A Comprehensive Update on Late-Onset Pompe Disease
Abstract
:1. Introduction
Methods and Source | Period of Study | Expected Frequency of GSDII Cases | Population and Country | Reference |
---|---|---|---|---|
Estimation of the frequency of PD by determining carrier status in a randomly selected healthy population for seven of the most common mutations. | 1998 | 1.0 per 40,000 | N = 928 healthy individuals Five different race groups. Mostly aged between 20 and 50 y.o. USA | Martiniuk F et al. Am J Med Genet. 1998 [4] |
Calculation of the frequency of PD by screening a random sample of newborns for three frequent mutations in the acid alpha-glucosidase gene (IVS1(-13T®G), 525delT and delexon18). The screening was performed on DNA extracted from over 3000 Guthrie cards from Dutch neonates. | 1999 | 1.0 per 40,000 (1.0 per 138,000 for infantile GSDII; 1.0 per 57,000 for adult GSDII) | N = over 3000 Guthrie cards from Dutch neonates Netherlands | Ausems M. et al. Eur J Hum Genet. 1999 [5] |
Calculation of birth prevalence of lysosomal storage diseases (LSDs) based on records from the laboratories of the clinical genetic centers involved in the post- and prenatal diagnosis of LSDs. | 1970–1996 | Birth prevalence of 2.0 per 100,000 live births | N = 963 enzymatically confirmed cases Netherlands | Poorthuis BJ et al. Hum Genet. 1999 [3] |
Calculation of birth prevalence of each LSD by dividing the total number of diagnosed cases (post- and prenatal diagnosis) by the total number of live births that occurred between the years of birth of the older and younger patients (birth period). | 1940–1999 | Birth prevalence of 0.17 per 100,000 | Data from total N of live births from Instituto Nacional de Estatistica, Porto North Portugal | Pinto R et al. Eur J Hum Genet. 2004 [6] |
Frequency of PD assessed by newborn screening program. | 2010 | 1.0 per 8684 | N = 34,736 newborns screened Austria | Mechtler TP et al. Lancet. 2012 [15] |
Frequency of PD assessed by newborn screening program. | 2011 | 1.0 per 4447 | N = 40,024 newborns screened Hungary | Wittmann J et al. JIMD Rep. 2012 [12] |
Frequency of PD assessed by newborn screening program. | 2013–2016 | 1.0 per 34,401 | N = 103,204 newborns screened Japan | Momosaki K et al. Hum Genet. 2019 [18] |
Frequency of PD assessed by newborn screening program. | 2016–2019 | 1.0 per 16,095 | N = 531,139 newborns screened Pennsylvania, USA | Ficicioglu C et al. Int J Neonatal Screen. 2020 [8] |
Frequency of PD assessed by newborn screening program. | 2014–2019 | 1.0 per 23,596 | N = 684,290 newborns screened Illinois, USA | Burton BK et al. Int J Neonatal Screen. 2020 [14] |
Frequency of PD assessed by newborn screening program. | 2018–2019 | 1.0 per 25,200 | N = 453,152 screened newborns California, USA | Tang H et al. Int J Neonatal Screen. 2020 [9] |
Frequency of PD assessed by newborn screening program. | 2013–2018 | 1.0 per 10,152 | N = 476,000 screened newborns Missouri, USA | Klug TL et al. Int J Neonatal Screen. 2020 [10] |
Frequency of PD assessed by newborn screening program. | 2019 | 1.0 per 19,777 | N = 59,332 screened newborns Georgia, USA | Hall PL et al. Int J Neonatal Screen. 2020 [16] |
Frequency of PD assessed by newborn screening program. | 2013–2020 | 1.0 per 37,094 | N = 296,759 newborns screened Japan | Sawada T et al. Orphanet J Rare Dis. 2021 [7] |
Frequency of PD assessed by newborn screening program. | 2015–2022 | 1.0 per 18,432 | N = 206,741 screened newborns Italy | Gragnaniello V et al. Mol Genet Metab Rep. 2022 [11] |
2. Phenotypes and Phenotypic Heterogeneity
3. Clinical Assessment and Diagnostic Tools
4. Multisystem Involvement and Indications for Follow-up and Management
5. Future Perspectives in Monitoring LOPD Symptoms
6. Treatment Approaches
6.1. Enzyme Replacement Therapy (ERT)
6.2. Pharmacological Chaperone Therapy
6.3. Gene Therapy
6.3.1. AAV Vector-Mediated Gene Therapy in Pompe Disease
6.3.2. Lentiviral-Mediated Gene Therapy in Pompe Disease
6.4. Other Experimental Therapies
7. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Meena, N.K.; Raben, N. Pompe Disease: New Developments in an Old Lysosomal Storage Disorder. Biomolecules 2020, 10, 1339. [Google Scholar] [CrossRef] [PubMed]
- Reuser, A.J.J.; Kroos, M.A.; Hermans, M.M.P.; Bijvoet, A.G.A.; Verbeet, M.P.; Van Diggelen, O.P.; Kleijer, W.J.; Van Der Ploeg, A.T. Glycogenosis type II (acid maltase deficiency). Muscle Nerve 1995, 18, S61–S69. [Google Scholar] [CrossRef] [PubMed]
- Poorthuis, B.; Wevers, R.; Kleijer, W.; Groener, J.; de Jong, J.; van Weely, S.; Niezen-Koning, K.; van Diggelen, O. The frequency of lysosomal storage diseases in The Netherlands. Hum. Genet. 1999, 105, 151. [Google Scholar] [CrossRef]
- Martiniuk, F.; Chen, A.; Mack, A.; Arvanitopoulos, E.; Chen, Y.; Rom, W.N.; Codd, W.J.; Hanna, B.; Alcabes, P.; Raben, N.; et al. Carrier frequency for glycogen storage disease type II in New York and estimates of affected individuals born with the disease. Am. J. Med. Genet. 1998, 79, 69–72. [Google Scholar] [CrossRef]
- Ausems, M.; Verbiest, J.; Hermans, M.M.P.; Kroos, M.A.; Beemer, F.A.; Wokke, J.H.; Sandkuijl, L.A.; Reuser, A.J.J.; Van der Ploeg, A.T. Frequency of glycogen storage disease type II in the Netherlands: Implications for diagnosis and genetic counselling. Eur. J. Hum. Genet. 1999, 7, 713–716. [Google Scholar] [CrossRef]
- Pinto, R.R.; Caseiro, C.; Lemos, M.; Lopes, L.; Fontes, A.; Ribeiro, H.; Pinto, E.; Silva, E.; Rocha, S.; Marcão, A.; et al. Prevalence of lysosomal storage diseases in Portugal. Eur. J. Hum. Genet. 2003, 12, 87–92. [Google Scholar] [CrossRef] [PubMed]
- Sawada, T.; Kido, J.; Sugawara, K.; Momosaki, K.; Yoshida, S.; Kojima-Ishii, K.; Inoue, T.; Matsumoto, S.; Endo, F.; Ohga, S.; et al. Current status of newborn screening for Pompe disease in Japan. Orphanet J. Rare Dis. 2021, 16, 516. [Google Scholar] [CrossRef]
- Ficicioglu, C.; Ahrens-Nicklas, R.C.; Barch, J.; Cuddapah, S.R.; DiBoscio, B.S.; DiPerna, J.C.; Gordon, P.L.; Henderson, N.; Menello, C.; Luongo, N.; et al. Newborn screening for Pompe Disease: Pennsylvania experience. Int. J. Neonatal Screen. 2020, 6, 89. [Google Scholar] [CrossRef]
- Tang, H.; Feuchtbaum, L.; Sciortino, S.; Matteson, J.; Mathur, D.; Bishop, T.; Olney, R.S. The First Year Experience of Newborn Screening for Pompe Disease in California. Int. J. Neonatal Screen. 2020, 6, 9. [Google Scholar] [CrossRef]
- Klug, T.L.; Swartz, L.B.; Washburn, J.; Brannen, C.; Kiesling, J.L. Lessons Learned from Pompe Disease Newborn Screening and Follow-up. Int. J. Neonatal Screen. 2020, 6, 11. [Google Scholar] [CrossRef]
- Gragnaniello, V.; Pijnappel, P.W.W.M.; Burlina, A.P.; In ‘t Groen, S.L.M.; Gueraldi, D.; Cazzorla, C.; Maines, E.; Polo, G.; Salviati, L.; Di Salvo, G.; et al. Newborn screening for Pompe Disease in Italy: Long-term results and future challenges. Mol. Genet. Metab. Rep. 2022, 33, 100929. [Google Scholar] [CrossRef]
- Wittmann, J.; Karg, E.; Turi, S.; Legnini, E.; Wittmann, G.; Giese, A.-K.; Lukas, J.; Gölnitz, U.; Klingenhäger, M.; Bodamer, O.; et al. Newborn Screening for Lysosomal Storage Disorders in Hungary. JIMD Rep. Case Res. Rep. 2012, 6, 117–125. [Google Scholar] [CrossRef]
- Chiang, S.C.; Hwu, W.; Lee, N.; Hsu, L.W.; Chien, Y.H. Algorithm for Pompe Disease newborn screening: Results from the Taiwan screening program. Mol. Genet. Metab. 2012, 106, 281–286. [Google Scholar] [CrossRef] [PubMed]
- Burton, B.K.; Charrow, J.; Hoganson, G.E.; Fleischer, J.; Grange, D.K.; Braddock, S.R.; Hitchins, L.; Hickey, R.; Christensen, K.M.; Groepper, D.; et al. Newborn Screening for Pompe Disease in Illinois: Experience with 684,290 Infants. Int. J. Neonatal Screen. 2020, 6, 4. [Google Scholar] [CrossRef] [PubMed]
