Synthesis and Characterization of Polyhydroxyalkanoate/Graphene Oxide/Nanoclay Bionanocomposites: Experimental Results and Theoretical Predictions via Machine Learning Models
Abstract
:1. Introduction
2. Methodology
2.1. Artificial Neural Network
2.2. Decision Tree
2.3. Support Vector Machine
3. Experimental
3.1. Material
3.2. Nanocomposite Preparation
3.3. Characterization Techniques
4. Results and Discussion
4.1. Surface Morphology of PHBV/GO/Nanoclay Composites
4.2. Experimental Mechanical Properties of PHBV/GO/Nanoclay Composites
4.3. Predicted Mechanical Properties Using ML Regression Models
4.3.1. Young’s Modulus
4.3.2. Tensile Strength
4.3.3. Elongation at Break
4.4. Error Assessment of Predictive Models. Measured vs. Predicted Values
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Laycock, B.; Halley, P.; Pratt, S.; Werker, A.; Lant, P. The chemomechanical properties of microbial polyhydroxyalkanoates. Prog. Polym. Sci. 2013, 38, 536–583. [Google Scholar] [CrossRef]
- Chen, L.J.; Wang, M. Production and evaluation of biodegradable composites based on PHB–PHV copolymer. Biomaterials 2002, 23, 2631–2639. [Google Scholar] [CrossRef]
- Dreyer, D.R.; Park, S.; Bielawski, C.W.; Ruoff, R.S. The chemistry of graphene oxide. Chem. Soc. Rev. 2010, 39, 228–240. [Google Scholar] [CrossRef] [PubMed]
- Díez-Pascual, A.M.; Díez-Vicente, A.L. Poly(propylene fumarate)/Polyethylene Glycol-Modified Graphene Oxide Nanocomposites for Tissue Engineering. ACS Appl. Mater. Interfaces 2016, 8, 17902–17914. [Google Scholar] [CrossRef] [PubMed]
- Diez-Pascual, A.M.; Gomez-Fatou, M.A.; Ania, F.; Flores, A. Nanoindentation in polymer nanocomposites. Prog. Mater. Sci. 2015, 67, 1–94. [Google Scholar] [CrossRef] [Green Version]
- Salavagione, H.J.; Díez-Pascual, A.M.; Lázaro, E.; Vera, S.; Gómez-Fatou, M.A. Chemical sensors based on polymer composites with carbon nanotubes and graphene: The role of the polymer. Journal of materials chemistry. A Mater. Energy Sustain. 2014, 2, 14289–14328. [Google Scholar] [CrossRef]
- Luceño-Sánchez, J.A.; Maties, G.; Gonzalez-Arellano, C.; Diez-Pascual, A.M. Synthesis and Characterization of Graphene Oxide Derivatives via Functionalization Reaction with Hexamethylene Diisocyanate. Nanomaterials 2018, 8, 870. [Google Scholar] [CrossRef] [Green Version]
- Yaghmaeiyan, N.; Mirzaei, M.; Delghavi, R. Montmorillonite clay: Introduction and evaluation of its applications in different organic syntheses as catalyst: A review. Results Chem. 2022, 4, 100549. [Google Scholar] [CrossRef]
- Uddin, F.D.; Afriyie-Gyawu, E.; Williams, J.; Huebner, H.; Ankrah, N.A.; Ofori-Adjei, D.; Jolly, P.; Johnson, N.; Taylor, J.; Marroquin-Cardona, A. Montmorillonite: An Introduction to Properties and Utilization. Current Topics in the Utilization of Clay in Industrial and Medical Applications. Food Addit. Contaminants. Part A Chem. Anal. Control. Expo. Risk Assess. 2018, 25, 134–145. [Google Scholar]
