Regulation of Bone by Mechanical Loading, Sex Hormones, and Nerves: Integration of Such Regulatory Complexity and Implications for Bone Loss during Space Flight and Post-Menopausal Osteoporosis
Abstract
:1. Introduction
1.1. Purpose of This Review
1.2. Regulation of Bone across the Lifespan
2. The Regulation of Bone by Mechanical Loading
3. Neural Regulation of Bone
3.1. Background
3.2. Loss of Neural Integrity on Bone
4. Possible Role of Neural Input in Fracture Healing and Altered Healing with Brain Trauma
5. Potential Neural Influences on Development of Post-Menopausal Osteoporosis (OP) and Age-Related OP
6. Space Flight, Bedrest, and Neural Regulation
6.1. Influence of Space Flight and Bedrest on Bone Regulation
6.2. Is There a Role for Neural Regulation Dysfunction during Bone Loss during Space Flight and Osteoporosis?
7. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hart, D.A. Learning from human responses to deconditioning environment: Improved understanding of the “use it or lose it” principle. Front. Sports Act. Living 2021, 3, 685845. [Google Scholar] [CrossRef] [PubMed]
- Hart, D.A.; Zernicke, R.F.; Shrive, N.G. Homo sapiens may incorporate daily acute cycles of “conditioning-deconditioning” to maintain musculoskeletal integrity: Need to integrate with biological clocks and circadian rhythm mediators. Int. J. Mol. Sci. 2022, 23, 9949. [Google Scholar] [CrossRef] [PubMed]
- Frost, H.M. Bone’s mechanostat: A 2003 update. Anat. Rec. A Discov. Mol. Cell Evol. Biol. 2003, 275A, 1081–1101. [Google Scholar] [CrossRef] [PubMed]
- Frost, H.M. A 2003 update of bone physiology and Wolff’s Law for clinicians. Angle Orthod. 2004, 74, 3–15. [Google Scholar] [CrossRef]
- Hart, D.A.; Zernicke, R.F. Optimal human functioning requires exercise across the lifespan: Mobility in a 1 g environment is intrinsic to the integrity of multiple biological systems. Front. Physiol. 2020, 11, 156. [Google Scholar] [CrossRef] [Green Version]
- Hart, D.A. Homo sapiens-A species not designed for space flight: Health risks in low Earth orbit and beyond, including potential risks when traveling beyond the geomagnetic field of Earth. Life 2023, 13, 757. [Google Scholar] [CrossRef]
- Weir, T.M.B. Recovery of a Growing Ligament Following Immobilization in a Rabbit Model. Master’s Thesis, University of Calgary, Calgary, AB, Canada, 1991. [Google Scholar]
- Hart, D.A.; Natsu-ume, T.; Sciore, P.; Tasevski, V.; Frank, C.B.; Shrive, N.G. Mechanobiology similarities and differences between in vivo and in vitro analysis at the functional and molecular levels. Recent Res. Devel. Biophys. Biochem. 2002, 2, 153–177. [Google Scholar]
- Schoenau, E.; Frost, H.M. The “muscle-bone unit’ in children and adolescents. Calcif. Tissue Int. 2002, 70, 405–407. [Google Scholar] [CrossRef]
- Fricke, O.; Schoenau, E. The ‘Functional Muscle-Bone Unit’: Probing the relevance of mechanical signals for bone development in children and adolescents. Growth Horm. IGF Res. 2007, 17, 1–9. [Google Scholar] [CrossRef]
- Rittweger, J. Ten years muscle-bone hypothesis: What have we learned so far?—Almost a festschrift. J. Musculoskelet. Neuronal. Intertact. 2008, 8, 174–178. [Google Scholar]
- Laskou, F.; Patel, H.; Cooper, C.; Dennison, E. Functional capacity, sarcopenia, and bone health. Best. Pract. Res. Clin. Rheumatol. 2022, 36, 101756. [Google Scholar] [CrossRef] [PubMed]
- Schoenau, E. Bone mass increase in puberty: What makes it happen? Horm. Res. 2006, 65 (Suppl. S2), 2–10. [Google Scholar] [CrossRef] [PubMed]
- Cheng, J.C.; Castelein, R.M.; Chu, W.C.; Danielsson, A.J.; Dobbs, M.B.; Grivas, T.B.; Gurnett, C.A.; Luk, K.D.; Moreau, A.; Newton, P.C.; et al. Adolescent idiopathic scoliosis. Nat. Rev. Dis. Primers 2015, 1, 15030. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Laing, Z.T.; Guo, C.F.; Li, J.; Zhang, H.Q. The role of endocrine hormones in the pathogenesis of adolescent idiopathic scoliosis. FASEB J. 2021, 35, e21839. [Google Scholar] [CrossRef] [PubMed]
- Quatman, C.E.; Ford, K.R.; Myer, G.D.; Hewett, T.E. Maturation leads to gender differences in landing force and vertical jump performance: A longitudinal study. Am. J. Sports Med. 2006, 34, 806–813. [Google Scholar] [CrossRef]
- Hewett, T.E.; Myer, G.D.; Ford, K.R.; Slauterbeck, J.R. Preparticipation physical examination using a box drop vertical jump test in young athletes: The effects of puberty and sex. Clin. J. Sport Health 2006, 16, 298–304. [Google Scholar] [CrossRef]
- Ford, K.R.; Shapiro, R.; Myer, G.D.; Van Den Bogert, A.J.; Hewett, T.E. Longitudinal sex differences during landing in knee abduction in young athletes. Med. Sci. Sports Exerc. 2010, 42, 1923–1931. [Google Scholar] [CrossRef] [Green Version]
- Herman, D.C.; Pritchard, K.A.; Cosby, N.L.; Selkow, N.M. Effect of strength training on jump-landing biomechanics in adolescent females. Sports Health 2022, 14, 69–76. [Google Scholar] [CrossRef]
- Park, S.K.; Stefanyshyn, D.J.; Loitz-Ramage, B.; Hart, D.A.; Ronsky, J.L. Changing hormone levels during the menstrual cycle affect knee laxity and stiffness in healthy female subjects. Am. J. Sports Med. 2009, 37, 588–598. [Google Scholar] [CrossRef]
- Park, S.K.; Stefanyshyn, D.J.; Ramage, B.; Hart, D.A.; Ronsky, J.L. Alterations in knee joint laxity during the menstrual cycle in healthy women leads to increases in joint loads during selected athletic movements. Am. J. Sports Med. 2009, 37, 169–177. [Google Scholar] [CrossRef]
- Thompson, B.J.; Cazier, C.S.; Bressel, E.; Dolny, D.G. A lower extremity strength-based profile of NCAA Division I women’s basketball and gymnastics athletes: Implications for knee joint injury risk assessment. J. Sports Sci. 2018, 36, 1749–1756. [Google Scholar] [CrossRef] [PubMed]
- Kellis, E.; Sahinis, C.; Baltzopoulos, V. Is hamstrings-to-quadriceps torque ratio useful for predicting anterior cruciate ligament and hamstring injuries? A systematic and critical review. J. Sport Health Sci. 2022, 12, 343–358. [Google Scholar] [CrossRef] [PubMed]
- Hotchkiss, C.E.; Brommage, R. Changes in bone turnover during the menstrual cycle in cynomolgus monkeys. Calcif. Tissue Int. 2000, 66, 224–228. [Google Scholar] [CrossRef] [PubMed]
- Gass, M.L.; Kagan, R.; Kohles, J.D.; Martens, M.S. Bone turnover marker profile in relation to the menstrual cycle of premenopausal healthy women. Menopause 2008, 15, 667. [Google Scholar] [CrossRef]
- He, W.; Dam, T.V.; Thogersen, R.; Hansen, M.; Bertram, H.C. Fluctuations in metabolites and bone markers across the menstrual cycle in eumenorrheic women and oral contraceptive users. J. Clin. Endocrinol. Metab. 2022, 107, 1577–1588. [Google Scholar] [CrossRef]
- Salles, J.P. Bone metabolism during pregnancy. Ann. Endocrinol. 2016, 77, 163–168. [Google Scholar] [CrossRef]
- Liu, X.S.; Wang, L.; de Bakker, C.M.J.; Lai, X. Mechanical regulation of the maternal skeleton during reproduction and lactation. Curr. Osteoporos. Rep. 2019, 17, 375–386. [Google Scholar] [CrossRef]