- Mechtler, T.P.; Stary, S.; Metz, T.F.; De Jesús, V.R.; Greber-Platzer, S.; Pollak, A.; Herkner, K.R.; Streubel, B.; Kasper, D.C. Neonatal screening for lysosomal storage disorders: Feasibility and incidence from a nationwide study in Austria. Lancet 2012, 379, 335–341. [Google Scholar] [CrossRef] [PubMed]
- Hall, P.L.; Sanchez, R.; Hagar, A.F.; Jerris, S.C.; Wittenauer, A.; Wilcox, W.R. Two-Tiered Newborn Screening with Post-Analytical Tools for Pompe Disease and Mucopolysaccharidosis Type I Results in Performance Improvement and Future Direction. Int. J. Neonatal Screen. 2020, 6, 2. [Google Scholar] [CrossRef]
- Navarrete-Martínez, J.I.; Limón-Rojas, A.E.; Gaytán-García, M.d.J.; Reyna-Figueroa, J.; Wakida-Kusunoki, G.; Delgado-Calvillo, M.d.R.; Cantú-Reyna, C.; Cruz-Camino, H.; Cervantes-Barragán, D.E. Newborn screening for six lysosomal storage disorders in a cohort of Mexican patients: Three-year findings from a screening program in a closed Mexican health system. Mol. Genet. Metab. 2017, 121, 16–21. [Google Scholar] [CrossRef]
- Momosaki, K.; Kido, J.; Yoshida, S.; Sugawara, K.; Miyamoto, T.; Inoue, T.; Okumiya, T.; Matsumoto, S.; Endo, F.; Hirose, S.; et al. Newborn screening for Pompe disease in Japan: Report and literature review of mutations in the GAA gene in Japanese and Asian patients. J. Hum. Genet. 2019, 64, 741–755. [Google Scholar] [CrossRef]
- Kohler, L.; Puertollano, R.; Raben, N. Pompe Disease: From Basic Science to Therapy. Neurotherapeutics 2018, 15, 928–942. [Google Scholar] [CrossRef]
- Peruzzo, P.; Pavan, E.; Dardis, A. Molecular genetics of Pompe disease: A comprehensive overview. Ann. Transl. Med. 2019, 7, 278. [Google Scholar] [CrossRef]
- Wisselaar, H.A.; Kroos, M.A.; Hermans, M.P.; Van Beeumens, J.; Reusers, A.J. Structural and functional changes of lysosomal acid alpha-glucosidase during intracellular transport and maturation. J. Biol. Chem. 1993, 268, 2223–2231. [Google Scholar] [CrossRef] [PubMed]
- Roig-zamboni, V.; Cobucci-Ponzano, B.; Iacono, R.; Ferrara, M.C.; Germany, S.; Bourne, Y.; Parenti, G.; Moracci, M.; Sulzenbacher, G. Structure of human lysosomal acid α-glucosidase– a guide for the treatment of Pompe Disease. Nat. Commun. 2017, 8, 1111. [Google Scholar] [CrossRef]
- Park, H.; Kim, J.; Lee, Y.K.; Kim, W.; You, S.K.; Do, J.; Jang, Y.; Oh, D.B.; Kim, H.H. Four unreported types of glycans containing mannose-6-phosphate are heterogeneously attached at three sites (including newly found Asn 233) to recombinant human acid alpha-glucosidase that is the only approved treatment for Pompe Disease. Biochem. Biophys. Res. Commun. 2018, 495, 2418–2424. [Google Scholar] [CrossRef] [PubMed]
- Hermans, M.M.; Wisselaar, H.A.; Kroos, M.A.; Oostra, B.A.; Reuser, A.J. Human lysosomal alpha-glucosidase: Functional characterization of the glycosylation sites. Biochem. J. 1993, 289, 681–686. [Google Scholar] [CrossRef] [PubMed]
- Tong, P.Y.; Gregory, W.; Kornfelds, S. Ligand interactions of the cation-independent mannose 6-phosphate receptor. The stoichiometry of mannose 6-phosphate binding. J. Biol. Chem. 1989, 264, 7962–7969. [Google Scholar] [CrossRef]
- Kaplan, A.; Achord, D.T.; Sly, W.S. Phosphohexosyl components of a lysosomal enzyme are recognized by pinocytosis receptors on human fibroblasts. Proc. Natl. Acad. Sci. USA 1977, 74, 2026–2030. [Google Scholar] [CrossRef]
- Griffiths, G.; Hoflack, B.; Simons, K.; Mellman, I.; Kornfeld, S. The mannose 6-phosphate receptor and the biogenesis of lysosomes. Cell 1988, 52, 329–341. [Google Scholar] [CrossRef]
- Raben, N.; Roberts, A.; Plotz, P.H. Role of autophagy in the pathogenesis of Pompe disease. Acta Myol. Myopathies cardiomyopathies Off. J. Mediterr. Soc. Myol. 2007, 26, 45–48. [Google Scholar]
- Moreland, R.J.; Jin, X.; Zhang, X.K.; Decker, R.W.; Albee, K.L.; Lee, K.L.; Cauthron, R.D.; Brewer, K.; Edmunds, T.; Canfield, W.M. Lysosomal Acid α-Glucosidase Consists of Four Different Peptides Processed from a Single Chain Precursor. J. Biol. Chem. 2005, 280, 6780–6791. [Google Scholar] [CrossRef]
- Selvan, N.; Mehta, N.; Venkateswaran, S.; Brignol, N.; Graziano, M.; Sheikh, M.O.; McAnany, Y.; Hung, F.; Madrid, M.; Krampetz, R.; et al. Endolysosomal N-glycan processing is critical to attain the most active form of the enzyme acid alpha-glucosidase. J. Biol. Chem. 2021, 296, 100769. [Google Scholar] [CrossRef]
- Raben, N.; Wong, A.; Ralston, E.; Myerowitz, R. Autophagy and mitochondria in Pompe disease: Nothing is so new as what has long been forgotten. Am. J. Med. Genet. Part C Semin. Med. Genet. 2012, 160, 13–21. [Google Scholar] [CrossRef] [PubMed]
- Slonim, A.E.; Bulone, L.; Ritz, S.; Goldberg, T.; Chen, A.; Martiniuk, F. Identification of two subtypes of infantile acid maltase deficiency. J. Pediatr. 2000, 137, 283–285. [Google Scholar] [CrossRef] [PubMed]
- Kishnani, P.S.; Hwu, W.-L.; Mandel, H.; Nicolino, M.; Yong, F.; Corzo, D. Infantile-Onset Pompe Disease Natural History Study Group. A retrospective, multinational, multicenter study on the natural history of infantile-onset Pompe disease. J. Pediatr. 2006, 148, 671–676.e2. [Google Scholar] [CrossRef]
- Angelini, C.; Engel, A.G. Comparative study of acid maltase deficiency: Biochemical differences between infantile, childhood, and adult types. Arch. Neurol. 1972, 26, 344–349. [Google Scholar] [CrossRef] [PubMed]
- Holzwarth, J.; Minopoli, N.; Pfrimmer, C.; Smitka, M.; Borrel, S.; Kirschner, J.; Muschol, N.; Hartmann, H.; Hennermann, J.B.; Neubauer, B.A.; et al. Clinical and Genetic Aspects of Juvenile Onset Pompe Disease. Neuropediatrics 2021, 53, 39–45. [Google Scholar] [CrossRef] [PubMed]
- Semplicini, C.; Letard, P.; De Antonio, M.; Taouagh, N.; Perniconi, B.; Bouhour, F.; Echaniz-Laguna, A.; Orlikowski, D.; Sacconi, S.; Salort-Campana, E.; et al. Late-onset Pompe disease in France: Molecular features and epidemiology from a nationwide study. J. Inherit. Metab. Dis. 2018, 41, 937–946. [Google Scholar] [CrossRef] [PubMed]
- Toscano, A.; Rodolico, C.; Musumeci, O. Multisystem late onset Pompe disease (LOPD): An update on clinical aspects. Ann. Transl. Med. 2019, 7, 284. [Google Scholar] [CrossRef]
- Filosto, M.; Cotelli, M.; Vielmi, V.; Todeschini, A.; Rinaldi, F.; Rota, S.; Scarpelli, M.; Padovani, A. Late-onset Glycogen Storage Disease type 2. Curr. Mol. Med. 2014, 14, 971–978. [Google Scholar] [CrossRef]
- Wokke, J.H.J.; Escolar, D.M.; Pestronk, A.; Jaffe, K.M.; Carter, G.T.; Van Den Berg, L.H.; Florence, J.M.; Mayhew, J.; Skrinar, A.; Corzo, D.; et al. Clinical features of late-onset Pompe disease: A prospective cohort study. Muscle Nerve 2008, 38, 1236–1245. [Google Scholar] [CrossRef]
- Niño, M.Y.; Wijgerde, M.; De Faria, D.O.S.; Hoogeveen-Westerveld, M.; Bergsma, A.J.; Broeders, M.; Van der Beek, N.A.M.E.; Van den Hout, H.J.M.; Van der Ploeg, A.T.; Verheijen, F.W.; et al. Enzymatic diagnosis of Pompe Disease: Lessons from 28 years of experience. Eur. J. Hum. Genet. 2021, 29, 434–446. [Google Scholar] [CrossRef]
- Viamonte, M.A.; Filipp, S.L.; Zaidi, Z.; Gurka, M.J.; Byrne, B.J.; Kang, P.B. Phenotypic implications of pathogenic variant types in Pompe disease. J. Hum. Genet. 2021, 66, 1089–1099. [Google Scholar] [CrossRef] [PubMed]
- Reuser, A.J.J.; Ploeg, A.T.; Chien, Y.; Llerena, J.; Abbott, M.; Clemens, P.R.; Kimonis, V.E.; Leslie, N.; Maruti, S.S.; Sanson, B.; et al. GAA variants and phenotypes among 1079 patients with Pompe disease: Data from the Pompe Registry. Hum. Mutat. 2019, 40, 2146–2164. [Google Scholar] [CrossRef] [PubMed]
- Sampaolo, S.; Esposito, T.; Farina, O.; Formicola, D.; Diodato, D.; Gianfrancesco, F.; Cipullo, F.; Cremone, G.; Cirillo, M.; Del Viscovo, L.; et al. Distinct disease phenotypes linked to different combinations of GAA mutations in a large late-onset GSDII sibship. Orphanet J. Rare Dis. 2013, 8, 159. [Google Scholar] [CrossRef] [PubMed]