- Naffakh, M.; Díez-Pascual, A.M.; Gómez-Fatou, M.A. New hybrid nanocomposites containing carbon nanotubes, inorganic fullerene-like WS2 nanoparticles and poly(ether ether ketone) (PEEK). J. Mater. Chem. 2011, 21, 7425–7433. [Google Scholar] [CrossRef]
- Ruiz-Hitzky, E.; Sobral, M.M.C.; Gómez-Avilés, A.; Nunes, C.; Ruiz-García, C.; Ferreira, P.; Aranda, P. Clay-Graphene Nanoplatelets Functional Conducting Composites. Adv. Funct. Mater. 2016, 26, 7394–7405. [Google Scholar] [CrossRef]
- Malek-Mohammadi, H.; Majzoobi, G.H.; Payandehpeyman, J. Mechanical characterization of polycarbonate reinforced with nanoclay and graphene oxide. Polym. Compos. 2019, 40, 3947–3959. [Google Scholar] [CrossRef]
- Nguyen, T.A.; Bui, T.T.T. Effects of Hybrid Graphene Oxide with Multiwalled Carbon Nanotubes and Nanoclay on the Mechanical Properties and Fire Resistance of Epoxy Nanocomposite. J. Nanomater. 2021, 2021, 2862426. [Google Scholar] [CrossRef]
- Russell, S.J. Artificial Intelligence a Modern Approach; Pearson Education, Inc.: New York, NY, USA, 2010. [Google Scholar]
- Nilsson, N.J. Artificial Intelligence: A New Synthesis; Morgan Kaufmann: Burlington, MA, USA, 1998. [Google Scholar]
- Sacha, G.M.; Varona, P. Artificial intelligence in nanotechnology. Nanotechnology 2013, 24, 452002. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kha, Q.; Le, V.; Hung, T.N.K.; Nguyen, N.T.K.; Le, N.Q.K. Development and Validation of an Explainable Machine Learning-Based Prediction Model for Drug-Food Interactions from Chemical Structures. Sensors 2023, 23, 3962. [Google Scholar] [CrossRef]
- Lam, L.H.T.; Do, D.T.; Diep, D.T.N.; Nguyet, D.L.N.; Truong, Q.D.; Tri, T.T.; Thanh, H.N.; Le, N.Q.K. Molecular subtype classification of low-grade gliomas using magnetic resonance imaging-based radiomics and machine learning. NMR Biomed. 2022, 35, e4792. [Google Scholar] [CrossRef]
- Besold, T.R.; Schorlemmer, M.; Smaill, A. Weak and Strong Computational Creativity. In Computational Creativity Research: Towards Creative Machines; Atlantis Press (Zeger Karssen): Dordrecht, The Netherlands, 2014; Volume 7, pp. 37–49. [Google Scholar]
- Jordan, M.I.; Mitchell, T.M. Machine learning: Trends, perspectives, and prospects. Sci. Am. Assoc. Adv. Sci. 2015, 349, 255–260. [Google Scholar] [CrossRef]
- Alpaydin, E. Introduction to Machine Learning; MIT Press: Cambridge, MA, USA, 2020. [Google Scholar]
- Zhu, X.; Goldberg, A.B. Introduction to Semi-Supervised Learning. Synthesis Lectures on Artificial Intelligence and Machine Learning; Morgan & Claypool: San Rafael, CA, USA, 2009; Volume 3, pp. 1–130. [Google Scholar]
- Zare, Y.; Rhee, K.Y. A multistep methodology for calculation of the tensile modulus in polymer/carbon nanotube nanocomposites above the percolation threshold based on the modified rule of mixtures. RSC Adv. 2018, 8, 30986–30993. [Google Scholar] [CrossRef]