- Kovacs, C.S. The skeleton is a storehouse of mineral that is plundered during lactation and (fully?) replenished afterwards. J. Bone Miner. Res. 2017, 32, 676–680. [Google Scholar] [CrossRef] [Green Version]
- Cohen, A.; Kamanda-Kosseh, M.; Dempster, D.W.; Zhou, H.; Muller, R.; Goff, E.; Colon, I.; Bucovsky, M.; Stubby, J.; Nickolas, T.L.; et al. Women with pregnancy and lactation-associated osteoporosis (PLO) have low bone remodeling rates at the tissue level. J. Bone Miner. Res. 2019, 34, 1552–1561. [Google Scholar] [CrossRef]
- Hart, D.A. Sex differences in biological systems and the conundrum of menopause: Potential commonalities in post-menopausal disease mechanisms. Int. J. Mol. Sci. 2022, 23, 4119. [Google Scholar] [CrossRef]
- He, Y.F.; Davis, J.W.; Ross, P.D.; Wasnich, R.D. Declining bone loss rate variability with increasing follow-up time. Bone Miner. 1993, 21, 119–128. [Google Scholar] [CrossRef] [PubMed]
- Shieh, A.; Sarlamangle, A.S.; Huang, M.H.; Han, W.; Greendale, G.A. Faster lumbar spine bone loss in midlife predicts subsequent fracture independent of starting bone mineral density. J. Clin. Endocrinol. Metab. 2021, 106, e2491–e2501. [Google Scholar] [CrossRef] [PubMed]
- Hart, D.A. Are secondary effects of bisphosphonates on the vascular system of bone contributing to increased risk for atypical femoral fractures in osteoporosis? BioEssays 2023, 45, 2200206. [Google Scholar] [CrossRef] [PubMed]
- Ryan, P.J.; Blake, G.M.; Herd, R.; Parker, J.; Fogelman, J. Post-menopausal vertebral osteoporosis: Can dual energy X-ray absorptiometry forearm bene density substitute for axial measurements. Br. J. Rheumatol. 1994, 33, 5476–5549. [Google Scholar] [CrossRef] [PubMed]
- Reeve, J.; Walton, J.; Russel, L.J.; Lunt, M.; Wolman, R.; Abraham, R.; Justice, J.; Nicholls, A.; Wardley-Smith, B.; Green, J.R.; et al. Determinants of the first decade of bone loss after menopause at spine, hip and radius. QLM 1999, 92, 261–273. [Google Scholar] [CrossRef] [Green Version]
- Amstrup, A.K.; Jakobsen, N.F.B.; Moser, E.; Sikjaer, T.; Mosekilde, L.; Rejnmark, L. Association between bone indices assessed by DXA, HR-pQCT and QCT scans in post-menopausal women. J. Bone Miner. Metab. 2016, 34, 638–645. [Google Scholar] [CrossRef]
- Ferretti, J.L.; Cointry, G.R.; Capozza, R.F.; Frost, H.M. Bone mass, bone strength, muscle-bone interactions, osteopeias and osteoporosis. Mech. Aging Dev. 2003, 124, 269–279. [Google Scholar] [CrossRef]
- Choi, J.U.A.; Kijas, A.W.; Lauko, J.; Rowan, A.E. The mechanosensory role of osteocytes and implications for bone health and disease states. Front. Cell Dev. Biol. 2022, 9, 770143. [Google Scholar] [CrossRef]
- Cao, W.; Helder, M.N.; Bravenboer, N.; Wu, G.; Jin, J.; Ten Bruggenkate, C.M.; Klein-Nulend, J.; Schulten, E.A.J.M. Is there a governing role of osteocytes in bone tissue regeneration? Curr. Osteopors. Rep. 2020, 18, 541–550. [Google Scholar] [CrossRef]
- Wee, N.K.; Sims, N.A.; Morello, R. The osteocyte transcriptome: Discovering messages buried within bone. Curr. Osteoporos. Rep. 2021, 19, 604–615. [Google Scholar] [CrossRef]
- Zeng, Y.; Riquelme, M.A.; Hua, R.; Zhang, J.; Acosta, F.M.; Gu, S.; Jiang, J.X. Mechanosensitive piezo1 calcium channel activates connexin 43 hemichannels through PI3K signaling pathway in bone. Cell Biosci. 2022, 12, 191. [Google Scholar] [CrossRef] [PubMed]
- Savadipour, A.; Palmer, D.; Ely, E.V.; Collins, K.H.; Garcia-Castrorena, J.M.; Harissa, Z.; Kim, Y.S.; Oestreich, A.; Qu, F.; Rashidi, N.; et al. The role of PIEZO ion channels in the musculoskeletal system. Am. J. Physiol. Cell Physiol. 2023, 324, C728–C740. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Sun, Y.X.; Li, J. The role of mechanosensory Piezo1 in bone homeostasis and mechanobiology. Dev. Biol. 2023, 493, 80–88. [Google Scholar] [CrossRef] [PubMed]
- Maycas, M.; Ardura, J.A.; de Castro, L.F.; Bravo, B.; Gortazar, A.R.; Esbit, P. Role of the parathyroid hormone type 1 receptor (PTH1R) as a mechanosensor in osteocyte survival. J. Bone Miner. Res. 2015, 30, 1231–1244. [Google Scholar] [CrossRef] [PubMed]
- Maycas, M.; Esbrit, P.; Gortazar, A.R. Molecular mechanisms in bone mechanotransduction. Histol. Histopathol. 2017, 32, 751–760. [Google Scholar] [CrossRef]
- Tirado-Cabrera, I.; Martin-Guerrero, E.; Heredero-Jimenez, S.; Ardura, J.A.; Gortazar, A.R. PTH1R translocation to primary cilia in mechanically-stimulated osteocytes prevents osteoblast formation via regulation of CXCL5 and IL-6 secretion. J. Cell Physiol. 2022, 237, 3927–3943. [Google Scholar] [CrossRef]
- van Tol, A.F.; Schemenz, V.; Wagermaier, W.; Roschger, A.; Razi, H.; Vitienes, I.; Fratzl, P.; Willie, B.; Weinkamer, R. The mechanoresponse of bone is closely related to osteocyte lacunocanalicular network architecture. Proc. Natl. Acad. Sci. USA 2020, 117, 32251–32259. [Google Scholar] [CrossRef]
- Yang, F.; Yu, W.; Huo, X.; Li, H.; Qi, Q.; Yang, X.; Shi, N.; Wu, X.; Chen, W. Effects of osteocyte shape on fluid flow and fluid shear stress of the loaded bone. Biomed. Res. Int. 2022, 2022, 3935803. [Google Scholar] [CrossRef]
- Kameo, Y.; Ozasa, M.; Adachi, T. Computational framework for analyzing flow-induced strain on osteocyte as modulated by microenvironment. J. Mech. Behav. Biomed. Mater. 2022, 126, 105027. [Google Scholar] [CrossRef]
- Wang, H.; Zheng, X.; Zhang, Y.; Huang, J.; Zhou, W.; Li, X.; Tian, H.; Wang, B.; Xing, D.; Fu, W.; et al. The endocrine role of bone: Novel functions of bone-derived cytokines. Biochem. Pharmacol. 2021, 183, 114308. [Google Scholar] [CrossRef]
- Tasevski, V.; Sorbetti, J.M.; Chiu, S.S.; Shrive, N.G.; Hart, D.A. Influence of mechanical and biological signals on gene expression in human MG-63 cells: Evidence for a complex interplay between hydrostatic compression and vitamin D3 or TGF-beta1 on MMP-1 and MMP-3 mRNA levels. Biochem. Cell Biol. 2005, 83, 96–107. [Google Scholar] [CrossRef]
- Bellido, T.; Delgado-Calle, J. Ex vivo organ cultures as models to study bone biology. JBMR Plus 2020, 4. [Google Scholar] [CrossRef] [Green Version]
- Smyth, N.A.; Zachwieja, E.C.; Buller, L.T.; Miranda, A.D.; Steinlauf, S.D. Surgical approaches to the calcaneus and the sural nerve: There is no safe zone. Foot Ankle Surg. 2018, 24, 517–520. [Google Scholar] [CrossRef]
- Feigl, G.C.; Schmid, M.; Zahn, P.K.; Gonzalez, C.A.A.; Litz, R.J. The posterior femoral cutaneous nerve contributes significantly to sensory innervation of the lower leg: An anatomical investigation. Br. J. Anaesth. 2020, 124, 308–313. [Google Scholar] [CrossRef] [PubMed]
- Eguchi, Y.; Ohtori, S.; Yamashita, M.; Yamauchi, K.; Suzuki, M.; Orita, S.; Kamoda, H.; Arai, G.; Ishikawa, T.; Miyagi, M.; et al. Clinical applications of diffusion magnetic resonance imaging of the lumbar foraminal nerve root entrapment. Eur. Spine J. 2010, 19, 1874–1882. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bruns, T.M.; Wagenaar, J.B.; Bauman, M.J.; Gaunt, R.A.; Weber, D.J. Real-time control of hind limb functional electrical stimulation using feedback from dorsal root ganglia recordings. J. Neural Eng. 2013, 10, 026020. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Savastano, L.E.; Laurito, S.R.; Fitt, M.R.; Rasmussen, J.A.; Polo, V.G.; Patterson, S.I. Sciatic nerve injury: A simple and subtle model for investigating many aspects of the nervous system damage and recovery. J. Neurosci. Methods. 2014, 227, 166–189. [Google Scholar] [CrossRef]