- Angelini, C.; Bembi, B.; Burlina, A.; Filosto, M.; Maioli, M.A.; Morandi, L.O.; Parini, R.; Pegoraro, E.; Ravaglia, S.; Servidei, S.; et al. Changing Characteristics of Late-Onset Pompe Disease Patients in Italy: Data from the Pompe Registry. J. Neuromuscul. Dis. 2015, 2, S36–S37. [Google Scholar] [CrossRef]
- Kroos, M.A.; Van der Kraan, M.; Van Diggelen, O.P.; Kleijer, W.J.; Reuser, A.J.; Boogaard, M.J.V.D.; Ausems, M.G.; van Amstel, H.K.P.; Poenaru, L.; Nicolino, M. Glycogen storage disease type II: Frequency of three common mutant alleles and their associated clinical phenotypes studied in 121 patients. J. Med. Genet. 1995, 32, 836–837. [Google Scholar] [CrossRef] [PubMed]
- Herbert, M.; Case, L.E.; Rairikar, M.; Cope, H.; Bailey, L.; Austin, S.L.; Kishnani, P.S. Early-onset of symptoms and clinical course of Pompe disease associated with the c.-32–13 T > G variant. Mol. Genet. Metab. 2018, 126, 106–116. [Google Scholar] [CrossRef] [PubMed]
- Bergsma, A.J.; In ‘t Groen, S.L.M.; Van den Dorpel, J.J.A.; Van den Hout, H.J.M.P.; Van der Beek, N.A.M.E.; Schoser, B.; Toscano, A.; Musumeci, O.; Bembi, B.; Dardis, A.; et al. A genetic modifier of symptom onset in Pompe Disease. eBioMedicine 2019, 43, 553–561. [Google Scholar] [CrossRef]
- Wens, S.; Van Gelder, C.; Kruijshaar, M.; De Vries, J.; Van der Beek, N.; Reuser, A.; Van Doorn, P.; Van der Ploeg, A.; Brusse, E.P. 17.1 Phenotypic variation within 22 families with Pompe disease. Neuromuscul. Disord. 2013, 23, 826. [Google Scholar] [CrossRef]
- De Filippi, P.; Saeidi, K.; Ravaglia, S.; Dardis, A.; Angelini, C.; Mongini, T.; Morandi, L.; Moggio, M.; Di Muzio, A.; Filosto, M.; et al. Genotype-phenotype correlation in Pompe disease, a step forward. Orphanet J. Rare Dis. 2014, 9, 102. [Google Scholar] [CrossRef]
- Kroos, M.A.; Pomponio, R.J.; Hagemans, M.L.; Keulemans, J.; Phipps, M.; DeRiso, M.; Palmer, R.E.; Ausems, M.G.; Van der Beek, N.A.; Van Diggelen, O.P.; et al. Broad spectrum of Pompe disease in patients with the same c.-32-13T->G haplotype. Neurology 2007, 68, 110–115. [Google Scholar] [CrossRef]
- Kuperus, E.; Van der Meijden, J.C.; In ‘t Groen, S.L.M.; Kroos, M.A.; Hoogeveen-Westerveld, M.; Rizopoulos, D.; Martinez, M.Y.N.; Kruijshaar, M.E.; Van Doorn, P.A.; Van der Beek, N.A.M.E.; et al. The ACE I/D polymorphism does not explain heterogeneity of natural course and response to enzyme replacement therapy in Pompe Disease. PLoS ONE. 2018, 13, e0208854. [Google Scholar] [CrossRef] [PubMed]
- Lukacs, Z.; Cobos, P.N.; Wenninger, S.; Willis, T.A.; Guglieri, M.; Roberts, M.; Quinlivan, R.; Hilton-Jones, D.; Evangelista, T.; Zierz, S.; et al. Prevalence of Pompe disease in 3076 patients with hyperCKemia and limb-girdle muscular weakness. Neurology 2016, 87, 295–298. [Google Scholar] [CrossRef] [PubMed]
- Alejaldre, A.; Diaz-Manera, J.; Ravaglia, S.; Tibaldi, E.C.; D’Amore, F.; Moris, G.; Muelas, N.; Vilchez, J.J.; García-Medina, A.; Usón, M.; et al. Trunk muscle involvement in late-onset Pompe disease: Study of thirty patients. Neuromuscul. Disord. 2012, 22 (Suppl. 2), S148–S154. [Google Scholar] [CrossRef] [PubMed]
- Jones, H.N.; Hobson-Webb, L.D.; Kuchibhatla, M.; Crisp, K.D.; Whyte-Rayson, A.; Batten, M.T.; Zwelling, P.J.; Kishnani, P.S. Tongue weakness and atrophy differentiates late-onset Pompe disease from other forms of acquired/hereditary myopathy. Mol. Genet. Metab. 2021, 133, 261–268. [Google Scholar] [CrossRef] [PubMed]
- Dubrovsky, A.; Corderi, J.; Lin, M.; Kishnani, P.S.; Jones, H.N. Expanding the phenotype of late-onset pompe disease: Tongue weakness: A new clinical observation. Muscle Nerve 2011, 44, 897–901. [Google Scholar] [CrossRef]
- Al-Hashel, J.; Ismail, I. Late-Onset Pompe Disease Presenting with Isolated Tongue Involvement. Case Rep. Neurol. 2022, 14, 98–103. [Google Scholar] [CrossRef]
- Karam, C.; Dimitrova, D.; Yutan, E.; Chahin, N. Bright tongue sign in patients with late-onset Pompe disease. J. Neurol. 2019, 266, 2518–2523. [Google Scholar] [CrossRef]
- Kishnani, P.S.; Steiner, R.D.; Bali, D.; Berger, K.; Byrne, B.J.; Case, L.E.; Crowley, J.F.; Downs, S.; Howell, R.R.; Kravitz, R.M.; et al. Pompe disease diagnosis and management guideline. Anesthesia Analg. 2006, 8, 267–288. [Google Scholar] [CrossRef]
- Wagner, M.; Chaouch, A.; Müller, J.S.; Polvikoski, T.; Willis, T.A.; Sarkozy, A.; Eagle, M.; Bushby, K.; Straub, V.; Lochmüller, H. Presymptomatic late-onset Pompe disease identified by the dried blood spot test. Neuromuscul. Disord. 2013, 23, 89–92. [Google Scholar] [CrossRef]
- Spada, M.; Porta, F.; Vercelli, L.; Pagliardini, V.; Chiadò-Piat, L.; Boffi, P.; Pagliardini, S.; Remiche, G.; Ronchi, D.; Comi, G.; et al. Screening for later-onset Pompe’s disease in patients with paucisymptomatic hyperCKemia. Mol. Genet. Metab. 2013, 109, 171–173. [Google Scholar] [CrossRef]
- Musumeci, O.; La Marca, G.; Spada, M.; Mondello, S.; Danesino, C.; Comi, G.P.; Pegoraro, E.; Antonini, G.; Marrosu, G.; Liguori, R.; et al. LOPED study: Looking for an early diagnosis in a late-onset Pompe Disease high-risk population. J. Neurol. Neurosurg. Psychiatry. 2016, 87, 5–11. [Google Scholar] [CrossRef] [PubMed]
- Gutiérrez-Rivas, E.; Bautista, J.; Vílchez, J.; Muelas, N.; Díaz-Manera, J.; Illa, I.; Martínez-Arroyo, A.; Olivé, M.; Sanz, I.; Arpa, J.; et al. Targeted screening for the detection of Pompe disease in patients with unclassified limb-girdle muscular dystrophy or asymptomatic hyperCKemia using dried blood: A Spanish cohort. Neuromuscul. Disord. 2015, 25, 548–553. [Google Scholar] [CrossRef] [PubMed]
- Wens, S.C.; Schaaf, G.J.; Michels, M.; Kruijshaar, M.E.; van Gestel, T.J.; Groen, S.I.; Pijnenburg, J.; Dekkers, D.H.; Demmers, J.A.; Verdijk, L.B.; et al. Elevated Plasma Cardiac Troponin T Levels Caused by Skeletal Muscle Damage in Pompe Disease. Circ. Cardiovasc. Genet. 2016, 9, 6–13. [Google Scholar] [CrossRef] [PubMed]
- Hoeksma, M.; Boon, M.; Niezen-Koning, K.E.; Van Overbeek-van Gils, L.; Van Spronsen, F.J. Isolated elevated serum transaminases leading to the diagnosis of asymptomatic Pompe Disease. Eur. J. Pediatr. 2007, 166, 871–874. [Google Scholar] [CrossRef]
- Müller-Felber, W.; Horvath, R.; Gempel, K.; Podskarbi, T.; Shin, Y.; Pongratz, D.; Walter, M.C.; Baethmann, M.; Schlotter-Weigel, B.; Lochmüller, H.; et al. Late onset Pompe disease: Clinical and neurophysiological spectrum of 38 patients including long-term follow-up in 18 patients. Neuromuscul. Disord. 2007, 17, 698–706. [Google Scholar] [CrossRef]
- Kassardjian, C.D.; Engel, A.G.; Sorenson, E.J. Electromyographic findings in 37 patients with adult-onset acid maltase deficiency. Muscle Nerve 2015, 51, 759–761. [Google Scholar] [CrossRef]
- Pongratz, D.; Kötzner, H.; Hübner, G.; Deufel, T.; Wieland, O.H. Adult form of acid maltase deficiency presenting as progressive spinal muscular atrophy. Deut Med. Wochenschr. 1984, 109, 537–541. [Google Scholar] [CrossRef]
- Khan, A.A.; Boggs, T.; Bowling, M.; Austin, S.; Stefanescu, M.; Case, L.; Kishnani, P.S. Whole-body magnetic resonance imaging in late-onset Pompe disease: Clinical utility and correlation with functional measures. J. Inherit. Metab. Dis. 2019, 43, 549–557. [Google Scholar] [CrossRef]
- Figueroa-Bonaparte, S.; Segovia, S.; Llauger, J.; Belmonte, I.; Pedrosa, I.; Alejaldre, A.; Mayos, M.; Suárez-Cuartín, G.; Gallardo, E.; Illa, I.; et al. Muscle MRI Findings in Childhood/Adult Onset Pompe Disease Correlate with Muscle Function. PLoS ONE 2016, 11, e0163493. [Google Scholar] [CrossRef]
- Alonso-Jiménez, A.; Nuñez-Peralta, C.; Montesinos, P.; Alonso-Pérez, J.; García, C.; Montiel, E.; Belmonte, I.; Pedrosa, I.; Segovia, S.; Llauger, J.; et al. Different Approaches to Analyze Muscle Fat Replacement With Dixon MRI in Pompe Disease. Front. Neurol. 2021, 12, 675781. [Google Scholar] [CrossRef]