- Díez-Pascual, A.M.; Naffakh, M. Towards the development of poly(phenylene sulphide) based nanocomposites with enhanced mechanical, electrical and tribological properties. Mater. Chem. Phys. 2012, 135, 348–357. [Google Scholar] [CrossRef] [Green Version]
- Champa-Bujaico, E.; García-Díaz, P.; Díez-Pascual, A.M. Machine Learning for Property Prediction and Optimization of Polymeric Nanocomposites: A State-of-the-Art. Int. J. Mol. Sci. 2022, 23, 10712. [Google Scholar] [CrossRef]
- Zakaulla, M.; Pasha, Y.; Siddalingappa, S.k. Prediction of mechanical properties for polyetheretherketone composite reinforced with graphene and titanium powder using artificial neural network. Mater. Today Proc. 2022, 49, 1268–1274. [Google Scholar] [CrossRef]
- Yusoff, N.I.M.; Ibrahim Alhamali, D.; Ibrahim, A.N.H.; Rosyidi, S.A.P.; Abdul Hassan, N. Engineering characteristics of nanosilica/polymer-modified bitumen and predicting their rheological properties using multilayer perceptron neural network model. Constr. Build. Mater. 2019, 204, 781–799. [Google Scholar] [CrossRef]
- Kosicka, E.; Krzyzak, A.; Dorobek, M.; Borowiec, M. Prediction of Selected Mechanical Properties of Polymer Composites with Alumina Modifiers. Materials 2022, 15, 882. [Google Scholar] [CrossRef] [PubMed]
- Amani, M.A.; Ebrahimi, F.; Dabbagh, A.; Rastgoo, A.; Nasiri, M.M. A machine learning-based model for the estimation of the temperature-dependent moduli of graphene oxide reinforced nanocomposites and its application in a thermally affected buckling analysis. Eng. Comput. 2021, 37, 2245–2255. [Google Scholar] [CrossRef]
- Zhang, Z.; Friedrich, K. Artificial neural networks applied to polymer composites: A review. Compos. Sci. Technol. 2003, 63, 2029–2044. [Google Scholar] [CrossRef]
- Kuhn, M.; Johnson, K. Applied Predictive Modeling; Springer: New York, NY, USA, 2013; pp. 141–171. [Google Scholar]
- Schmidhuber, J. Deep learning in neural networks: An overview. Neural Netw. 2015, 61, 85–117. [Google Scholar] [CrossRef] [Green Version]
- LeCun, Y.; Bengio, Y.; Hinton, G. Deep learning. Nature London 2015, 521, 436–444. [Google Scholar] [CrossRef]
- Hinton, G.E.; Osindero, S.; Teh, Y. A Fast Learning Algorithm for Deep Belief Nets. Neural Comput. 2006, 18, 1527–1554. [Google Scholar] [CrossRef]
- Haykin, S. Neural Networks and Learning Machines; Pearson: Upper Saddle River, NJ, USA, 2009; Volume 3. [Google Scholar]
- Agatonovic-Kustrin, S.; Beresford, R. Basic concepts of artificial neural network (ANN) modeling and its application in pharmaceutical research. J. Pharm. Biomed. Anal. 2000, 22, 717–727. [Google Scholar] [CrossRef]
- Bengio, Y.; Boulanger-Lewandowski, N.; Pascanu, R. Advances in Optimizing Recurrent Networks; IEEE: New York, NY, USA, 2013; pp. 8624–8628. [Google Scholar]