- Bron, R.; Wood, R.J.; Brock, J.A.; Ivanusic, J.J. Piezo2 expression in corneal afferent neurons. J. Comp. Neurol. 2014, 522, 2967–2979. [Google Scholar] [CrossRef] [PubMed]
- Nigg, B.; Enders, H. Barefoot running-some critical considerations. Footwear Sci. 2013, 5, 1–7. [Google Scholar] [CrossRef]
- Madansingh, S.; Murphree, D.H.; Kaufman, K.R.; Fortune, E. Assessment of gait kinetics in post-menopausal women using tri-axial ankle accelerometers during barefoot walking. Gait Posture 2019, 69, 85–90. [Google Scholar] [CrossRef]
- Brazill, J.M.; Beeve, A.T.; Craft, C.S.; Ivanusic, J.J.; Scheller, E.L. Nerves in bone: Evolving concepts in pain and anabolism. J. Bone Miner. Res. 2019, 34, 1393–1406. [Google Scholar] [CrossRef] [PubMed]
- Dimitri, P.; Rosen, C. The central nervous system and bone metabolism: An evolving story. Calcif. Tissue Int. 2017, 100, 476–485. [Google Scholar] [CrossRef] [PubMed]
- Xu, J.; Zhang, Z.; Zhao, J.; Meyers, C.A.; Lee, S.; Qin, Q.; James, A.W. Interaction between the nervous and skeletal systems. Front. Cell Dev. Biol. 2022, 10, 976736. [Google Scholar] [CrossRef] [PubMed]
- Minoia, A.; Carbonare, L.D.; Schwamborn, J.C.; Bolognin, S.; Valenti, M.T. Bone tissue and the nervous system: What do they have in common? Cells 2022, 12, 51. [Google Scholar] [CrossRef]
- Cooper, R.R. Nerves in cortical bone. Science 1968, 160, 127–128. [Google Scholar] [CrossRef]
- Elefteriou, F. Impact of the autonomic nervous system on the skeleton. Physiol. Rev. 2018, 98, 1083–1112. [Google Scholar] [CrossRef] [Green Version]
- Tomlinson, R.E.; Christiansen, B.A.; Giannone, A.A.; Genetos, D.C. The role of nerves in skeletal development, adaptation, and aging. Front. Endocrinol. 2020, 11, 646. [Google Scholar] [CrossRef]
- Rajpar, I.; Tomlinson, R.E. Function of peripheral nerves in the development and healing of tendon and bone. Semin. Cell Dev. Biol. 2022, 123, 48–56. [Google Scholar] [CrossRef]
- Abeynayake, N.; Arthur, A.; Gronthos, S. Crosstalk between skeletal and neural tissues is critical for skeletal health. Bone 2021, 142, 115645. [Google Scholar] [CrossRef]
- Wan, Q.Q.; Qin, W.P.; Ma, Y.X.; Shen, M.J.; Li, J.; Zhang, Z.B.; Chen, J.H.; Tay, F.R.; Niu, L.N.; Jiao, K. Crosstalk between bone and nerves within bone. Adv. Sci. 2021, 8, 2003390. [Google Scholar] [CrossRef]
- Liu, S.; Chen, T.; Wang, R.; Huang, H.; Fu, S.; Zhao, Y.; Wang, S.; Wan, L. Exploring the effect of the “quaternary regulation” theory of “peripheral nerve-angiogenesis-osteoclast-osteogenesis” on osteoporosis based on neuropeptides. Front. Endocrinol. 2022, 13, 908043. [Google Scholar] [CrossRef]
- Bjurholm, A.; Kreicbergs, A.; Brodin, E.; Schulteberg, M. Substance P- and CGRP-immunoreactive nerves in bone. Peptides 1988, 9, 165–171. [Google Scholar] [CrossRef]
- Hu, B.; Lv, X.; Wei, L.; Wang, Y.; Zheng, G.; Yang, C.; Zang, F.; Wang, J.; Li, J.; Wu, X.; et al. Sensory nerve maintains intervertebral disc extracellular matrix homeostasis via CGRP/CHSY1 axis. Adv. Sci. 2022, 9, e2202620. [Google Scholar] [CrossRef] [PubMed]
- Xu, J.; Wang, J.; Chen, X.; Li, Y.; Mi, J.; Qin, L. The effects of calcitonin gene-related peptide on bone homeostasis and regeneration. Curr. Osteoporos. Rep. 2020, 18, 621–632. [Google Scholar] [CrossRef] [PubMed]
- Jones, K.B.; Mollano, A.V.; Morcuende, J.A.; Cooper, R.R.; Saltzman, C.L. Bone and brain: A review of neural, hormonal, and musculoskeletal connections. Iowa Orthop. J. 2004, 24, 123–132. [Google Scholar] [PubMed]
- Wang, L.; Hou, S.; Sabsovich, I.; Guo, T.Z.; Wei, T.; Kingery, W.S. Mice lacking substance P have normal bone modeling but diminished bone formation, increased resorption, and accelerated osteopenia with aging. Bone 2021, 144, 115806. [Google Scholar] [CrossRef] [PubMed]
- Li, F.X.; Xu, F.; Lin, X.; Wu, F.; Zhong, J.W.; Wang, Y.; Guo, B.; Zheng, M.H.; Chan, S.K.; Yuan, L.Q. The role of substance P in the regulation of bone and cartilage metabolic activity. Front. Endocrinol. 2020, 11, 77. [Google Scholar] [CrossRef] [Green Version]
- Chen, Q.C.; Zhang, Y. The role of NPY in the regulation of bone metabolism. Front. Endocrinol. 2022, 13, 833485. [Google Scholar] [CrossRef]
- Irie, K.; Hara-Irie, F.; Ozawa, H.; Yajima, T. Calcitonin gene-related peptide (CGRP)-containing nerve fibers in bone tissue and their involvement in bone remodeling. Microsc. Res. Tech. 2002, 58, 85–90. [Google Scholar] [CrossRef]
- Wu, H.; Lin, X.Q.; Long, Y.; Wang, J. Calcitonin gene-related peptide is potential therapeutic target of osteoporosis. Heliyon 2022, 8, 12288. [Google Scholar] [CrossRef]
- Wee, N.K.Y.; Novak, S.; Ghosh, D.; Root, S.H.; Dickerson, I.M.; Kalajzic, I. Inhibition of CGRP signaling impairs fracture healing in mice. J. Orthop. Res. 2023, 41, 1228–1239. [Google Scholar] [CrossRef] [PubMed]
- Qiao, Y.; Wang, Y.; Zhou, Y.; Jiang, F.; Huang, T.; Chen, L.; Lan, J.; Yang, C.; Guo, Y.; Yan, S.; et al. The role of nervous system in adaptive response of bone to mechanical loading. J. Cell Physiol. 2019, 234, 7771–7780. [Google Scholar] [CrossRef] [PubMed]
- Corr, A.; Smith, J.; Baldock, P. Neuronal control of bone remodeling. Toxicol. Pathol. 2017, 45, 894–903. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gajda, M.; Adriaensen, D.; Cichocki, T. Development of the innervation of long bones: Expression of the growth-associated protein. Folia Histochem. Cytobiol. 2000, 38, 103–110. [Google Scholar]
- Chartier, S.R.; Mitchell, S.A.T.; Majuta, L.A.; Mantyh, P.W. The changing sensory and sympathetic innervation of the young, adult, and aging mouse femur. Neuroscience 2018, 387, 178–190. [Google Scholar] [CrossRef]
- Valdez, G. Effects of disease-afflicted and aging neurons on the musculoskeletal system. Bone 2019, 122, 31–37. [Google Scholar] [CrossRef]
- Salo, P.T.; Tatton, W.G. Age-related loss of knee joint afferents in mice. J. Neurosci. Res. 1993, 35, 664–677. [Google Scholar] [CrossRef]
- Salo, P.T.; Theriault, E. Number, distribution and neuropeptide content of rat knee joint afferents. J. Anat. 1997, 190 Pt 4, 515–522. [Google Scholar] [CrossRef]
- Brighton, C.T.; Taddurin, G.T.; Goll, S.R.; Pollack, S.R. Treatment of denervation/disuse osteoporosis in the rat with a capacitively coupled electrical signal: Effects on bone formation and bone resorption. J. Orthop. Res. 1988, 6, 676–684. [Google Scholar] [CrossRef]
- Brouwers, J.E.M.; Lambers, F.M.; van Riethergen, B.; Ito, K.; Huiskes, R. Comparison of bone loss induced by ovariectomy and neurectomy in rats analyzed by in vivo micro-CT. J. Orthop. Res. 2009, 27, 1521–1527. [Google Scholar] [CrossRef]