- Carlier, R.-Y.; Laforet, P.; Wary, C.; Mompoint, D.; Laloui, K.; Pellegrini, N.; Annane, D.; Carlier, P.G.; Orlikowski, D. Whole-body muscle MRI in 20 patients suffering from late onset Pompe disease: Involvement patterns. Neuromuscul. Disord. 2011, 21, 791–799. [Google Scholar] [CrossRef]
- Mercuri, E.; Counsell, S.; Allsop, J.; Jungbluth, H.; Kinali, M.; Bonne, G.; Schwartz, K.; Bydder, G.; Dubowitz, V.; Muntoni, F. Selective Muscle Involvement on Magnetic Resonance Imaging in Autosomal Dominant Emery-Dreifuss Muscular Dystrophy. Neuropediatrics 2002, 33, 10–14. [Google Scholar] [CrossRef]
- Jordan, B.; Eger, K.; Koesling, S.; Zierz, S. Camptocormia phenotype of FSHD: A clinical and MRI study on six patients. J. Neurol. 2010, 258, 866–873. [Google Scholar] [CrossRef]
- Mercuri, E.; Clements, E.; Offiah, A.; Pichiecchio, A.; Vasco, G.; Bianco, F.; Berardinelli, A.; Manzur, A.; Pane, M.; Messina, S.; et al. Muscle magnetic resonance imaging involvement in muscular dystrophies with rigidity of the spine. Ann. Neurol. 2010, 67, 201–208. [Google Scholar] [CrossRef]
- Pichiecchio, A.; Rossi, M.; Cinnante, C.; Colafati, G.S.; Icco, R.; Parini, R.; Menni, F.; Furlan, F.; Burlina, A.; Sacchini, M.; et al. Muscle MRI of classic infantile pompe patients: Fatty substitution and edema-like changes. Muscle Nerve 2017, 55, 841–848. [Google Scholar] [CrossRef] [PubMed]
- Vaeggemose, M.; Mencagli, R.A.; Hansen, J.S.; Dräger, B.; Ringgaard, S.; Vissing, J.; Andersen, H. Function, structure and quality of striated muscles in the lower extremities in patients with late onset Pompe Disease—An MRI study. PeerJ 2021, 9, e10928. [Google Scholar] [CrossRef] [PubMed]
- Harlaar, L.; Ciet, P.; van Tulder, G.; Pittaro, A.; van Kooten, H.A.; van der Beek, N.A.M.E.; Brusse, E.; Wielopolski, P.A.; de Bruijne, M.; van der Ploeg, A.T.; et al. Chest MRI to diagnose early diaphragmatic weakness in Pompe disease. Orphanet J. Rare Dis. 2021, 16, 21. [Google Scholar] [CrossRef]
- Wens, S.C.A.; Ciet, P.; Perez-Rovira, A.; Logie, K.; Salamon, E.; Wielopolski, P.; De Bruijne, M.; Kruijshaar, M.E.; Tiddens, H.A.W.M.; Van Doorn, P.A.; et al. Lung MRI and impairment of diaphragmatic function in Pompe Disease. BMC Pulm. Med. 2015, 15, 54. [Google Scholar] [CrossRef] [PubMed]
- Harlaar, L.; Ciet, P.; Van Tulder, G.; Brusse, E.; Timmermans, R.G.M.; Janssen, W.G.M.; De Bruijine, M.; van der Ploeg, A.T.; Tiddens, H.A.W.M.; Van Doorn, P.A.; et al. Diaphragmatic dysfunction in neuromuscular disease, an MRI study. Neuromuscul. Disord. 2022, 32, 15–24. [Google Scholar] [CrossRef] [PubMed]
- Montagnese, F.; Barca, E.; Musumeci, O.; Mondello, S.; Migliorato, A.; Ciranni, A.; Rodolico, C.; De Filippi, P.; Danesino, C.; Toscano, A. Clinical and molecular aspects of 30 patients with late-onset Pompe disease (LOPD): Unusual features and response to treatment. J. Neurol. 2015, 262, 968–978. [Google Scholar] [CrossRef] [PubMed]
- Werneck, L.C.; Lorenzoni, P.J.; Kay, C.S.K.; Scola, R.H. Muscle biopsy in Pompe disease. Arq. de Neuro-Psiquiatria 2013, 71, 284–289. [Google Scholar] [CrossRef]
- Schoser, B.G.H.; Müller-Höcker, J.; Horvath, R.; Gempel, K.; Pongratz, D.; Lochmüller, H.; Müller-Felber, W. Adult-onset glycogen storage disease type 2: Clinico-pathological phenotype revisited. Neuropathol. Appl. Neurobiol. 2007, 33, 544–559. [Google Scholar] [CrossRef] [PubMed]
- Laforet, P.; Nicolino, M.; Eymard, B.; Puech, J.P.; Caillaud, C.; Poenaru, L.; Fardeau, M. Juvenile and adult-onset acid maltase deficiency in France: Genotype-phenotype correlation. Neurology 2000, 55, 1122–1128. [Google Scholar] [CrossRef] [PubMed]
- Lynch, C.M.; Johnson, J.; Vaccaro, C.; Thurberg, B.L. High-resolution Light Microscopy (HRLM) and Digital Analysis of Pompe Disease Pathology. J. Histochem. Cytochem. 2005, 53, 63–73. [Google Scholar] [CrossRef] [PubMed]
- Terracciano, C.; Rastelli, E.; Massa, R. Periodic acid-Schiff staining on resin muscle sections: Improvement in the histological diagnosis of late-onset Pompe disease. Muscle Nerve 2011, 45, 611–612. [Google Scholar] [CrossRef]
- Feeney, E.J.; Austin, S.; Chien, Y.-H.; Mandel, H.; Schoser, B.; Prater, S.; Hwu, W.-L.; Ralston, E.; Kishnani, P.S.; Raben, N. The value of muscle biopsies in Pompe disease: Identifying lipofuscin inclusions in juvenile- and adult-onset patients. Acta Neuropathol. Commun. 2014, 2, 2. [Google Scholar] [CrossRef]
- Taverna, S.; Cammarata, G.; Colomba, P.; Sciarrino, S.; Zizzo, C.; Francofonte, D.; Zora, M.; Scalia, S.; Brando, C.; Curto, A.L.o.; et al. Pompe Disease: Pathogenesis, molecular genetics and diagnosis. Aging 2020, 12, 15856–15874. [Google Scholar] [CrossRef]
- Savarese, M.; Torella, A.; Musumeci, O.; Angelini, C.; Astrea, G.; Bello, L.; Bruno, C.; Comi, G.P.; Di Fruscio, G.; Piluso, G.; et al. Targeted gene panel screening is an effective tool to identify undiagnosed late onset Pompe disease. Neuromuscul. Disord. 2018, 28, 586–591. [Google Scholar] [CrossRef]
- Whitaker, C.H.; Felice, K.J.; Natowicz, M. Biopsy-proven alpha-glucosidase deficiency with normal lymphocyte enzyme activity. Muscle Nerve 2004, 29, 440–442. [Google Scholar] [CrossRef]
- Okumiya, T.; Keulemans, J.L.; Kroos, M.A.; Van der Beek, N.M.; Boer, M.A.; Takeuchi, H.; Van Diggelen, O.P.; Reuser, A.J. A new diagnostic assay for glycogen storage disease type II in mixed leukocytes. Mol. Genet. Metab. 2006, 88, 22–28. [Google Scholar] [CrossRef]
- Van der Ploeg, A.T.; Reuser, A.J. Pompe’s disease. Lancet 2008, 372, 1342–1353. [Google Scholar] [CrossRef]
- Lukacs, Z.; Oliva, P.; Nieves Cobos, P.; Scott, J.; Mechtler, T.P.; Kasper, D.C. At-Risk Testing for Pompe Disease using dried bloodspots: Lessons learned for newborn screening. Int. J. Neonatal Screen. 2020, 6, 96. [Google Scholar] [CrossRef]
- Vissing, J.; Lukacs, Z.; Straub, V. Diagnosis of Pompe Disease: Muscle biopsy vs blood-based assays. JAMA Neurol. 2013, 70, 923–927. [Google Scholar] [CrossRef] [PubMed]
- Kishnani, P.S.; Amartino, H.M.; Lindberg, C.; Miller, T.M.; Wilson, A.; Keutzer, J. Methods of diagnosis of patients with Pompe disease: Data from the Pompe Registry. Mol. Genet. Metab. 2014, 113, 84–91. [Google Scholar] [CrossRef] [PubMed]
- Goldstein, J.L.; Young, S.P.; Changela, M.; Dickerson, G.H.; Zhang, H.; Dai, J.; Peterson, D.; Millington, D.S.; Kishnani, P.S.; Bali, D.S. Screening for pompe disease using a rapid dried blood spot method: Experience of a clinical diagnostic laboratory. Muscle Nerve 2009, 40, 32–36. [Google Scholar] [CrossRef] [PubMed]
- Winchester, B.; Bali, D.; Bodamer, O.; Caillaud, C.; Christensen, E.; Cooper, A.; Cupler, E.; Deschauer, M.; Fumić, K.; Jackson, M.; et al. Methods for a prompt and reliable laboratory diagnosis of Pompe disease: Report from an international consensus meeting. Mol. Genet. Metab. 2008, 93, 275–281. [Google Scholar] [CrossRef] [PubMed]
- Kallwass, H.; Carr, C.; Gerrein, J.; Titlow, M.; Pomponio, R.; Bali, D.; Dai, J.; Kishnani, P.; Skrinar, A.; Corzo, D.; et al. Rapid diagnosis of late-onset Pompe disease by fluorometric assay of α-glucosidase activities in dried blood spots. Mol. Genet. Metab. 2007, 90, 449–452. [Google Scholar] [CrossRef]
- Elbin, C.S.; Olivova, P.; Marashio, C.A.; Cooper, S.K.; Cullen, E.; Keutzer, J.M.; Zhang, X.K. The effect of preparation, storage and shipping of dried blood spots on the activity of five lysosomal enzymes. Clin. Chim. Acta 2011, 412, 1207–1212. [Google Scholar] [CrossRef]
- Thuriot, F.; Gravel, E.; Hodson, K.; Ganopolsky, J.; Rakic, B.; Waters, P.J.; Gravel, S.; Lévesque, S. Molecular Diagnosis of Pompe Disease in the Genomic Era: Correlation with Acid Alpha-Glucosidase Activity in Dried Blood Spots. J. Clin. Med. 2021, 10, 3868. [Google Scholar] [CrossRef]
- Goldstein, J.L.; Dickerson, G.; Kishnani, P.S.; Rehder, C.; Bali, D.S. Blood-based diagnostic testing for Pompe disease: Consistency between GAA enzyme activity in dried blood spots and GAA gene sequencing results. Muscle Nerve 2013, 49, 775–776. [Google Scholar] [CrossRef]