- Cortes Zarta, J.F.; Giraldo Tique, Y.A.; Vergara Ramírez, C.F. Red neuronal convolucional para la percepción espacial del robot InMoov a través de visión estereoscópica como tecnología de asistencia. Enfoque UTE Rev. Científica 2021, 12, 88–104. [Google Scholar] [CrossRef]
- Khan, S.M.; Malik, S.A.; Gull, N.; Saleemi, S.; Islam, A.; Butt, M.T.Z. Fabrication and modelling of the macro-mechanical properties of cross-ply laminated fibre-reinforced polymer composites using artificial neural network. Adv. Compos. Mater. 2019, 28, 409–423. [Google Scholar] [CrossRef]
- Demirbay, B.; Kara, D.B.; Uğur, Ş. A Bayesian regularized feed-forward neural network model for conductivity prediction of PS/MWCNT nanocomposite film coatings. Appl. Soft Comput. 2020, 96, 106632. [Google Scholar] [CrossRef]
- Ibrahim, M.M.; Alnuwaiser, M.A.; Elkaeed, E.B.; Kotb, H.; Alshehri, S.; Abourehab, M.A.S. Computational modeling of Hg/Ni ions separation via MOF/LDH nanocomposite: Machine learning based modeling. Arab. J. Chem. 2022, 15, 104261. [Google Scholar] [CrossRef]
- Mingers, J. An empirical comparison of pruning methods for decision tree induction. Mach. Learn. 1989, 4, 227–243. [Google Scholar] [CrossRef] [Green Version]
- Yang, L.; Liu, S.; Tsoka, S.; Papageorgiou, L.G. A regression tree approach using mathematical programming. Expert Syst. Appl. 2017, 78, 347–357. [Google Scholar] [CrossRef] [Green Version]
- Xu, M.; Watanachaturaporn, P.; Varshney, P.K.; Arora, M.K. Decision tree regression for soft classification of remote sensing data. Remote Sens. Environ. 2005, 97, 322–336. [Google Scholar] [CrossRef]
- Quinlan, J.R. Induction of decision trees. Mach. Learn. 1986, 1, 81–106. [Google Scholar] [CrossRef] [Green Version]
- Umar, S.; Maryam, M.; Azhar, F.; Malik, S.; Samdani, G. Sentiment Analysis Approaches and Applications: A Survey. Int. J. Comput. Appl. 2018, 181, 1–9. [Google Scholar] [CrossRef]
- Cortes, C.; Vapnik, V. Support-vector networks. Mach. Learn. 1995, 20, 273–297. [Google Scholar] [CrossRef]
- Hastie, T.; Tibshirani, R.; Friedman, J. The Elements of Statistical Learning; Springer Series in Statistics; Springer: New York, NY, USA, 2001; pp. 417–455. [Google Scholar]
- Cristianini, N.; Shawe-Taylor, J. An Introduction to Support Vector Machines and Other Kernel-Based Learning Methods; Cambridge University Press: Cambridge, UK, 2000; pp. 93–122. [Google Scholar]
- Raghavendra, N.S.; Deka, P.C. Support vector machine applications in the field of hydrology: A review. Appl. Soft Comput. 2014, 19, 372–386. [Google Scholar] [CrossRef]
- Hsu, C.; Lin, C. A comparison of methods for multiclass support vector machines. TNN 2002, 13, 415–425. [Google Scholar]
- Carli, L.N.; Crespo, J.S.; Mauler, R.S. PHBV nanocomposites based on organomodified montmorillonite and halloysite: The effect of clay type on the morphology and thermal and mechanical properties. Composites. Part A Appl. Sci. Manuf. 2011, 42, 1601–1608. [Google Scholar] [CrossRef]