- Ma, X.; Lv, J.; Sun, X.; Ma, J.; Xing, G.; Wang, Y.; Sun, L.; Wang, J.; Li, F.; Li, Y.; et al. Naringin ameliorates bone loss induced by sciatic neurectomy and increases semaphoring #A expression in denervated bone. Sci. Rep. 2015, 6, 24562. [Google Scholar] [CrossRef] [Green Version]
- Li, Y.; Jie, L.; Tian, A.Y.; Zhong, S.; Tian, M.Y.; Zhong, Y.; Wang, Y.; Li, H.; Li, J.; Sun, X.; et al. Transforming growth factor beta is regulated by a glucocorticoid-dependent mechanism in denervation mouse bone. Sci. Rep. 2017, 7, 9925. [Google Scholar] [CrossRef] [Green Version]
- Lin, C.C.; Chang, Y.T.; Lin, R.W.; Chang, C.W.; Wang, G.J.; Lai, K.A. Single pulsed electromagnetic field restores bone mass and microarchitecture in denervation/disuse osteopenic mice. Med. Eng. Phys. 2020, 80, 52–59. [Google Scholar] [CrossRef] [PubMed]
- Bayram, P.; Karamese, S.A.; Ozdemir, B.; Salum, C.; Erol, H.S.; Karamese, M. Two flavonoids, baicalein and naringin, are effective as anti-inflammatory and anti-ocidant agents in a rat model of polymicrobial sepsis. Immunopharamacol. Immunotoxicol. 2023, 1–10. [Google Scholar] [CrossRef]
- Brighton, C.T.; Katz, M.J.; Goll, S.R.; Nichols, C.E.; Pollack, S.R. Prevention and treatment of sciatic denervation disuse osteoporosis in the rat tibia with capacitively coupled electrical stimulation. Bone 1985, 6, 87–97. [Google Scholar] [CrossRef] [PubMed]
- Tamaki, H.; Yotani, K.; Ogita, F.; Hayao, K.; Kirimto, H.; Onishi, H.; Kusuga, N.; Yamamoto, N. Low-frequency electrical stimulation of denervated skeletal muscle retards muscle and trabecular bone loss in aged rats. Int. J. Mol. Sci. 2019, 16, 822–830. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kawao, N.; Moritake, A.; Tatsumi, K.; Kaji, H. Roles of irisin in the linkage from muscle to bone during mechanical unloading in mice. Calcif. Tissue Int. 2018, 103, 24–34. [Google Scholar] [CrossRef] [PubMed]
- Deng, J.; Cohen, D.J.; Redden, J.; McClure, M.J.; Boyan, B.D.; Schwartz, Z. Differential effects of nerectomy and botox-induced muscle paralysis on bone phenotype and titanium implant osseointegration. Bone 2021, 153, 116145. [Google Scholar] [CrossRef]
- Qin, W.; Bauman, W.A.; Cardozo, C.P. Evolving concepts in neurogenic osteoporosis. Curr. Osteoporos. Rep. 2010, 8, 212–218. [Google Scholar] [CrossRef]
- Morse, L.R.; Biering-Soerensen, F.; Carbone, L.D.; Cervinka, T.; Cirnigliaro, C.M.; Johnston, T.E.; Liu, N.; Troy, K.L.; Weaver, F.M.; Shuhart, C.; et al. Bone mineral density testing in spinal cord injury: 2019 ISCD official position. J. Clin. Densitom. 2019, 22, 554–566. [Google Scholar] [CrossRef]
- Anderson, D.; Park, A.J. Prophylactic treatment of osteoporosis after SCI: Promising research, but not yet indicated. Spinal Cord Ser. Cases 2019, 5, 25. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Invernizzi, M.; de Sire, A.; Reno, F.; Cisari, C.; Runza, L.; Baricich, A.; Carda, S.; Fusco, N. Spinal cord injury as a model of bone-muscle interactions: Therapeutic implications from in vitro and in vivo studies. Front. Endocrinol. 2020, 11, 204. [Google Scholar] [CrossRef] [PubMed]
- Carda, S.; Cisari, C.; Invernizzi, M.; Bevilacqua, M. Osteoporosis after stroke: A review of the causes and potential treatments. Cerebrovas. Dis. 2009, 28, 191–200. [Google Scholar] [CrossRef] [PubMed]
- Yang, F.Z.; Jehu, D.A.M.; Ouyang, H.; Lam, F.M.H.; Pang, M.Y.C. The impact of stroke on bone properties and muscl-bone relationship: A systematic review and meta-analysis. Osteoporo. Int. 2020, 31, 211–224. [Google Scholar] [CrossRef]
- Sato, Y. Abnormal bone and calcium metabolism in patients after stroke. Arch. Phys. Med. Rehabil. 2000, 81, 117–121. [Google Scholar] [CrossRef]
- Pluskiewicz, W. Skeletal consequences in patients after stroke. Endokrynol. Pol. 2011, 62, 48–50. [Google Scholar]
- Hsieh, C.Y.; Sung, S.F.; Huang, H.K. Drug treatment strategies for osteoporosis in stroke patients. Expert Opin. Pharmacother. 2020, 21, 811–821. [Google Scholar] [CrossRef]
- Borschmann, K. Exercise protects bone after stroke, or does it? A narrative review of the evidence. Stroke Res. Treat. 2012, 2012, 103697. [Google Scholar] [CrossRef] [Green Version]
- Borshmann, K.; Pang, M.Y.C.; Bernhardt, J.; Juliano-Burns, S. Strepping towards prevention of bone loss after stroke: A systematic review of the skeletal effects of physical activity after stroke. Int. J. Stroke 2012, 7, 330–335. [Google Scholar] [CrossRef]
- Sallehuddin, H.; Ong, T.; Said, S.M.; Tarmizi, N.A.A.; Loh, S.P.; Lim, W.C.; Nedarajah, R.; Lim, H.T.; Zambri, N.H.M.; Ho, Y.Y.; et al. Non-pharmacological interventions for bone health after stroke: A systematic review. PLoS ONE 2022, 17, e0263935. [Google Scholar] [CrossRef]
- Lichy, A.M.; Groah, S. Asymmetric lower-limb bone loss after spinal cord injury: Case report. J. Rehabil. Res. Dev. 2012, 49, 221–226. [Google Scholar] [CrossRef] [PubMed]
- Bauman, W.A.; Cardozo, C.P. Osteoporosis in individuals with spinal cord injury. PMR 2015, 7, 188–201. [Google Scholar] [CrossRef] [PubMed]
- Shams, R.; Drasites, K.P.; Zaman, V.; Matzelle, D.; Shields, D.C.; Sole, C.J.; Haque, A.; Banik, N.L. The pathophysiology of osteoporosis after spinal cord injury. Int. J. Mol. Sci. 2021, 22, 3057. [Google Scholar] [CrossRef] [PubMed]
- Abdelrahman, S.; Ireland, A.; Winter, E.M.; Purcell, M.; Coupaud, S. Osteoporosis after spinal cord injury: Aetiology, effects and therapeutic approaches. J. Musculoskelet. Neuronal Interact. 2021, 21, 26–50. [Google Scholar] [PubMed]
- Antoniou, G.; Benetos, I.S.; Vlamis, J.; Pneumaticos, S.G. Bone mineral density post a spinal cord injury: A review of the current literature guidelines. Cureus 2022, 14, e23434. [Google Scholar] [CrossRef]
- Bauman, W.A. Pharmacological approaches for bone health in persons with spinal cord injury. Curr. Opin. Pharmacol. 2021, 60, 346–359. [Google Scholar] [CrossRef]
- Edwards, W.B.; Schnitzer, T.J.; Troy, K.L. Bone mineral and stiffness loss at the distal femur and proximal tibia in acute spinal cord injury. Osteoporos. Int. 2014, 25, 1005–1015. [Google Scholar] [CrossRef]
- Lobos, S.; Cooke, A.; Simonett, G.; Ho, C.; Boyd, S.K.; Edwards, W.B. Trabecular bone score at the distal femur and proximal tibia in individuals with spinal cord injury. J. Clin. Densitom. 2019, 22, 249–256. [Google Scholar] [CrossRef]
- Haider, I.T.; Simonian, N.; Saini, A.S.; Leung, F.M.; Edwards, W.B.; Schnitzer, T.J. Open-label clinical trial of alendronate after teriparatide therapy in people with spinal cord injury and low bone mineral density. Spinal Cord 2019, 57, 832–842. [Google Scholar] [CrossRef]
- Weaver, F.M.; Le, B.; Ray, C.; Miskevics, S.; Gonzalez, B.; Carbone, L.D. Predicting osteoporosis medication receipt in veterans with a spinal cord injury: A retrospective cohort study. J. Spinal Cord Med. 2019, 42, 760–767. [Google Scholar] [CrossRef]
- Sutor, T.W.; Kura, J.; Mattingly, A.J.; Otzel, D.M.; Yarrow, J.F. The effects of exercise and activity-based physical therapy on bone after spinal cord injury. Int. J. Mol. Sci. 2022, 23, 608. [Google Scholar] [CrossRef] [PubMed]