- Parisi, D.; Musumeci, O.; Mondello, S.; Brizzi, T.; Oteri, R.; Migliorato, A.; Ciranni, A.; Mongini, T.E.; Rodolico, C.; Vita, G.; et al. Vacuolated PAS-Positive Lymphocytes on Blood Smear: An Easy Screening Tool and a Possible Biomarker for Monitoring Therapeutic Responses in Late Onset Pompe Disease (LOPD). Front. Neurol. 2018, 9, 880. [Google Scholar] [CrossRef]
- Saville, J.T.; Fuller, M. Experience with the Urinary Tetrasaccharide Metabolite for Pompe Disease in the Diagnostic Laboratory. Metabolites 2021, 11, 446. [Google Scholar] [CrossRef]
- Chien, Y.-H.; Goldstein, J.L.; Hwu, W.-L.; Smith, P.B.; Lee, N.-C.; Chiang, S.-C.; Tolun, A.A.; Zhang, H.; Vaisnins, A.E.; Millington, D.S.; et al. Baseline urinary glucose tetrasaccharide concentrations in patients with infantile- and late-onset Pompe Disease identified by newborn screening. JIMD Rep. 2015, 19, 67–73. [Google Scholar]
- Piraud, M.; Pettazzoni, M.; De Antonio, M.; Vianey-Saban, C.; Froissart, R.; Chabrol, B.; Young, S.; Laforêt, P.; French Pompe study group. Urine glucose tetrasaccharide: S good biomarker for glycogenoses type II and III? A study of the French cohort. Mol. Genet. Metab. Rep. 2020, 23, 100583. [Google Scholar] [CrossRef] [PubMed]
- Young, S.P.; Piraud, M.; Goldstein, J.L.; Zhang, H.; Rehder, C.; Laforet, P.; Kishnani, P.S.; Millington, D.S.; Bashir, M.R.; Bali, D.S. Assessing disease severity in Pompe disease: The roles of a urinary glucose tetrasaccharide biomarker and imaging techniques. Am. J. Med. Genet. Part C Semin. Med. Genet. 2012, 160, 50–58. [Google Scholar] [CrossRef] [PubMed]
- Boentert, M.; Prigent, H.; Várdi, K.; Jones, H.N.; Mellies, U.; Simonds, A.K.; Wenninger, S.; Cortés, E.B.; Confalonieri, M. Practical Recommendations for Diagnosis and Management of Respiratory Muscle Weakness in Late-Onset Pompe Disease. Int. J. Mol. Sci. 2016, 17, 1735. [Google Scholar] [CrossRef] [PubMed]
- Boentert, M.; Karabul, N.; Wenninger, S.; Stubbe-Dräger, B.; Mengel, E.; Schoser, B.; Young, P. Sleep-related symptoms and sleep-disordered breathing in adult Pompe disease. Eur. J. Neurol. 2014, 22, 369.e27. [Google Scholar] [CrossRef]
- Gaeta, M.; Barca, E.; Ruggeri, P.; Minutoli, F.; Rodolico, C.; Mazziotti, S.; Milardi, D.; Musumeci, O.; Toscano, A. Late-onset Pompe disease (LOPD): Correlations between respiratory muscles CT and MRI features and pulmonary function. Mol. Genet. Metab. 2013, 110, 290–296. [Google Scholar] [CrossRef]
- Berger, K.I.; Chan, Y.; Rom, W.N.; Beno, W.; Oppenheimer, B.W.; Goldring, R.M. Progression from respiratory dysfunction to failure in late-onset Pompe Disease. Neuromuscul. Disord. 2016, 26, 481–489. [Google Scholar] [CrossRef]
- Fromageot, C.; Lofaso, F.; Annane, D.; Falaize, L.; Lejaille, M.; Clair, B.; Gajdos, P.; Raphaël, J.C. Supine fall in lung volumes in the assessment of diaphragmatic weakness in neuromuscular disorders. Arch. Phys. Med. Rehabil. 2001, 82, 123–128. [Google Scholar] [CrossRef]
- Van der Beek, N.A.; Van Capelle, C.I.; Van der Velden-van Etten, K.I.; Hop, W.C.; Van den Berg, B.; Reuser, A.J.; Van Doorn, P.A.; Van der Ploeg, A.T.; Stam, H. Rate of progression and predictive factors for pulmonary outcome in children and adults with Pompe Disease. Mol. Genet. Metab. 2011, 104, 129–136. [Google Scholar] [CrossRef] [PubMed]
- American Thoracic Society / European Respiratory Society ATS/ERS Statement on respiratory muscle testing. Am. J. Respir. Crit. Care Med. 2002, 166, 518–624. [CrossRef] [PubMed]
- Boentert, M.; Florian, A.; Dräger, B.; Young, P.; Yilmaz, A. Pattern and prognostic value of cardiac involvement in patients with late-onset pompe disease: A comprehensive cardiovascular magnetic resonance approach. J. Cardiovasc. Magn. Reson. 2016, 18, 91. [Google Scholar] [CrossRef] [PubMed]
- Seifert, B.L.; Snyder, M.S.; Klein, A.A.; O’Loughlin, J.E.; Magid, M.S.; Engle, M.A. Development of obstruction to ventricular outflow and impairment of inflow in glycogen storage disease of the heart: Serial echocardiographic studies from birth to death at 6 months. Am. Heart J. 1992, 123, 239–242. [Google Scholar] [CrossRef]
- van den Hout, H.M.; Hop, W.; van Diggelen, O.P.; Smeitink, J.A.M.; Smit, G.P.A.; Poll-The, B.-T.T.; Bakker, H.D.; Loonen, M.C.B.; De Klerk, J.B.C.; Reuser, A.J.J.; et al. The natural course of infantile Pompe’s disease: 20 original cases compared with 133 cases from the literature. Pediatrics 2003, 112, 332–340. [Google Scholar] [CrossRef]
- Morris, D.A.; Blaschke, D.; Krebs, A.; Canaan-Kühl, S.; Plöckinger, U.; Knobloch, G.; Walter, T.C.; Kühnle, Y.; Boldt, L.-H.; Kraigher-Krainer, E.; et al. Structural and functional cardiac analyses using modern and sensitive myocardial techniques in adult Pompe disease. Int. J. Cardiovasc. Imaging 2015, 31, 947–956. [Google Scholar] [CrossRef]
- Fayssoil, A.; Nardi, O.; Annane, D.; Orlikowski, D. Right ventricular function in late-onset Pompe disease. J. Clin. Monit. Comput. 2014, 28, 419–421. [Google Scholar] [CrossRef]
- Soliman, O.I.I.; Van der Beek, N.A.; Van Doorn, P.A.; Vletter, W.B.; Nemes, A.; Van Dalen, B.M.; Ten Cate, F.J.; Van der Ploeg, A.T.; Geleijnse, M.L. Cardiac involvement in adults with Pompe Disease. J. Intern. Med. 2008, 264, 333–339. [Google Scholar] [CrossRef]
- Forsha, D.; Li, J.S.; Smith, P.B.; Van der Ploeg, A.T.; Kishnani, P.; Pasquali, K.S. Late-Onset Treatment Study Investigators. Cardiovascular abnormalities in late onset Pompe Disease and response to enzyme replacement therapy. Genet. Med. 2011, 13, 625–631. [Google Scholar] [CrossRef]
- Herbert, M.; Cope, H.; Li, J.S.; Kishnani, P.S. Severe cardiac involvement is rare in patients with late-onset Pompe Disease and the common c.-32-13T>G Variant: Implications for newborn screening. J. Pediatr. 2018, 198, 308–312. [Google Scholar] [CrossRef]
- Bulkley, B.H.; Hutchins, G.M. Pompe’s disease presenting as hypertrophic myocardiopathy with Wolff-Parkinson-White syndrome. Am. Heart J. 1978, 96, 246–252. [Google Scholar] [CrossRef]
- Francesconi, M.; Auff, E. Cardiac arrhythmias and the adult form of type II glycogenosis. N. Engl. J. Med. 1982, 306, 937–938. [Google Scholar] [PubMed]
- Van Kooten, H.A.; Roelen, C.H.A.; Brusse, E.; Van der Beek, N.A.M.E.; Michels, M.; Van der Ploeg, A.T.; Wagenmakers, M.A.E.M.; Van Doorn, P.A. Cardiovascular disease in non-classic Pompe Disease: A systematic review. Neuromuscul. Disord. 2021, 31, 79–90. [Google Scholar] [CrossRef] [PubMed]
- Angelini, C.; Semplicini, C.; Ravaglia, S.; Moggio, M.; Comi, G.P.; Musumeci, O.; Pegoraro, E.; Tonin, P.; Filosto, M.; Servidei, S.; et al. New motor outcome function measures in evaluation of Late-Onset Pompe disease before and after enzyme replacement therapy. Muscle Nerve 2012, 45, 831–834. [Google Scholar] [CrossRef] [PubMed]
- Montagnese, F.; Granata, F.; Musumeci, O.; Rodolico, C.; Mondello, S.; Barca, E.; Cucinotta, M.; Ciranni, A.; Longo, M.; Toscano, A. Intracranial arterial abnormalities in patients with late onset Pompe disease (LOPD). J. Inherit. Metab. Dis. 2016, 39, 391–398. [Google Scholar] [CrossRef]
- Filosto, M.; Todeschini, A.; Cotelli, M.S.; Vielmi, V.; Rinaldi, F.; Rota, S.; Scarpelli, M.; Padovani, A. Non-muscle involvement in late-onset Glycogenosis II. Acta Myol. 2013, 32, 91–94. [Google Scholar]
- Korlimarla, A.; Lim, J.; Kishnani, P.S.; Sun, B. An emerging phenotype of central nervous system involvement in Pompe Disease: From bench to bedside and beyond. Ann. Transl. Med. 2019, 7, 289. [Google Scholar] [CrossRef]
- Garibaldi, M.; Sacconi, S.; Antonini, G.; Desnuelle, C. Long term follow-up of cerebrovascular abnormalities in late onset Pompe disease (LOPD). J. Neurol. 2017, 264, 589–590. [Google Scholar] [CrossRef]