- Díez-Pascual, A.M.; Díez-Vicente, A.L. ZnO-Reinforced Poly(3-hydroxybutyrate-co-3-hydroxyvalerate) Bionanocomposites with Antimicrobial Function for Food Packaging. ACS Appl. Mater. Interfaces 2014, 6, 9822–9834. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mohammed, Z.; Tcherbi-Narteh, A.; Jeelani, S. Effect of graphene nanoplatelets and montmorillonite nanoclay on mechanical and thermal properties of polymer nanocomposites and carbon fiber reinforced composites. SN Appl. Sci. 2020, 2, 1959. [Google Scholar] [CrossRef]
- Liu, L.; Zhang, J.; Zhao, J.; Liu, F. Mechanical properties of graphene oxides. Nanoscale 2012, 4, 591–5916. [Google Scholar] [CrossRef]
- Zare, Y.; Rhee, K.Y. Simulation of Young’s modulus for clay-reinforced nanocomposites assuming mechanical percolation, clay-interphase networks and interfacial linkage. J. Mater. Res. Technol. 2020, 9, 12473–12483. [Google Scholar] [CrossRef]
- Liu, J.; Zhang, Y.; Zhang, Y.; Kitipornchai, S.; Yang, J. Machine learning assisted prediction of mechanical properties of graphene/aluminium nanocomposite based on molecular dynamics simulation. Mater. Des. 2022, 213, 110334. [Google Scholar] [CrossRef]
- Adel, H.; Palizban, S.M.M.; Sharifi, S.S.; Ilchi Ghazaan, M.; Habibnejad Korayem, A. Predicting mechanical properties of carbon nanotube-reinforced cementitious nanocomposites using interpretable ensemble learning models. Constr. Build. Mater. 2022, 354, 129209. [Google Scholar] [CrossRef]
- Zhang, Z.; Hong, Y.; Hou, B.; Zhang, Z.; Negahban, M.; Zhang, J. Accelerated discoveries of mechanical properties of graphene using machine learning and high-throughput computation. Carbon N. Y. 2019, 148, 115–123. [Google Scholar] [CrossRef] [Green Version]
- Aydin, F.; Durgut, R.; Mustu, M.; Demir, B. Prediction of wear performance of ZK60/CeO2 composites using machine learning models. Tribol. Int. 2023, 177, 107945. [Google Scholar] [CrossRef]
- Ho, N.X.; Le, T.; Le, M.V. Development of artificial intelligence based model for the prediction of Young’s modulus of polymer/carbon-nanotubes composites. Mech. Adv. Mater. Struct. 2022, 29, 5965–5978. [Google Scholar] [CrossRef]
- Khanam, P.N.; AlMaadeed, M.; AlMaadeed, S.; Kunhoth, S.; Ouederni, M.; Sun, D.; Hamilton, A.; Jones, E.H.; Mayoral, B. Optimization and Prediction of Mechanical and Thermal Properties of Graphene/LLDPE Nanocomposites by Using Artificial Neural Networks. Int. J. Polym. Sci. 2016, 2016, 1–15. [Google Scholar] [CrossRef] [Green Version]
- Goh, A.T.C.; Goh, S.H. Support vector machines: Their use in geotechnical engineering as illustrated using seismic liquefaction data. Comput. Geotech. 2007, 34, 410–421. [Google Scholar] [CrossRef]