- Castello, F.; Louis, B.; Cheng, J.F.; Armento, M.; Santos, A.M. The use of functional electrical stimulation cycles in children and adolescents with spinal cord dysfunction: A pilot study. J. Pediatr. Rehabil. Med. 2012, 5, 261–273. [Google Scholar] [CrossRef] [PubMed]
- Hart, D.A. Evidence for a potential “knee-eye-brain axis” involved in mobility and navigation control: Knee injury and obesity may disrupt axis integrity. J. Biomed. Sci. Eng. 2018, 11, 37–44. [Google Scholar] [CrossRef] [Green Version]
- Jiang, S.D.; Jiang, L.S.; Dai, L.Y. Mechanisms of osteoporosis in spinal cord injury. Clin. Endocrinol. 2006, 65, 555–565. [Google Scholar] [CrossRef]
- Lombardi, G.; Mondaini, N.; Macchiarella, A.; Del Popolo, G. Female sexual dysfunction and hormonal status in spinal cord injured (SCI) patients. J. Androl. 2007, 28, 722–726. [Google Scholar] [CrossRef]
- Charls, A.C.; Rawat, N.; Zachariah, K. Menstrual cycle changes after spinal cord injury. Spinal Cord 2022, 60, 712–715. [Google Scholar] [CrossRef]
- Sabour, H.; Javidan, A.N.; Latifi, S.; Larijani, B.; Shidfar, F.; Vafa, M.R.; Heshmat, R.; Razavi, H.E. Bone markers in patients with chronic traumatic spinal cord injury. Spine J. 2014, 14, 1132–1138. [Google Scholar] [CrossRef] [PubMed]
- Edwards, W.B.; Schnitzer, T.J. Bone imaging and fracture risk after spinal cord injury. Curr. Osteoporos. Rep. 2015, 13, 310–317. [Google Scholar] [CrossRef] [PubMed]
- Schulte, L.M.; Scully, R.D.; Kappa, J.E. Management of lower extremity long-bone fractures in spinal cord injury patients. J. Am. Acad. Orthop. Surg. 2017, 25, e204–e213. [Google Scholar] [CrossRef] [PubMed]
- Haider, I.T.; Lobos, S.M.; Simonian, N.; Schnitzer, T.J.; Edwards, W.B. Bone fragility after spinal cord injury: Reductions in stiffness and bone mineral at the distal femur and proximal tibia as a function of time. Osteoporos. Int. 2018, 29, 2703–2715. [Google Scholar] [CrossRef]
- Zleik, N.; Weaver, F.; Harmon, R.I.; Le, B.; Radhakrishnan, R.; Jirau-Rosaly, W.D.; Craven, B.C.; Raiford, M.; Hill, J.N.; Etingen, B.; et al. Prevention and management of ostepporosis and osteoporotic fractures in persons with a spinal cord injury or disorder: A systematic scoping review. J. Spinal Cord Med. 2019, 42, 735–759. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Yao, X.; Tang, X.; Ding, H.; Zhang, H.; Yuan, J. The effects of spinal cord injury on bone healing in patients with femoral fractures. J. Spinal Cord Med. 2014, 37, 414–419. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Grassner, L.; Klein, B.; Maier, D.; Buhren, V.; Vogel, M. Lower extremity fractures in patients with spinal cord injury characteristics, outcome and risk factors for non-unions. J. Spinal Cord Metab. 2018, 41, 676–683. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Liu, L.; Pan, Z.; Zeng, Y. Serum leptin, bone mineral density and the healing of long bone fractures in men with spinal cord injury. Bosn J. Basic Med. Sci. 2015, 15, 69–74. [Google Scholar] [CrossRef] [Green Version]
- Aro, H.; Eerola, E.; Aho, A.J.; Penttinen, R. Healing of experimental fractures in the denervated limbs of rats. Clin. Orthop. Relat. Res. 1981, 155, 211–217. [Google Scholar] [CrossRef]
- Nordsletten, L.; Madsen, J.E.; Almaas, R.; Rootwelt, T.; Halse, J.; Konttinen, Y.T.; Hukkanen, M.; Santavirta, S. The neuronal regulation of fracture healing. Effects of sciatic nerve resection in rat tibia. Acta Orthop. Scand. 1994, 65, 299–304. [Google Scholar] [CrossRef] [Green Version]
- Ding, W.-G.; Jiang, S.-D.; Zhang, Y.-H.; Dai, L.-Y. Bone loss and impaired fracture healing in spinal cord injured mice. Osteoporo. Int. 2011, 22, 507–515. [Google Scholar] [CrossRef]
- Zheng, X.Q.; Huang, J.; Lin, J.L.; Song, C.L. Pathological mechanism of acute bone loss after fracture. J. Adv. Res. 2022, 49, 63–80. [Google Scholar] [CrossRef]
- Benassy, J. Ossifications and fracture-healing in paraplegia and brain injuries. Proc. Annu. Clin. Spinal Cord Inj. Conf. 1966, 15, 55–60. [Google Scholar]
- Garland, D.E. Clinical observations on fractures and heterotopic ossification in the spinal cord and traumatic brain injured populations. Clin. Orthop. Relat. Res. 1988, 233, 86–101. [Google Scholar] [CrossRef]
- Kushwaha, V.P.; Garland, D.G. Extremity fractures in the patient with a traumatic brain injury. J. Am. Acad. Orthop. Surg. 1998, 6, 298–307. [Google Scholar] [CrossRef] [PubMed]
- Morley, J.; Marsh, S.; Drakoulakis, E.; Pape, H.-C.; Giannoudis, P.Y. Does traumatic brain injury result in accelerated fracture healing? Injury 2005, 36, 363–368. [Google Scholar] [CrossRef] [PubMed]
- Morioka, K.; Marmor, Y.; Sacramento, J.A.; Lin, A.; Shao, T.; Miclau, K.; Clark, D.R.; Beattie, M.S.; Marcucio, R.S.; Miclau, T., 3rd; et al. Differential fracture response to traumatic brain injury suggests dominance of neuroinflammatory response in polytrauma. Sci. Rep. 2019, 9, 12199. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mollahosseimni, M.; Ahmadirad, H.; Goujani, R.; Khorramdelazad, H. The association between traumatic brain injury and accelerated fracture healing: A study on the effects of growth factors and cytokines. J. Mol. Neurosci. 2021, 8, 162–168. [Google Scholar] [CrossRef] [PubMed]
- Ravi, P.; Nagesaran, J.; Ramanujam, M.; Suriyakumar, S.; Nambi, E.A. Correlation between traumatic brain injuries and callus formation in long bone fractures. Indian J. Orthop. 2022, 56, 837–846. [Google Scholar] [CrossRef]
- Haffner-Luntzer, M.; Wieber, B.; Morioka, K.; Lackner, I.; Fischer, V.; Bahney, C.; Ignatius, A.; Kalbitz, M.; Marcucio, R.; Miclau, T. Altered early immune response after fracture and traumatic brain injury. Front. Immunol. 2023, 14, 1074207. [Google Scholar] [CrossRef] [PubMed]
- Hofman, M.; Koopmans, G.; Kobbe, P.; Poeze, M.; Andruszkow, H.; Brink, P.R.; Pape, H.-C. Improved fracture healing in patients with concomitant brain injury: Proven or not? Mediat. Inflamm. 2015, 2015, 204842. [Google Scholar] [CrossRef] [Green Version]
- Shim, D.W.; Hong, H.; Cho, K.-C.; Kim, S.H.; Lee, J.W.; Sung, S.-Y. Accelerated tibia fracture healing in traumatic brain injury in accordance with increased hematoma formation. BMC Musculoskelet. Discord. 2022, 23, 1110. [Google Scholar] [CrossRef]
- Wildburger, R.; Zarkovic, N.; Tonkovic, G.; Skoric, T.; Frech, S.; Hartleb, M.; Loncaric, I.; Zakovic, K. Post-traumatic hormonal disturbances: Prolactin as a link between head injury and ehanced osteogenesis. J. Endocrinol. Investig. 1998, 21, 78–86. [Google Scholar] [CrossRef]
- Wildburger, R.; Zarkovic, N.; Egger, G.; Petek, W.; Zarkovic, K.; Hofer, H.P. Basic fibroblast growth factor (BFGF) immunoreactivity as a possible link between head injury and impaired bone fracture healing. Bone Miner. 1994, 27, 183–192. [Google Scholar] [CrossRef]