- Mormina, E.; Musumeci, O.; Tessitore, A.; Ciranni, A.; Tavilla, G.; Pitrone, A.; Vinci, S.L.; Caragliano, A.A.; Longo, M.; Granata, F.; et al. Intracranial aneurysm management in patients with late-onset Pompe disease (LOPD). Neurol. Sci. 2020, 42, 2411–2419. [Google Scholar] [CrossRef]
- Musumeci, O.; Marino, S.; Granata, F.; Morabito, R.; Bonanno, L.; Brizzi, T.; Lo Buono, V.; Corallo, F.; Longo, M.; Toscano, A. Central nervous system involvement in late onset Pompe Disease (LOPD): Clues from neuroimaging and neuropsychological analysis. Eur. J. Neurol. 2019, 26, 442.e35. [Google Scholar] [CrossRef]
- Ebbink, B.J.; Poelman, E.; Aarsen, F.K.; Plug, I.; Régal, L.; Muentjes, C.; Beek, N.A.M.E.v.d.; Lequin, M.H.; Ploeg, A.T.; Hout, J.M.P.v.D. Classic infantile Pompe patients approaching adulthood: A cohort study on consequences for the brain. Dev. Med. Child. Neurol. 2018, 60, 579–586. [Google Scholar] [CrossRef]
- Korlimarla, A.; Spiridigliozzi, G.A.; Crisp, K.; Herbert, M.; Chen, S.; Malinzak, M.; Stefanescu, M.; Austin, S.L.; Cope, H.; Zimmerman, K.; et al. Novel approaches to quantify CNS involvement in children with Pompe disease. Neurology 2020, 95, e718–e732. [Google Scholar] [CrossRef]
- Borroni, B.; Cotelli, M.S.; Premi, E.; Gazzina, S.; Cosseddu, M.; Formenti, A.; Gasparotti, R.; Filosto, M.; Padovani, A. The brain in late-onset glycogenosis II: A structural and functional MRI study. J. Inherit. Metab. Dis. 2013, 36, 989–995. [Google Scholar] [CrossRef]
- Bertoldo, F.; Zappini, F.; Brigo, M.; Moggio, M.; Lucchini, V.; Angelini, C.; Semplicini, C.; Filosto, M.; Ravaglia, S.; Cotelli, S.; et al. Prevalence of asymptomatic vertebral fractures in late-onset Pompe Disease. J. Clin. Endocrinol. Metab. 2015, 100, 401–406. [Google Scholar] [CrossRef] [PubMed]
- An, Y.; Young, S.P.; Kishnani, P.S.; Millington, D.S.; Amal, A.; Corzo, D.; Chen, Y. Glucose tetrasaccharide as a biomarker for monitoring the therapeutic response to enzyme replacement therapy for Pompe Disease. Mol. Genet. Metab. 2005, 85, 247–254. [Google Scholar] [CrossRef] [PubMed]
- Carrasco-Rozas, A.; Fernández-Simón, E.; Lleixà, M.C.; Belmonte, I.; Pedrosa-Hernandez, I.; Montiel-Morillo, E.; Nuñez-Peralta, C.; Rossello, J.L.; Segovia, S.; De Luna, N.; et al. Identification of serum microRNAs as potential biomarkers in Pompe disease. Ann. Clin. Transl. Neurol. 2019, 6, 1214–1224. [Google Scholar] [CrossRef] [PubMed]
- Tarallo, A.; Carissimo, A.; Gatto, F.; Nusco, E.; Toscano, A.; Musumeci, O.; Coletta, M.; Karali, M.; Acampora, E.; Damiano, C.; et al. microRNAs as biomarkers in Pompe disease. Genet Med. 2019, 21, 591–600. [Google Scholar] [CrossRef] [PubMed]
- Lollert, A.; Stihl, C.; Hötker, A.M.; Mengel, E.; König, J.; Laudemann, K.; Gökce, S.; Düber, C.; Staatz, G. Quantification of intramuscular fat in patients with late-onset Pompe disease by conventional magnetic resonance imaging for the long-term follow-up of enzyme replacement therapy. PLoS ONE 2018, 13, e0190784. [Google Scholar] [CrossRef] [PubMed]
- Nuñez-Peralta, C.; Alonso-Pérez, J.; Llauger, J.; Segovia, S.; Montesinos, P.; Belmonte, I.; Pedrosa, I.; Montiel, E.; Alonso-Jiménez, A.; Sánchez-González, J.; et al. Follow-up of late-onset Pompe disease patients with muscle magnetic resonance imaging reveals increase in fat replacement in skeletal muscles. J. Cachexia Sarcopenia Muscle 2020, 11, 1032–1046. [Google Scholar] [CrossRef] [PubMed]
- Figueroa-Bonaparte, S.; Llauger, J.; Segovia, S.; Belmonte, I.; Pedrosa, I.; Montiel, E.; Montesinos, P.; Sánchez-González, J.; Alonso-Jiménez, A.; Gallardo, E.; et al. Quantitative muscle MRI to follow up late onset Pompe patients: A prospective study. Sci. Rep. 2018, 8, 10898. [Google Scholar] [CrossRef]
- Gruhn, K.M.; Heyer, C.M.; Güttsches, A.-K.; Rehmann, R.; Nicolas, V.; Schmidt-Wilcke, T.; Tegenthoff, M.; Vorgerd, M.; Kley, R.A. Muscle imaging data in late-onset Pompe disease reveal a correlation between the pre-existing degree of lipomatous muscle alterations and the efficacy of long-term enzyme replacement therapy. Mol. Genet. Metab. Rep. 2015, 3, 58–64. [Google Scholar] [CrossRef]
- Ruggeri, P.; Monaco, L.L.; Musumeci, O.; Tavilla, G.; Gaeta, M.; Caramori, G.; Toscano, A. Ultrasound assessment of diaphragm function in patients with late-onset Pompe disease. Neurol. Sci. 2020, 41, 2175–2184. [Google Scholar] [CrossRef] [PubMed]
- Hagemans, M.; Winkel, L.P.; Hop, W.C.; Reuser, A.J.; Van Doorn, P.A.; Van der Ploeg, A.T. Disease severity in children and adults with Pompe disease related to age and disease duration. Neurology 2005, 64, 2139–2141. [Google Scholar] [CrossRef] [PubMed]
- Angelini, C.; Nascimbeni, A.C.; Semplicini, C. Therapeutic advances in the management of Pompe disease and other metabolic myopathies. Ther. Adv. Neurol. Disord. 2013, 6, 311–321. [Google Scholar] [CrossRef] [PubMed]
- Kishnani, P.S.; Goldenberg, P.C.; DeArmey, S.L.; Heller, J.; Benjamin, D.; Young, S.; Bali, D.; Smith, S.A.; Li, J.S.; Mandel, H.; et al. Cross-reactive immunologic material status affects treatment outcomes in Pompe disease infants. Mol. Genet. Metab. 2010, 99, 26–33. [Google Scholar] [CrossRef] [PubMed]
- Doerfler, P.A.; Nayak, S.; Corti, M.; Morel, L.; Herzog, R.W.; Byrne, B.J. Targeted approaches to induce immune tolerance for Pompe disease therapy. Mol. Ther. Methods Clin. Dev. 2016, 3, 15053. [Google Scholar] [CrossRef]
- Poelman, E.; Hoogeveen-westerveld, M.; Kroos-de Haan, M.A.; Van den Hout, J.M.P.; Bronsema, K.J.; Van de Merbel, N.C.; Van der Ploeg, A.T.; Pijnappel, W.W.M.P. High sustained antibody titers in patients with classic infantile Pompe Disease following immunomodulation at start of rnzyme replacement therapy. J. Pediatr. 2018, 195, 236–243.e3. [Google Scholar] [CrossRef]
- van der Ploeg, A.T.; Clemens, P.R.; Corzo, D.; Escolar, D.M.; Florence, J.; Groeneveld, G.J.; Herson, S.; Kishnani, P.S.; Laforet, P.; Lake, S.L.; et al. A Randomized Study of Alglucosidase Alfa in Late-Onset Pompe’s Disease. N. Engl. J. Med. 2010, 362, 1396–1406. [Google Scholar] [CrossRef]
- Regnery, C.; Kornblum, C.; Hanisch, F.; Vielhaber, S.; Strigl-Pill, N.; Grunert, B.; Müller-Felber, W.; Glocker, F.X.; Spranger, M.; Deschauer, M.; et al. 36 months observational clinical study of 38 adult Pompe disease patients under alglucosidase alfa enzyme replacement therapy. J. Inherit. Metab. Dis. 2012, 35, 837–845. [Google Scholar] [CrossRef]
- Furusawa, Y.; Mori-Yoshimura, M.; Yamamoto, T.; Sakamoto, C.; Wakita, M.; Kobayashi, Y.; Fukumoto, Y.; Oya, Y.; Fukuda, T.; Sugie, H.; et al. Effects of enzyme replacement therapy on five patients with advanced late-onset glycogen storage disease type II: A 2-year follow-up study. J. Inherit. Metab. Dis. 2011, 35, 301–310. [Google Scholar] [CrossRef]
- Anderson, L.J.; Henley, W.; Wyatt, K.M.; Nikolaou, V.; Waldek, S.; Hughes, D.A.; Lachmann, R.H.; Logan, S. Effectiveness of enzyme replacement therapy in adults with late-onset Pompe disease: Results from the NCS-LSD cohort study. J. Inherit. Metab. Dis. 2014, 37, 945–952. [Google Scholar] [CrossRef] [PubMed]
- De Vries, J.M.; Van der Beek, N.A.; Hop, W.C.; Karstens, F.P.; Wokke, J.H.; De Visser, M.; Van Engelen, B.G.; Kuks, J.B.; Van der Kooi, A.J.; Notermans, N.C.; et al. Effect of enzyme therapy and prognostic factors in 69 adults with Pompe Disease: An open-label single-center study. Orphanet J. Rare Dis. 2012, 7, 73. [Google Scholar] [CrossRef] [PubMed]
- Orlikowski, D.; Pellegrini, N.; Prigent, H.; Laforêt, P.; Carlier, R.; Carlier, P.; Eymard, B.; Lofaso, F.; Annane, D. Recombinant human acid alpha-glucosidase (rhGAA) in adult patients with severe respiratory failure due to Pompe disease. Neuromuscul. Disord. 2011, 21, 477–482. [Google Scholar] [CrossRef] [PubMed]
- van der Ploeg, A.; Carlier, P.G.; Carlier, R.-Y.; Kissel, J.T.; Schoser, B.; Wenninger, S.; Pestronk, A.; Barohn, R.J.; Dimachkie, M.M.; Goker-Alpan, O.; et al. Prospective exploratory muscle biopsy, imaging, and functional assessment in patients with late-onset Pompe disease treated with alglucosidase alfa: The EMBASSY Study. Mol. Genet. Metab. 2016, 119, 115–123. [Google Scholar] [CrossRef] [PubMed]