- Tinoco, J.; Gomes Correia, A.; Cortez, P. Support vector machines applied to uniaxial compressive strength prediction of jet grouting columns. Comput. Geotech. 2014, 55, 132–140. [Google Scholar] [CrossRef]
- Zamanian, M.; Sadrnia, H.; Khojastehpour, M.; Rohani, A.; Thibault, J.; Hosseini, F. Multi-objective Optimization of PVA/TiO2/MMT Mixed Matrix Membrane for Food Packaging. J. Polym. Environ. 2023, 31, 90–101. [Google Scholar] [CrossRef]
- Wang, C.; Wang, L.; Soo, A.; Pathak, N.B.; Shon, H.K. Machine learning based prediction and optimization of thin film nanocomposite membranes for organic solvent nanofiltration. Sep. Purif. Technol. 2023, 304, 122328. [Google Scholar] [CrossRef]
- Leon-Becerra, J.; González-Estrada, O.A.; Sánchez-Acevedo, H. Comparison of Models to Predict Mechanical Properties of FR-AM Composites and a Fractographical Study. Polymers 2022, 14, 3546. [Google Scholar] [CrossRef]
- Amor, N.; Noman, M.T.; Ismail, A.; Petru, M.; Sebastian, N. Use of an Artificial Neural Network for Tensile Strength Prediction of Nano Titanium Dioxide Coated Cotton. Polymers 2022, 14, 937. [Google Scholar] [CrossRef]
- Nazar, S.; Yang, J.; Amin, M.N.; Khan, K.; Javed, M.F.; Althoey, F. Formulation of estimation models for the compressive strength of concrete mixed with nanosilica and carbon nanotubes. Dev. Built Environ. 2023, 13, 100113. [Google Scholar] [CrossRef]
Sample | GO (wt%) | Nanoclay (wt%) | Young’s Modulus (GPa) | Tensile Strength (MPa) | Elongation at Break (%) | Impact Strength (MJ/m3) |
---|---|---|---|---|---|---|
1 | 0 | 0 | 3.52 | 37.55 | 3.12 | 21.33 |
2 | 1 | 0 | 3.89 | 38.67 | 2.98 | 21.04 |
3 | 2 | 0 | 4.97 | 38.96 | 2.56 | 18.41 |
4 | 3 | 0 | 5.78 | 39.25 | 2.47 | 17.67 |
5 | 4 | 0 | 6.31 | 39.17 | 2.21 | 15.78 |
6 | 5 | 0 | 6.19 | 36.5 | 1.92 | 12.79 |
7 | 0 | 1 | 4.11 | 37.72 | 2.67 | 18.36 |
8 | 0 | 2 | 5.43 | 37.06 | 2.25 | 15.22 |
9 | 0 | 3 | 6.52 | 36.98 | 1.87 | 12.61 |
10 | 0 | 4 | 7.39 | 32.66 | 0.89 | 6.34 |
11 | 0 | 5 | 7.90 | 30.98 | 0.56 | 4.15 |
12 | 1 | 1 | 4.66 | 39.76 | 3.14 | 22.71 |
13 | 1 | 2 | 6.05 | 39.57 | 2.76 | 19.99 |
14 | 1 | 3 | 6.85 | 38.54 | 2.14 | 15.03 |
15 | 1 | 4 | 8.07 | 37.98 | 1.87 | 12.98 |
16 | 2 | 1 | 5.34 | 39.02 | 3.01 | 21.34 |
17 | 2 | 2 | 7.59 | 40.67 | 2.68 | 19.85 |
18 | 2 | 3 | 8.76 | 43.56 | 2.44 | 19.37 |
19 | 3 | 1 | 6.61 | 37.44 | 2.3 | 15.69 |
20 | 3 | 2 | 8.47 | 42.67 | 2.59 | 20.16 |
21 | 4 | 1 | 7.02 | 36.56 | 2.23 | 14.88 |
Splitter | Min Samples Split | Min Samples Leaf | Max Leaf Nodes | Max Features | R2 Train | R2 Test |
---|---|---|---|---|---|---|
best | 2 | 1 | None | auto | 1 | 0.8461 |
random | 2 | 1 | None | auto | 1 | 0.8461 |
best | 3 | 1 | None | auto | 0.9889 | 0.8248 |
best | 5 | 1 | None | auto | 0.7973 | 0.8506 |
best | 2 | 2 | None | auto | 0.7828 | 0.4550 |
best | 2 | 1 | 5 | auto | 0.8268 | 0.6842 |
best | 2 | 1 | 8 | auto | 0.9758 | 0.7810 |