- Wildburger, R.; Zarkovic, N.; Egger, G.; Petek, W.; Meinitzer, A.; Borovic, S.; Zarkovic, K.; Li, L.; Stipancic, I.; Trbojevic-Cepe, M.; et al. Comparison of the values of basic fibroblast growth factor determined by an immunoassay in the sera of patients with traumatic brain injury and enhanced osteogenesis and the effects of the same sera on the fibroblast growth in vitro. Eur. J. Clin. Chem. Clin. Biochem. 1995, 33, 693–698. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Song, Y.; Bi, L.; Zhang, Z.; Huang, Z.; Hou, W.; Lu, X.; Sun, P.; Han, Y. Increased levels of calcitonin gene-related peptide in serum accelerate fracture healing following traumatic brain injury. Mol. Med. Rep. 2012, 5, 432–438. [Google Scholar] [CrossRef] [PubMed]
- Zhang, R.; Liang, Y.; Wei, S. The expressions of NGF and VEGF in the fracture tissues are closely associated with accelerated clavicle fracture healing in patients with traumatic brain injury. Ther. Clin. Risk Manag. 2018, 14, 2315–2322. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Khare, G.N.; Gautam, V.K.; Gupta, L.N.; Gupta, A.K. A new hypothesis for faster healing of fractures in head injured patients. Indian J. Med. Sci. 1995, 49, 281–284. [Google Scholar]
- Cadosch, D.; Gautschi, O.P.; Thyer, M.; Song, S.; Skirving, A.P.; Filgueira, L.; Zellweger, R. Humoral factors enhance fracture-healing and callus formation in patients with traumatic brain injury. J. Bone Joint Surg. Am. 2009, 91, 282–288. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xu, Y.-Q.; Qin, M.-L.; Feng, S.-Y.; Huang, Y.; Jia, Z. Expressions and significance of calcitonin gene-related peptide and nerve growth factor in rabbit model of traumatic brain injury complicated with tibial fracture: Preliminary results. Eur. Rev. Med. Pharmacol. Sci. 2019, 23, 5040–5050. [Google Scholar] [CrossRef]
- Wei, Y.; Wang, L.; Clark, J.C.M.; Dass, C.R.; Choong, P.F.M. Elevated leptin expression in a rat model of fracture and traumatic brain injury. J. Pharm. Pharmacol. 2008, 60, 1667–1672. [Google Scholar] [CrossRef]
- Boes, M.; Kain, M.; Kakar, S.; Nicholls, F.; Cullinane, D.; Gerstenfeld, L.; Einhorn, T.A.; Tornetta, P., 3rd. Osteogenic effects of traumatic brain injury on experimental fracture-healing. J. Bone Joint Surg. Am. 2006, 88, 738–743. [Google Scholar] [CrossRef]
- Arik, M.; Ekinci, Y.; Gurbuz, K.; Batin, S. The effects of focal brain damage on fracture healing: An experimental study. Eklem Hastalik. Cerrahisi. 2019, 30, 267–274. [Google Scholar] [CrossRef]
- Yang, C.; Gao, C.; Liu, N.; Zhu, Y.; Zhu, X.; Su, X.; Zhang, Q.; Wu, Y.; Zhang, C.; Liu, A.; et al. The effect of traumatic brain injury on bone healing from a novel exosome centered perspective in a mice model. J. Orthop. Translat. 2021, 30, 70–81. [Google Scholar] [CrossRef]
- Kesavan, C.; Rundle, C.; Mohan, S. Repeated mild traumatic brain injury impairs fracture healing in male mice. BMC Res. Notes 2022, 15, 25. [Google Scholar] [CrossRef] [PubMed]
- Meyer, M.H.; Etienne, W.; Meyer, R.A., Jr. Altered mRNA expression of genes related to nerve cell activity in the fracture callus of older rats: A randomized, controlled, microarray study. BMC Musculoskelet. Disord. 2004, 5, 24. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, L.; Tang, X.; Zhang, H.; Yuan, J.; Ding, H.; Wei, Y. Elevated leptin expression in rat model of traumatic spinal cord injury and femoral fracture. J. Spinal Cord Med. 2011, 34, 501–509. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yan, H.; Zhang, H.-W.; Fu, P.; Liu, B.-L.; Jin, W.-Z.; Duan, S.-B.; Xue, J.; Liu, K.; Sun, Z.-M.; Zeng, X.-W. Leptin’s effect on accelerated fracture healing after traumatic brain injury. Neurol. Res. 2013, 35, 537–544. [Google Scholar] [CrossRef] [PubMed]
- Garbe, A.; Graef, F.; Appelt, J.; Schmidt-Bleek, K.; Jahn, D.; Lunnemann, T.; Tsitsilonis, S.; Seemann, R. Leptin mediated pathways stabilize posttraumatic insulin and osteocalcin patterns after long bone fracture and concomitant traumatic brain injury and thus influence fracture healing in a combined murine trauma model. Int. J. Mol. Sci. 2020, 21, 9144. [Google Scholar] [CrossRef]
- Graef, F.; Seemann, R.; Garbe, A.; Schmidt-Bleek, K.; Schaser, K.D.; Keller, J.; Duda, G.; Tsitisilonis, S. Impaired fracture healing with high non-union rates remain irreversible after traumatic brain injury in leptin-deficient mice. J. Musculoskelet. Neuronal Interact. 2017, 17, 78–85. [Google Scholar]
- Seemann, R.; Graef, F.; Garbe, A.; Keller, J.; Huang, F.; Duda, G.; Schmidt-Bleek, K.; Schaser, K.-D.; Tsitsilonis, S. Leptin-deficiency eradicates the positive effect of traumatic brain injury on bone healing: Histological analyses in a combined trauma mouse model. J. Musculoskelet. Neuronal Interact. 2018, 18, 32–41. [Google Scholar]
- Khallaf, F.G.; Kehinde, E.O.; Hussein, S. Bone healing and hormonal bioassay in patients with long-bone fractures and concomitant head injury. Med. Princ. Pract. 2016, 25, 336–342. [Google Scholar] [CrossRef]
- Imayama, I.; Prasad, B. Role of leptin in obstructive sleep apnea. Ann. Am. Thorac. Soc. 2017, 14, 1607–1621. [Google Scholar] [CrossRef]
- Moore, T.J. Functional outcome following surgical excision of heterotopic ossification in patients with traumatic brain injury. J. Orthop. Trauma. 1993, 7, 11–14. [Google Scholar] [CrossRef]
- Zhao, X.-G.; Zhao, G.-F.; Ma, Y.-F.; Jiang, G.-Y. Research progress in mechanism of traumatic brain injury affecting speed of fracture healing. Clin. J. Traumatol. 2007, 10, 376–380. [Google Scholar]
- Huang, H.; Cheng, W.-X.; Hu, Y.-P.; Chen, J.-H.; Zheng, Z.-T.; Zhang, P. Relationship between heterotopic ossification and traumatic brain injury: Why severe traumatic brain injury increases risk of heterotopic ossification. J. Orthop. Translat. 2017, 12, 16–25. [Google Scholar] [CrossRef] [PubMed]
- Anthonissen, J.; Steffen, C.T.; Hofmann, A.; Victor, J. The pathogenesis of heterotopic ossification after traumatic brain injury: A review of current literature. Acta Orthop. Belg. 2020, 86, 369–377. [Google Scholar]
- O’Brien, E.J.O.; Frank, C.B.; Shrive, N.G.; Halgrimsson, B.; Hart, D.A. Heterotopic mineralization (ossification or calcification) in tendinopathy or following surgical tendon trauma. Int. J. Exp. Pathol. 2012, 93, 319–331. [Google Scholar] [CrossRef]
- O’Brien, E.J.O.; Shrive, N.G.; Rosvold, J.M.; Thornton, G.M.; Frank, C.B.; Hart, D.a. Tendon mineralization is accelerated bilaterally and creep of contralateral tendons is increased after unilateral needle injury of murine Achilles tendon. J. Orthop. Res. 2013, 31, 1520–1528. [Google Scholar] [CrossRef] [PubMed]
- Maliha, G.; Morgan, J.; Vranhas, M. Transient osteoporosis of pregnancy. Injury 2012, 43, 1237–1241. [Google Scholar] [CrossRef] [PubMed]
- Zhang, W.; Liu, Y.; Xu, J.; Fan, C.; Zhang, B.; Feng, P.; Wang, Y.; Kong, Q. The role of sympathetic nerves in osteoporosis: A narrative review. Biomedicines 2022, 11, 33. [Google Scholar] [CrossRef]
- Schumacher, M.; Sitruk-Ware, R.; De Nicola, A.F. Progesterone and progestins: Neuroprotection and myelin repair. Curr. Opin. Pharmacol. 2008, 8, 740–746. [Google Scholar] [CrossRef]
