G.; Pozdeyev, N.; Haque, R.; Klein, D.C.; Chaurasia, S.S. Circadian Clocks, Clock Networks, Arylalkylamine N-Acetyltransferase, and Melatonin in the Retina. Prog. Retin. Eye Res. 2005, 24, 433–456. [Google Scholar] [CrossRef]
- Ribelayga, C.; Wang, Y.; Mangel, S.C. A Circadian Clock in the Fish Retina Regulates Dopamine Release via Activation of Melatonin Receptors: Retinal Circadian Clock Regulates Dopamine Release. J. Physiol. 2004, 554, 467–482. [Google Scholar] [CrossRef] [PubMed]
- Barlow, R. Chapter 35 Circadian and Efferent Modulation of Visual Sensitivity. In Progress in Brain Research; Elsevier: Amsterdam, The Netherlands, 2001; Volume 131, pp. 487–503. ISBN 978-0-444-51484-4. [Google Scholar]
- Green, C.B.; Besharse, J.C. Retinal Circadian Clocks and Control of Retinal Physiology. J. Biol. Rhythms 2004, 19, 91–102. [Google Scholar] [CrossRef]
- Hornstein, E.P.; Verweij, J.; Li, P.H.; Schnapf, J.L. Gap-Junctional Coupling and Absolute Sensitivity of Photoreceptors in Macaque Retina. J. Neurosci. 2005, 25, 11201–11209. [Google Scholar] [CrossRef] [Green Version]
- Krizaj, D.; Gábriel, R.; Owen, W.G.; Witkovsky, P. Dopamine D2 Receptor-Mediated Modulation of Rod–cone Coupling in the Xenopus Retina. J. Comp. Neurol. 1998, 398, 529–538. [Google Scholar] [CrossRef]
- Ribelayga, C.; Wang, Y.; Mangel, S.C. Dopamine Mediates Circadian Clock Regulation of Rod and Cone Input to Fish Retinal Horizontal Cells. J. Physiol. 2002, 544, 801–816. [Google Scholar] [CrossRef]
- Ribelayga, C.; Cao, Y.; Mangel, S.C. The Circadian Clock in the Retina Controls Rod–cone Coupling. Neuron 2008, 59, 790–801. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, Y.; Mangel, S.C. A Circadian Clock Regulates Rod and Cone Input to Fish Retinal Cone Horizontal Cells. Proc. Natl. Acad. Sci. USA 1996, 93, 4655–4660. [Google Scholar] [CrossRef]
- Witkovsky, M.T. Psychiatric Problems of Youth in Primary Care: A Review. WMJ 2004, 103, 14–19. [Google Scholar]
- Yang, X.-L.; Wu, S.M. Modulation of Rod–cone Coupling by Light. Science 1989, 244, 352–354. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Zhang, Z.; Blackburn, M.R.; Wang, S.W.; Ribelayga, C.P.; O’Brien, J. Adenosine and Dopamine Receptors Coregulate Photoreceptor Coupling via Gap Junction Phosphorylation in Mouse Retina. J. Neurosci. 2013, 33, 3135–3150. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Z.; Li, H.; Liu, X.; O’Brien, J.; Ribelayga, C.P. Circadian Clock Control of Connexin36 Phosphorylation in Retinal Photoreceptors of the CBA/CaJ Mouse Strain. Vis. Neurosci. 2015, 32, E009. [Google Scholar] [CrossRef] [Green Version]
- Katti, C.; Butler, R.; Sekaran, S. Diurnal and Circadian Regulation of Connexin 36 Transcript and Protein in the Mammalian Retina. Investig. Ophthalmol. Vis. Sci. 2013, 54, 821. [Google Scholar] [CrossRef] [Green Version]
- Jin, N.G.; Chuang, A.Z.; Masson, P.J.; Ribelayga, C.P. Rod Electrical Coupling Is Controlled by a Circadian Clock and Dopamine in Mouse Retina: Circadian Clock Control of Rod Electrical Coupling. J. Physiol. 2015, 593, 1597–1631. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jin, N.G.; Ribelayga, C.P. Direct Evidence for Daily Plasticity of Electrical Coupling between Rod Photoreceptors in the Mammalian Retina. J. Neurosci. 2016, 36, 178–184. [Google Scholar] [CrossRef] [Green Version]
- Ribelayga, C.; Mangel, S.C. Absence of Circadian Clock Regulation of Horizontal Cell Gap Junctional Coupling Reveals Two Dopamine Systems in the Goldfish Retina. J. Comp. Neurol. 2003, 467, 243–253. [Google Scholar] [CrossRef]
- Cao, J.; Ribelayga, C.P.; Mangel, S.C. A Circadian Clock in the Retina Regulates Rod–cone Gap Junction Coupling and Neuronal Light Responses via Activation of Adenosine A2A Receptors. Front. Cell. Neurosci. 2021, 14, 605067. [Google Scholar] [CrossRef] [PubMed]
- Cao, J.; Mangel, S.C. Interactions of Cone Cannabinoid CB1 and Dopamine D4 Receptors Increase Day/Night Difference in Rod-cone Gap Junction Coupling in Goldfish Retina. J. Physiol. 2021, 599, 4085–4100. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kovács-Öller, T.; Szarka, G.; Hoffmann, G.; Péntek, L.; Valentin, G.; Ross, L.; Völgyi, B. Extrinsic and Intrinsic Factors Determine Expression Levels of Gap Junction-Forming Connexins in the Mammalian Retina. Biomolecules 2023, 13, 1119. https://doi.org/10.3390/biom13071119
Kovács-Öller T, Szarka G, Hoffmann G, Péntek L, Valentin G, Ross L, Völgyi B. Extrinsic and Intrinsic Factors Determine Expression Levels of Gap Junction-Forming Connexins in the Mammalian Retina. Biomolecules. 2023; 13(7):1119. https://doi.org/10.3390/biom13071119
Chicago/Turabian StyleKovács-Öller, Tamás, Gergely Szarka, Gyula Hoffmann, Loretta Péntek, Gréta Valentin, Liliana Ross, and Béla Völgyi. 2023. "Extrinsic and Intrinsic Factors Determine Expression Levels of Gap Junction-Forming Connexins in the Mammalian Retina" Biomolecules 13, no. 7: 1119. https://doi.org/10.3390/biom13071119
APA StyleKovács-Öller, T., Szarka, G., Hoffmann, G., Péntek, L., Valentin, G., Ross, L., & Völgyi, B. (2023). Extrinsic and Intrinsic Factors Determine Expression Levels of Gap Junction-Forming Connexins in the Mammalian Retina. Biomolecules, 13(7), 1119. https://doi.org/10.3390/biom13071119