best | 2 | 1 | 10 | auto | 0.9906 | 0.8248 |
best | 2 | 1 | 20 | auto | 1 | 0.8461 |
best | 2 | 1 | 30 | auto | 1 | 0.8461 |
best | 2 | 1 | 40 | auto | 1 | 0.8461 |
best | 2 | 1 | 50 | auto | 1 | 0.8461 |
best | 2 | 1 | 60 | auto | 1 | 0.8461 |
best | 2 | 1 | 80 | auto | 1 | 0.8461 |
best | 2 | 1 | 100 | auto | 1 | 0.8461 |
best | 2 | 1 | None | sqrt | 1 | 0.7957 |
best | 2 | 1 | None | log2 | 1 | 0.7874 |
Splitter | Min Samples Split | Min Samples Leaf | Max Leaf Nodes | Max Features | R2 Train | R2 Test |
---|---|---|---|---|---|---|
best | 2 | 1 | None | auto | 1 | 0.5728 |
random | 2 | 1 | None | auto | 1 | 0.8540 |
random | 3 | 1 | None | auto | 0.9819 | 0.5322 |
random | 5 | 1 | None | auto | 0.9483 | 0.2249 |
random | 2 | 2 | None | auto | 0.6415 | 0.5079 |
random | 2 | 1 | 5 | auto | 0.8724 | 0.5655 |
random | 2 | 1 | 10 | auto | 0.9902 | 0.5274 |
random | 2 | 1 | 20 | auto | 1 | 0.5728 |
random | 2 | 1 | 30 | auto | 1 | 0.9144 |
random | 2 | 1 | 40 | auto | 1 | 0.9159 |
random | 2 | 1 | 50 | auto | 1 | 0.9172 |
random | 2 | 1 | 60 | auto | 1 | 0.9188 |
random | 2 | 1 | 80 | auto | 1 | 0.9370 |
random | 2 | 1 | 100 | auto | 1 | 0.9386 |
random | 2 | 1 | 100 | sqrt | 1 | 0.9144 |
random | 2 | 1 | 100 | log2 | 1 | 0.9188 |
Epsilon | Gamma | R2 Train | R2 Test |
---|---|---|---|
0.10 | scale | 0.9985 | 0.7678 |
0.15 | scale | 0.9966 | 0.7834 |
0.20 | scale | 0.9942 | 0.8022 |
0.25 | scale | 0.9916 | 0.8157 |
0.30 | scale | 0.9887 | 0.8248 |
0.35 | scale | 0.9841 | 0.8293 |
0.40 | scale | 0.9790 | 0.8294 |
0.35 | 0.1 | 0.9718 | 0.7786 |
Splitter | Min Samples Split | Min Samples Leaf | Max Leaf Nodes | Max Features | R2 Train | R2 Test |
---|---|---|---|---|---|---|
best | 2 | 1 | None | auto | 1 | 0.5531 |
random | 2 | 1 | None | auto | 1 | 0.6511 |
random | 3 | 1 | None | auto | 0.9571 | 0.5939 |
random | 5 | 1 | None | auto | 0.8670 | 0.6025 |
random | 2 | 2 | None | auto | 0.7442 | 0.8786 |
random | 2 | 1 | 5 | auto | 0.8426 | 0.5838 |
random | 2 | 1 | 10 | auto | 0.9743 | 0.8863 |
random | 2 | 1 | 20 | auto | 0.9883 | 0.5346 |
random | 2 | 1 | 30 | auto | 1 | 0.8787 |
random | 2 | 1 | 40 | auto | 1 | 0.8769 |
random | 2 | 1 | 50 | auto | 1 | 0.8102 |
random | 2 | 1 | 60 | auto | 1 | 0.8894 |
random | 2 | 1 | 80 | auto | 0.9893 | 0.8770 |
random | 2 | 1 | 100 | auto | 0.9905 | 0.8878 |
random | 2 | 1 | 100 | sqrt | 1 | 0.8627 |
random | 2 | 1 | 100 | log2 | 1 | 0.8768 |
Epsilon | Gamma | R2 Train | R2 Test |
---|---|---|---|
0.01 | scale | 0.9985 | 0.6594 |
0.10 | scale | 0.9820 | 0.8057 |
0.15 | scale | 0.9686 | 0.8120 |
0.20 | scale | 0.9600 | 0.8141 |
0.25 | scale | 0.9403 | 0.7940 |
0.30 | scale | 0.9103 | 0.7558 |
0.35 | scale | 0.8700 | 0.6999 |
0.40 | scale | 0.8236 | 0.6250 |
0.20 | 0.1 | 0.9526 | 0.9127 |
0.20 | 0.2 | 0.9606 | 0.8228 |
0.20 | 0.3 | 0.9592 | 0.7745 |