- Nugent, B.M.; Tobet, S.A.; Lara, H.E.; Lucion, A.B.; Wilson, M.E.; Recabarren, S.E.; Paredes, A.H. Hormonal programing across the lifespan. Horm. Metab. Res. 2012, 44, 577–586. [Google Scholar] [CrossRef] [Green Version]
- Baker, S.E.; Limberg, J.K.; Ranadive, S.M.; Joyner, M.J. Neurovascular control of blood pressure is influenced by aging, sex, and sex hormones. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2016, 311, R1271–R1275. [Google Scholar] [CrossRef]
- Clarkoudian, N.; Hart, E.C.; Barnes, J.N.; Joyner, M.J. Autonomic control of body temperature and blood pressure: Influences of female sex hormones. Clin. Auton. Res. 2017, 27, 149–155. [Google Scholar] [CrossRef] [Green Version]
- Ghoumari, A.M.; Ghanem, C.A.; Asbelaoui, N.; Schaumaker, M.; Hussain, R. Roles of progesterone, testosterone and their nuclear receptors in central nervous system myelination and remyelination. Int. J. Mol. Sci. 2020, 21, 3163. [Google Scholar] [CrossRef] [PubMed]
- Littlejohn, E.L.; Fedorchak, S.; Boychuk, C.R. Sex-steroid-dependent plasticity of brain-stem autonomic circuits. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2020, 319, R60–R68. [Google Scholar] [CrossRef] [PubMed]
- Rosato, E.; Sciarra, F.; Anastasiadou, E.; Lenzi, A.; Venneri, M.A. Revisiting the physiological role of androgens in women. Expert Rev. Endocrinol. Metab. 2022, 17, 547–561. [Google Scholar] [CrossRef] [PubMed]
- Ansdell, P.; Brownstein, C.G.; Skarabot, J.; Hicks, K.M.; Simones, D.C.M.; Thomas, K.; Howatson, G.; Hunter, S.K.; Goodall, S. Menstrual cycle-associated modulations in neuromuscular function and fatigability of the knee extensors in eumenorrheic women. J. Appl. Physiol. 2019, 126, 701–712. [Google Scholar] [CrossRef] [PubMed]
- Hwang, C.L.; Okazaki, K.; Shibata, S.; Liu, Y.L.; Fu, Q. Menstrual cycle effects on sympathetic neural burst amplitude distribution during orthostasis in young women. Clin. Auton. Res. 2021, 31, 767–773. [Google Scholar] [CrossRef]
- Pellegrino, A.; Ticlus, P.M.; Vandenboom, R. Mechanisms of estrogen influence on skeletal muscle: Mass, regeneration, and mitochondrial function. Sports Med. 2022, 52, 2853–2869. [Google Scholar] [CrossRef]
- Oosthuyse, T.; Strauss, J.A.; Hackney, A.C. Understanding the female athlete: Molecular mechanisms underpinning menstrual phase differences in exercise metabolism. Eur. J. Appl. Physiol. 2023, 123, 423–450. [Google Scholar] [CrossRef]
- Bilke, D.D. The free hormone hypothesis: When, why, and how to measure the free hormone levels to assess vitamin D, thyroid, sex hormone, and cortisol status. JBMR Plus 2020, 5, e10418. [Google Scholar] [CrossRef]
- Cheng, C.H.; Chen, L.R.; Chen, K.H. Osteoporosis due to hormonal imbalance: An overview of the effects of estrogen deficiency and glucocorticoid overuse on bone turnover. Int. J. Mol. Sci. 2022, 23, 1376. [Google Scholar] [CrossRef]
- Albright, F.; Smith, P.H.; Richardson, A.M. Postmenopausal osteoporosis. JAMA 1941, 116, 2465–2474. [Google Scholar] [CrossRef]
- Forbes, A.P. Fuller Albright. His concept of postmenopausal osteoporosis and what came of it. Clin. Orthop. Relat. Res. 1991, 269, 128–141. [Google Scholar] [CrossRef]
- Seeman, E. During aging, men lose less bone than women because they gain more periosteal bone, not because they resorb less endosteal bone. Calif. Tissue Int. 2001, 69, 205–208. [Google Scholar] [CrossRef] [PubMed]
- Seeman, E. Periosteal bone formation—A neglected determinant of bone strength. N. Engl. J. Med. 2003, 349, 320–323. [Google Scholar] [CrossRef] [PubMed]
- Seeman, E. The periosteum- a surface for all seasons. Osteoporo. Int. 2007, 18, 123–128. [Google Scholar] [CrossRef] [PubMed]
- Seeman, E. Structural basis of growth-related gain and age-related loss of bone strength. Rheumatology 2008, 47 (Suppl. S4), iv2–iv8. [Google Scholar] [CrossRef] [Green Version]
- Courties, A.; Sellam, J.; Berenbaum, F. Role of the autonomic nervous system in osteoarthritis. Best Pract. Res. Clin. Rheumatol. 2017, 31, 661–675. [Google Scholar] [CrossRef]
- Plack, C.J.; Barker, D.; Predergast, G. Perceptual consequences of “hidden” hearing loss. Trends Hear. 2014, 18, 2331216514550621. [Google Scholar] [CrossRef] [Green Version]
- Pollock, N.; Staunton, C.A.; Vasilaki, A.; McArdle, A.; Jackson, M.J. Denervated muscle fibers induce mitochondrial peroxide generation in neighboring innervated fibers: Role in muscle aging. Free Radic. Biol. Med. 2017, 112, 84–92. [Google Scholar] [CrossRef]
- Maryanovich, M.; Zahalka, A.H.; Pierce, H.; Pinho, S.; Nakahara, F.; Asada, N.; Wei, Q.; Wang, X.; Ciero, P.; Xu, J.; et al. Adrenergic nerve degeneration in bone marrow drives aging of the hematopoietic stem cell niche. Nat. Med. 2018, 24, 782–791. [Google Scholar] [CrossRef]
- Vincent, K.; Mohanty, S.; Pinelli, R.; Bonavita, R.; Pricop, P.; Albert, T.J.; Dahia, C.L. Aging of mouse intervertebral disc and association with back pain. Bone 2019, 123, 246–259. [Google Scholar] [CrossRef] [PubMed]
- Fogarty, M.J.; Porras, M.A.G.; Mantilla, C.B.; Sieck, G.C. Diaphragm neuromuscular transmission failure in aged rats. J. Neurophysiol. 2019, 122, 93–104. [Google Scholar] [CrossRef] [PubMed]
- Blaszkiewicz, M.; Willows, J.W.; Dubois, A.L.; Waible, S.; DiBello, K.; Lyons, L.L.; Johnson, C.P.; Paradie, E.; Banks, N.; Motyl, K.; et al. Neuropathy and neural plasticity in the subcutaneous white adipose depot. PLoS ONE 2019, 14, e0221766. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kos, O.; Hughson, R.L.; Hart, D.A.; Clement, G.; Frings-Meuthen, P.; Linnarsson, D.; Paloski, W.H.; Rittweger, J.; Wuyts, F.; Zange, J.; et al. Elevated serum soluble CD200 and CD200R as surrogate markers of bone loss under bed rest conditions. Bone 2014, 60, 33–40. [Google Scholar] [CrossRef] [Green Version]
- Endo, I.; Matsumoto, T. Space flight/bedrest immobilization and bone. Bisphosphonate and the loss of bone mineral due to space flight or prolonged bed rest. Clin. Calcium. 2012, 22, 1863–1870. (In Japanese) [Google Scholar]
- Baran, R.; Wehland, M.; Schultz, H.; Heer, M.; Infanger, M.; Grimm, D. Microgravity-related changes in bone density and treatment options: A systematic review. Int. J. Mol. Sci. 2022, 23, 8650. [Google Scholar] [CrossRef]
- Rengel, A.; Tran, V.; Toh, L.S. Denosumab as a pharmacological countermeasure against osteopenia in long duration spaceflight. Aerosp. Med. Hum. Perform. 2023, 94, 389–395. [Google Scholar] [CrossRef]
- Acconcia, F.; Fiocchetti, M.; Busonero, C.; Fernandez, V.S.; Montalesi, E.; Cipolletti, M.; Pallottini, V.; Marino, M. The extra-nuclear interactome of the estrogen receptors: Implications for physiological functions. Mol. Cell Endocrinol. 2021, 538, 111452. [Google Scholar] [CrossRef]
- Trevino, L.S.; Gorelick, D.A. The interface of nuclear and membrane steroid signaling. Endocrinology 2021, 162, bqab107. [Google Scholar] [CrossRef]
- Thomas, P. Membrane progesterone receptors (mPRs, PAQRs): Review of structural and signaling characteristics. Cells 2022, 11, 1785. [Google Scholar] [CrossRef]