- Ripolone, M.; Violano, R.; Ronchi, D.; Mondello, S.; Nascimbeni, A.; Colombo, I.; Fagiolari, G.; Bordoni, A.; Fortunato, F.; Lucchini, V.; et al. Effects of short-to-long term enzyme replacement therapy (ERT) on skeletal muscle tissue in late onset Pompe disease (LOPD). Neuropathol. Appl. Neurobiol. 2017, 44, 449–462. [Google Scholar] [CrossRef]
- van der Ploeg, A.T.; Kruijshaar, M.E.; Toscano, A.; Laforêt, P.; Angelini, C.; Lachmann, R.H.; Pascual, S.I.P.; Roberts, M.; Rösler, K.; Stulnig, T.; et al. European consensus for starting and stopping enzyme replacement therapy in adult patients with Pompe disease: A 10-year experience. Eur. J. Neurol. 2017, 24, 768-e31. [Google Scholar] [CrossRef]
- Stepien, K.M.; Hendriksz, C.J.; Roberts, M.; Sharma, R. Observational clinical study of 22 adult-onset Pompe disease patients undergoing enzyme replacement therapy over 5years. Mol. Genet. Metab. 2016, 117, 413–418. [Google Scholar] [CrossRef]
- Angelini, C.; The Italian GSDII Group; Semplicini, C.; Ravaglia, S.; Bembi, B.; Servidei, S.; Pegoraro, E.; Moggio, M.; Filosto, M.; Sette, E.; et al. Observational clinical study in juvenile-adult glycogenosis type 2 patients undergoing enzyme replacement therapy for up to 4 years. J. Neurol. 2011, 259, 952–958. [Google Scholar] [CrossRef]
- Strothotte, S.; Strigl-Pill, N.; Grunert, B.; Kornblum, C.; Eger, K.; Wessig, C.; Deschauer, M.; Breunig, F.; Glocker, F.X.; Vielhaber, S.; et al. Enzyme replacement therapy with alglucosidase alfa in 44 patients with late-onset glycogen storage disease type 2: 12-month results of an observational clinical trial. J. Neurol. 2009, 257, 91–97. [Google Scholar] [CrossRef]
- van der Ploeg, A.T.; Barohn, R.; Carlson, L.; Charrow, J.; Clemens, P.R.; Hopkin, R.J.; Kishnani, P.S.; Laforêt, P.; Morgan, C.; Nations, S.; et al. Open-label extension study following the Late-Onset Treatment Study (LOTS) of alglucosidase alfa. Mol. Genet. Metab. 2012, 107, 456–461. [Google Scholar] [CrossRef]
- Hahn, S.H.; Kronn, D.; Leslie, N.D.; Pena, L.D.; Tanpaiboon, P.; Gambello, M.J.; Gibson, J.B.; Hillman, R.; Stockton, D.W.; Day, J.W.; et al. Efficacy, safety profile, and immunogenicity of alglucosidase alfa produced at the 4000-liter scale in US children and adolescents with Pompe disease: ADVANCE, a phase IV, open-label, prospective study. Anesthesia Analg. 2018, 20, 1284–1294. [Google Scholar] [CrossRef]
- Filosto, M.; Piccinelli, S.C.; Ravaglia, S.; Servidei, S.; Moggio, M.; Musumeci, O.; Donati, M.A.; Pegoraro, E.; Di Muzio, A.; Maggi, L.; et al. Assessing the Role of Anti rh-GAA in Modulating Response to ERT in a Late-Onset Pompe Disease Cohort from the Italian GSDII Study Group. Adv. Ther. 2019, 36, 1177–1189. [Google Scholar] [CrossRef] [PubMed]
- Kuperus, E.; Kruijshaar, M.E.; Wens, S.C.A.; De Vries, J.M.; Favejee, M.M.; Van der Meijden, J.C.; Brusse, E.; Van Doorn, P.A.; Van der Ploeg, A.T.; Van der Beek, N.A.M.E. Long-term benefit of enzyme replacement therapy in Pompe Disease: A 5-year prospective study. Neurology 2017, 89, 2365–2373. [Google Scholar] [CrossRef]
- Harlaar, L.; Hogrel, J.-Y.; Perniconi, B.; Kruijshaar, M.E.; Rizopoulos, D.; Taouagh, N.; Canal, A.; Brusse, E.; van Doorn, P.A.; van der Ploeg, A.T.; et al. Large variation in effects during 10 years of enzyme therapy in adults with Pompe disease. Neurology 2019, 93, e1756–e1767. [Google Scholar] [CrossRef] [PubMed]
- Sun, B.; Li, S.; Bird, A.; Yi, H.; Kemper, A.; Thurberg, B.L.; Koeberl, D.D. Antibody formation and mannose-6-phosphate receptor expression impact the efficacy of muscle-specific transgene expression in murine Pompe Disease. J. Gene Med. 2010, 12, 881–891. [Google Scholar] [CrossRef]
- Zhu, Y.; Jiang, J.-L.; Gumlaw, N.K.; Zhang, J.; Bercury, S.D.; Ziegler, R.J.; Lee, K.; Kudo, M.; Canfield, W.M.; Edmunds, T.; et al. Glycoengineered Acid α-Glucosidase With Improved Efficacy at Correcting the Metabolic Aberrations and Motor Function Deficits in a Mouse Model of Pompe Disease. Mol. Ther. 2009, 17, 954–963. [Google Scholar] [CrossRef] [PubMed]
- Pena, L.D.M.; Barohn, R.J.; Byrne, B.J.; Desnuelle, C.; Goker-Alpan, O.; Ladha, S.; Laforêt, P.; Mengel, K.E.; Pestronk, A.; Pouget, J.; et al. Safety, tolerability, pharmacokinetics, pharmacodynamics, and exploratory efficacy of the novel enzyme replacement therapy avalglucosidase alfa (neoGAA) in treatment-naïve and alglucosidase alfa-treated patients with late-onset Pompe Disease: A phase 1, open-label, multicenter, multinational, ascending dose study. Neuromuscul. Disord. 2019, 29, 167–186. [Google Scholar]
- Dimachkie, M.M.; Barohn, R.J.; Byrne, B.; Goker-Alpan, O.; Kishnani, P.S.; Ladha, S.; Laforêt, P.; Mengel, K.E.; Pena, L.D.; Sacconi, S.; et al. NEO1 and NEO-EXT studies: Long-term safety and exploratory efficacy of repeat avalglucosidase alfa dosing for 5.5 years in late-onset Pompe disease patients. Mol. Genet. Metab. 2020, 129, S49. [Google Scholar] [CrossRef]
- Diaz-Manera, J.; Kishnani, P.S.; Kushlaf, H.; Ladha, S.; Mozaffar, T.; Straub, V.; Toscano, A.; van der Ploeg, A.T.; Berger, K.I.; Clemens, P.R.; et al. Safety and efficacy of avalglucosidase alfa versus alglucosidase alfa in patients with late-onset Pompe disease (COMET): A phase 3, randomised, multicentre trial. Lancet Neurol. 2021, 20, 1012–1026. [Google Scholar] [CrossRef]
- Li, R.J.; Ma, L.; Drozda, K.; Wang, J.; Punnose, A.R.; Jeng, L.J.B.; Maynard, J.W.; Zhu, H.; Pacanowski, M. Model—Informed approach supporting approval of Nexviazyme (Avalglucosidase Alfa—Ngpt) in pediatric patients with Late-Onset Pompe Disease. AAPS J. 2023, 25, 16. [Google Scholar] [CrossRef]
- Kishnani, P.S.; Kronn, D.; Brassier, A.; Broomfield, A.; Davison, J.; Hahn, S.H.; Kumada, S.; Labarthe, F.; Ohki, H.; Pichard, S.; et al. Safety and efficacy of avalglucosidase alfa in individuals with infantile-onset Pompe disease enrolled in the phase 2, open-label Mini-COMET study: The 6-month primary analysis report. Genet Med. 2022, 25, 100328. [Google Scholar] [CrossRef]
- Angelini, C. Exercise, nutrition and enzyme replacement therapy are efficacious in adult Pompe patients: Report from EPOC Consortium. Eur. J. Transl. Myol. 2021, 31, 9798. [Google Scholar] [CrossRef] [PubMed]
- Sechi, A.; Zuccarelli, L.; Grassi, B.; Frangiamore, R.; De Amicis, R.; Marzorati, M.; Porcelli, S.; Tullio, A.; Bacco, A.; Bertoli, S.; et al. Exercise training alone or in combination with high-protein diet in patients with late onset Pompe disease: Results of a cross over study. Orphanet J. Rare Dis. 2020, 15, 143. [Google Scholar] [CrossRef] [PubMed]
- Scheffers, L.E.; Somers, O.C.; Dulfer, K.; Dieleman, G.C.; Walet, S.; Van der Giessen, L.J.; Van der Ploeg, A.T.; Van den Hout, J.M.P.; Van den Berg, L.E.; exercise team. Physical training and high-protein diet improved muscle strength, parent-reported fatigue, and physical quality of life in children with Pompe Disease. J. Inherit. Metab. Dis. 2023, 46, 605–617. [Google Scholar] [CrossRef] [PubMed]
- Borie-Guichot, M.; Tran, M.L.; Génisson, Y.; Ballereau, S.; Dehoux, C. Pharmacological Chaperone Therapy for Pompe Disease. Molecules 2021, 26, 7223. [Google Scholar] [CrossRef] [PubMed]
- Flanagan, J.J.; Rossi, B.; Tang, K.; Wu, X.; Mascioli, K.; Donaudy, F.; Tuzzi, M.R.; Fontana, F.; Cubellis, M.V.; Porto, C.; et al. The pharmacological chaperone 1-deoxynojirimycin increases the activity and lysosomal trafficking of multiple mutant forms of acid alpha-glucosidase. Hum. Mutat. 2009, 30, 1683–1692. [Google Scholar] [CrossRef] [PubMed]
- Parenti, G.; Zuppaldi, A.; Pittis, M.G.; Tuzzi, M.R.; Annunziata, I.; Meroni, G.; Porto, C.; Donaudy, F.; Rossi, B.; Rossi, M.; et al. Pharmacological Enhancement of Mutated α-Glucosidase Activity in Fibroblasts from Patients with Pompe Disease. Mol. Ther. 2007, 15, 508–514. [Google Scholar] [CrossRef]