Property | Coefficient of Determination | ANN | DT | SVM |
---|---|---|---|---|
Young’s modulus | R2 training | 0.9984 | 1 | 0.9902 |
R2 testing | 0.996 | 0.8461 | 0.9728 | |
Tensile strength | R2 training | 0.9941 | 1 | 0.9841 |
R2 testing | 0.579 | 0.9386 | 0.8293 | |
Elongation at break | R2 training | 0.9928 | 1 | 0.9526 |
R2 testing | 0.8723 | 0.8909 | 0.9127 |
Property | Metrics | ANN | DT | SVM |
---|---|---|---|---|
Young’s modulus | MSE | 0.0598 | 0.3284 | 0.0503 |
MAE | 0.1876 | 0.5440 | 0.2015 | |
Tensile strength | MSE | 2.9057 | 0.6364 | 1.9233 |
MAE | 1.4497 | 0.5140 | 1.1139 | |
Elongation at break | MSE | 0.0346 | 0.0630 | 0.0121 |
MAE | 0.1601 | 0.2080 | 0.1011 |
Property | ANN | SVM | DT | |||
---|---|---|---|---|---|---|
Experimental | Model | Experimental | Model | Experimental | Model | |
6.85 | 7.18 | 8.47 | 8.40 | 8.47 | 7.59 | |
4.66 | 4.49 | 4.97 | 4.66 | 4.97 | 5.34 | |
Young’s modulus | 7.02 | 7.12 | 7.02 | 6.88 | 7.02 | 6.61 |
5.43 | 5.33 | 7.39 | 7.36 | 7.39 | 7.90 | |
(GPa) | 8.47 | 8.77 | 4.66 | 4.25 | 4.66 | 4.11 |
37.44 | 40.60 | 42.67 | 40.25 | 37.98 | 38.54 | |
Tensile strength | 36.56 | 37.75 | 38.96 | 38.56 | 30.98 | 32.66 |
39.57 | 38.22 | 36.56 | 36.81 | 39.57 | 39.76 | |
42.67 | 43.64 | 32.66 | 34.36 | 39.17 | 39.25 | |
(MPa) | 37.98 | 37.41 | 39.76 | 38.97 | 38.96 | 39.02 |
2.30 | 2.45 | 2.14 | 2.19 | 2.59 | 2.68 | |
Elongation at break | 2.23 | 2.14 | 2.25 | 2.32 | 2.56 | 2.98 |
2.76 | 2.94 | 1.87 | 1.69 | 2.23 | 2.21 | |
2.59 | 2.37 | 2.47 | 2.36 | 0.89 | 0.56 | |
(%) | 1.87 | 1.41 | 2.98 | 2.89 | 3.14 | 3.01 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Champa-Bujaico, E.; Díez-Pascual, A.M.; García-Díaz, P. Synthesis and Characterization of Polyhydroxyalkanoate/Graphene Oxide/Nanoclay Bionanocomposites: Experimental Results and Theoretical Predictions via Machine Learning Models. Biomolecules 2023, 13, 1192. https://doi.org/10.3390/biom13081192
Champa-Bujaico E, Díez-Pascual AM, García-Díaz P. Synthesis and Characterization of Polyhydroxyalkanoate/Graphene Oxide/Nanoclay Bionanocomposites: Experimental Results and Theoretical Predictions via Machine Learning Models. Biomolecules. 2023; 13(8):1192. https://doi.org/10.3390/biom13081192
Chicago/Turabian StyleChampa-Bujaico, Elizabeth, Ana M. Díez-Pascual, and Pilar García-Díaz. 2023. "Synthesis and Characterization of Polyhydroxyalkanoate/Graphene Oxide/Nanoclay Bionanocomposites: Experimental Results and Theoretical Predictions via Machine Learning Models" Biomolecules 13, no. 8: 1192. https://doi.org/10.3390/biom13081192
APA StyleChampa-Bujaico, E., Díez-Pascual, A. M., & García-Díaz, P. (2023). Synthesis and Characterization of Polyhydroxyalkanoate/Graphene Oxide/Nanoclay Bionanocomposites: Experimental Results and Theoretical Predictions via Machine Learning Models. Biomolecules, 13(8), 1192. https://doi.org/10.3390/biom13081192