- Thomas, P.; Pang, Y.; Camilletti, M.A.; Castelnovo, L.F. Functions of membrane progesterone receptors (mPRs, PAQRs) in nonreproductive tissues. Endocrinology 2022, 163, bqac147. [Google Scholar] [CrossRef] [PubMed]
- Koszegi, Z.; Cheong, R.Y. Targeting the non-classical estrogen pathway in neurodegenerative diseases and brain injury disorders. Front. Endocrinol. 2022, 13, 999236. [Google Scholar] [CrossRef] [PubMed]
- Goncalves, F.J.; Soares, F.A.; Pouso, M.R.; Longo, M.; Cairrao, E. Non-genomic effect of estradiol on the neurovascular unit and possible involvement in the cerebral vascular accident. Mol. Neurobiol. 2023, 60, 1964–1985. [Google Scholar] [CrossRef]
- Schumacher, M.; Baulieu, E.E. neurosteroids: Synthesis and functions in the central and peripheral nervous systems. Ciba Found. Symp. 1995, 191, 90–106. [Google Scholar] [CrossRef] [PubMed]
- Blacklock, A.D.; Johnson, M.S.; Krizsan-Agbas, D.; Smith, P.G. Estrogen increases sensory nociceptor neuritogenesis in vitro by a direct, nerve growth factor-independent mechanism. Eur. J. Neurosci. 2005, 21, 2320–2328. [Google Scholar] [CrossRef] [PubMed]
- Krizsan-Agbas, D.; Pedchenko, T.; Smith, P.G. Neurotrimmin is an estrogen-regulated determinant of peripheral sympathetic innervation. J. Neurosci. Res. 2008, 86, 3086–3095. [Google Scholar] [CrossRef] [Green Version]
- Vongpatanasin, W. Autonomic regulation of blood pressure in menopause. Semin. Reprod. Med. 2009, 27, 338–345. [Google Scholar] [CrossRef]
- Wang, Q.; Cao, J.; Hu, F.; Lu, R.; Wang, J.; Ding, H.; Gao, R.; Xiao, H. Effects of estradiol on voltage-gated sodium channels in mouse dorsal root ganglion neurons. Brain Res. 2013, 1512, 1–8. [Google Scholar] [CrossRef]
- Sample, S.J.; Racette, M.A.; Hao, Z.; Thomas, C.F.; Behan, M.; Muir, P. Functional adaptation in female rats: The role of estrogen signaling. PLoS ONE 2012, 7, e43215. [Google Scholar] [CrossRef]
- Chen, Y.; Sun, Y.; Xue, X.; Ma, H. Comprehensive analysis of epigenetics mechanisms in osteoporosis. Front. Genet. 2023, 14, 1153585. [Google Scholar] [CrossRef]
- Hart, D.A. Sex differences in musculoskeletal injury and disease risks across the lifespan: Are there unique subsets of females at higher risk than males for these conditions at distinct stages of the life cycle? Front. Physiol. 2023, 14. [Google Scholar] [CrossRef] [PubMed]
- Seeman, E. Age- and menopause-related bone loss compromise cortical and trabecular microstructure. J. Gerontol. A Biol. Sci. Med. Sci. 2013, 68, 1218–1225. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ghasem-Zadeh, A.; Burghardt, A.; Wang, X.F.; Iuliano, S.; Bonaretti, S.; Bui, M.; Zebaze, R.; Seeman, E. Quantifying sex, race, and age specific differences in bone microstructure requires measurement of anatomically equivalent regions. Bone 2017, 101, 206–213. [Google Scholar] [CrossRef] [PubMed]
- Wulf, M.J.; Tom, V.J. Consequences of spinal cord injury on the sympathetic nervous system. Front. Cell Neurosci. 2023, 17, 999253. [Google Scholar] [CrossRef]
- Madden, K.S.; Felton, S.Y.; Felton, D.L.; Hardy, C.A.; Livant, S. Sympathetic nervous system modulation of the immune system. II. Induction of lymphocyte proliferation and migration in vivo by chemical sympathectomy. J. Neuroimmunol. 1994, 49, 67–75. [Google Scholar] [CrossRef]
- Madden, K.S.; Moyihan, J.A.; Brenner, G.J.; Felton, S.Y.; Felton, D.L.; Livant, S. Sympathectic nervous system modulation of the immune system. III. Alterations in T and B cell proliferation and differentiation in vitro following chemical sympathectomy. J. Neuroimmunol. 1994, 49, 77–87. [Google Scholar] [CrossRef]
- Grebe, K.M. Editorial: Regulation of the regulator: Sympathetic nervous system control of regulatory T cells. J. Leukoc. Biol. 2009, 86, 1269–1270. [Google Scholar] [CrossRef]
- Wu, K.; Li, R.; Zhang, Y.; Liu, Y.M.; Wang, M.C.; Huang, J.; Zhu, C.; Zhang, J.; Yuan, X.; Liu, Q. The discovery of a new type of innervation in lymphoid organs. Physiol. Rep. 2023, 11, 15604. [Google Scholar] [CrossRef]
- Kruszewska, B.; Felton, S.Y.; Moyihan, J.A. Alterations in cytokine and antibody production following chemical sympathectomy in two strains of mice. J. Immunol. 1995, 155, 4613–4620. [Google Scholar] [CrossRef]
- Kirkland, L.G.; Barbe, C.G.; Hadaya, J.; Benson, P.V.; Wagner, B.M.; Tankovic, S.; Hoover, D.B. Sympathetic innervation of human and porcine spleens: Implications for between species variation in function. Bioelectron. Med. 2022, 8, 20. [Google Scholar] [CrossRef]
- De Virgliis, F.; Oliva, V.M.; Kizil, B.; Scheiermann, C. Control of lymph node activity by direct local innervation. Trends Neurosci. 2022, 45, 704–712. [Google Scholar] [CrossRef] [PubMed]
- Gonzalez-Ariki, S.; Husband, A.J. The role of sympathetic innervation of the gut in regulating mucosal immune responses. Brain Behav. Immun. 1998, 12, 53–63. [Google Scholar] [CrossRef] [PubMed]
- Veny, M.; Grases, D.; Kucharova, K.; Lin, W.W.; Nguyen, J.; Huang, S.; Ware, C.F.; Ranscht, B.; Sedy, J.R. Contactin-1 is required for peripheral innervation and immune homeostatsis within the intestinal mucosa. Front. Immunol. 2020, 11, 1268. [Google Scholar] [CrossRef]
- Madden, K.S.; Rajan, S.; Bellinger, D.L.; Felton, S.Y.; Felton, D.L. Age-associated alterations in sympathetic neural interactions with the immune system. Dev. Comp. Immunol. 1997, 21, 479–485. [Google Scholar] [CrossRef] [PubMed]
- Afan, A.M.; Broome, C.S.; Nicholls, S.E.; Whetton, A.D.; Miyan, J.A. Bone marrow innervation regulates cellular retention in the murine haemopoietic system. Br. J. Haematol. 1997, 98, 569–577. [Google Scholar] [CrossRef]
- Wang, X.; Xu, J.; Kang, Q. Neuromodulation of bone: Role of different peptides and their interactions (review). Mol. Med. Rep. 2021, 23, 32. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hart, D.A. Regulation of Bone by Mechanical Loading, Sex Hormones, and Nerves: Integration of Such Regulatory Complexity and Implications for Bone Loss during Space Flight and Post-Menopausal Osteoporosis. Biomolecules 2023, 13, 1136. https://doi.org/10.3390/biom13071136
Hart DA. Regulation of Bone by Mechanical Loading, Sex Hormones, and Nerves: Integration of Such Regulatory Complexity and Implications for Bone Loss during Space Flight and Post-Menopausal Osteoporosis. Biomolecules. 2023; 13(7):1136. https://doi.org/10.3390/biom13071136
Chicago/Turabian StyleHart, David A. 2023. "Regulation of Bone by Mechanical Loading, Sex Hormones, and Nerves: Integration of Such Regulatory Complexity and Implications for Bone Loss during Space Flight and Post-Menopausal Osteoporosis" Biomolecules 13, no. 7: 1136. https://doi.org/10.3390/biom13071136
APA StyleHart, D. A. (2023). Regulation of Bone by Mechanical Loading, Sex Hormones, and Nerves: Integration of Such Regulatory Complexity and Implications for Bone Loss during Space Flight and Post-Menopausal Osteoporosis. Biomolecules, 13(7), 1136. https://doi.org/10.3390/biom13071136