- Okumiya, T.; Kroos, M.A.; Van Vliet, L.; Takeuchi, H.; Van der Ploeg, A.T.; Reuser, A.J. Chemical chaperones improve transport and enhance stability of mutant α-glucosidases in glycogen storage disease type II. Mol. Genet. Metab. 2007, 90, 49–57. [Google Scholar] [CrossRef]
- Porto, C.; Cardone, M.; Fontana, F.; Rossi, B.; Tuzzi, M.R.; Tarallo, A.; Barone, M.V.; Andria, G.; Parenti, G. The Pharmacological Chaperone N-butyldeoxynojirimycin Enhances Enzyme Replacement Therapy in Pompe Disease Fibroblasts. Mol. Ther. 2009, 17, 964–971. [Google Scholar] [CrossRef]
- Khanna, R.; Flanagan, J.J.; Feng, J.; Soska, R.; Frascella, M.; Pellegrino, L.J.; Lun, Y.; Guillen, D.; Lockhart, D.J.; Valenzano, K.J. The pharmacological chaperone AT2220 increases recombinant human acid alfa-glucosidase uptake and glycogen reduction in a mouse model of Pompe Disease. PLoS ONE. 2012, 7, e40776. [Google Scholar] [CrossRef]
- Parenti, G.; Fecarotta, S.; la Marca, G.; Rossi, B.; Ascione, S.; Donati, M.A.; Morandi, L.O.; Ravaglia, S.; Pichiecchio, A.; Ombrone, D.; et al. A Chaperone Enhances Blood α-Glucosidase Activity in Pompe Disease Patients Treated With Enzyme Replacement Therapy. Mol. Ther. 2014, 22, 2004–2012. [Google Scholar] [CrossRef] [PubMed]
- Kishnani, P.; Tarnopolsky, M.; Roberts, M.; Sivakumar, K.; Dasouki, M.; Dimachkie, M.M.; Finanger, E.; Goker-alpan, O.; Guter, K.A.; Mozaffar, T.; et al. Duvoglustat HCl increases systemic and tissue exposure of active acid alfa -glucosidase in Pompe patients co-administered with alglucosidase alfa. Mol. Ther. 2017, 25, 1199–1208. [Google Scholar] [CrossRef] [PubMed]
- Schoser, B.; Roberts, M.; Byrne, B.J.; Sitaraman, S.; Jiang, H.; Laforêt, P.; Toscano, A.; Castelli, J.; Díaz-Manera, J.; Goldman, M.; et al. Safety and efficacy of cipaglucosidase alfa plus miglustat versus alglucosidase alfa plus placebo in late-onset Pompe disease (PROPEL): An international, randomised, double-blind, parallel-group, phase 3 trial. Lancet Neurol. 2021, 20, 1027–1037. [Google Scholar] [CrossRef]
- Amicus Therapeutics. Amicus Therapeutics Announces European Commission Approval for Pombiliti™ in Patients with Late-onset Pompe Disease [Media Release]. Available online: https://ir.amicusrx.com/news-releases/news-release-details/amicus-therapeutics-announces-european-commission-approval-1 (accessed on 27 March 2023).
- Amalfitano, A.; McVie-Wylie, A.J.; Hu, H.; Dawson, T.L.; Raben, N.; Plotz, P.; Chen, Y.T. Systemic correction of the muscle disorder glycogen storage disease type II after hepatic targeting of a modified adenovirus vector encoding human acid-α-glucosidase. Proc. Natl. Acad. Sci. USA 1999, 96, 8861–8866. [Google Scholar] [CrossRef]
- Han, S.O.; Gheorghiu, D.; Li, S.; Kang, H.R.; Koelberg, D. Minimum effective dose to achieve biochemical correction with adeno-associated virus vector-mediated gene therapy in mice with Pompe Disease. Hum. Gene Ther. 2022, 33, 492–498. [Google Scholar] [CrossRef] [PubMed]
- Sun, B.; Zhang, H.; Franco, L.M.; Brown, T.; Bird, A.; Schneider, A.; Koeberl, D.D. Correction of glycogen storage disease type II by an adeno-associated virus vector containing a muscle-specific promoter. Mol. Ther. 2005, 11, 889–898. [Google Scholar] [CrossRef] [PubMed]
- Todd, A.G.; McElroy, J.A.; Grange, R.W.; Fuller, D.D.; Walter, G.A.; Byrne, B.J.; Falk, D.J. Correcting Neuromuscular Deficits With Gene Therapy in Pompe Disease. Ann. Neurol. 2015, 78, 222–234. [Google Scholar] [CrossRef]
- Smith, B.K.; Collins, S.W.; Conlon, T.J.; Mah, C.S.; Lawson, L.A.; Martin, A.D.; Fuller, D.D.; Cleaver, B.D.; Cle, N.; Phillips, D.; et al. Phase I/II trial of adeno-associated virus–mediated alpha-glucosidase gene therapy to the diaphragm for chronic respiratory failure in Pompe disease: Initial safety and ventilatory outcomes. Hum. Gene Ther. 2013, 24, 630–640. [Google Scholar] [CrossRef]
- Corti, M.; Liberati, C.; Smith, B.K.; Lawson, L.A.; Tuna, I.S.; Conlon, T.J.; Coleman, K.E.; Islam, S.; Herzog, R.W.; Fuller, D.D.; et al. Safety of Intradiaphragmatic Delivery of adeno-associated gene therapy in children affected by Pompe Disease. Hum. Gene Ther. 2017, 28, 208–218. [Google Scholar]
- Eggers, M.; Vannoy, C.H.; Huang, J.; Purushothaman, P.; Brassard, J.; Fonck, C.; Meng, H.; Prom, M.J.; Lawlor, M.W.; Cunningham, J.; et al. Muscle-directed gene therapy corrects Pompe disease and uncovers species-specific GAA immunogenicity. EMBO Mol. Med. 2021, 14, e13968. [Google Scholar] [CrossRef]
- Hordeaux, J.; Dubreil, L.; Robveille, C.; Deniaud, J.; Pascal, Q.; Dequéant, B.; Pailloux, J.; Lagalice, L.; Ledevin, M.; Babarit, C.; et al. Long-term neurologic and cardiac correction by intrathecal gene therapy in Pompe disease. Acta Neuropathol. Commun. 2017, 5, 66. [Google Scholar] [CrossRef] [PubMed]
- Qiu, K.; Falk, D.J.; Reier, P.J.; Byrne, B.J.; Fuller, D.D. Spinal Delivery of AAV Vector Restores Enzyme Activity and Increases Ventilation in Pompe Mice. Mol. Ther. 2012, 20, 21–27. [Google Scholar] [CrossRef] [PubMed]
- Lee, N.C.; Hwu, W.L.; Muramatsu, S.I.; Falk, D.J.; Byrne, B.J.; Cheng, C.H.; Shih, N.C.; Chang, K.L.; Tsai, L.K.; Chien, Y.H. A neuron-specific gene therapy relieves motor deficits in Pompe Disease Mice. Mol. Neurobiol. 2018, 55, 5299–5309. [Google Scholar] [CrossRef] [PubMed]
- Lim, J.A.; Yi, H.; Gao, F.; Raben, N.; Kishnani, P.S.; Sun, B. Intravenous injection of an AAV-PHP.B vector encoding human acid alfa-glucosidase rescues both muscle and CNS defects in murine Pompe Disease. Mol. Ther. Methods Clin. Dev. 2019, 12, 233–245. [Google Scholar] [CrossRef]
- Sidonio, R.F.; Pipe, S.W.; Callaghan, M.U.; Valentino, L.A.; Monahan, P.E.; Croteau, S.E. Discussing investigational AAV gene therapy with hemophilia patients: A guide. Blood Rev. 2020, 47, 100759. [Google Scholar] [CrossRef] [PubMed]
- Franco, L.M.; Sun, B.; Yang, X.; Bird, A.; Zhang, H.; Schneider, A.; Brown, T.; Young, S.P.; Clay, T.M.; Amalfitano, A.; et al. Evasion of immune responses to introduced human acid alfa-glucosidase by liver-restricted expression in glycogen storage disease type II. Mol. Ther. 2005, 12, 876–884. [Google Scholar] [CrossRef]
- Keeler, G.D.; Markusic, D.M.; Hoffman, B.E. Liver induced transgene tolerance with AAV vectors. Cell. Immunol. 2017, 342, 103728. [Google Scholar] [CrossRef]
- Puzzo, F.; Colella, P.; Biferi, M.G.; Bali, D.; Paulk, N.K.; Vidal, P.; Collaud, F.; Simon-Sola, M.; Charles, S.; Hardet, R.; et al. Rescue of Pompe disease in mice by AAV-mediated liver delivery of secretable acid α-glucosidase. Sci. Transl. Med. 2017, 9, 6375. [Google Scholar] [CrossRef]
- Colella, P.; Sellier, P.; Gomez, M.J.; Biferi, M.G.; Tanniou, G.; Guerchet, N.; Cohen-Tannoudji, M.; Moya-Nilges, M.; van Wittenberghe, L.; Daniele, N.; et al. Gene therapy with secreted acid alpha-glucosidase rescues Pompe disease in a novel mouse model with early-onset spinal cord and respiratory defects. eBiomedicine 2020, 61, 103052. [Google Scholar] [CrossRef]
- Sun, B.; Zhang, H.; Benjamin, D.K.J.r.; Brown, T.; Bird, A.; Young, S.P.; McVie-Wylie, A.; Chen, Y.; Koeberl, D.D. Enhanced efficacy of an AAV vector encoding chimeric, highlySecreted acid α-glucosidase in glycogen storage disease type II. Mol. Ther. 2006, 14, 822–830. [Google Scholar] [CrossRef]
- Sun, B.; Kulis, M.D.; Young, S.P.; Hobeika, A.C.; Li, S.; Bird, A.; Zhang, H.; Li, Y.; Clay, T.M.; Burks, W.; et al. Immunomodulatory Gene Therapy Prevents Antibody Formation and Lethal Hypersensitivity Reactions in Murine Pompe Disease. Mol. Ther. 2010, 18, 353–360. [Google Scholar] [CrossRef] [PubMed]
- Han, S.-O.; Ronzitti, G.; Arnson, B.; Leborgne, C.; Li, S.; Mingozzi, F.; Koeberl, D. Low-Dose Liver-Targeted Gene Therapy for Pompe Disease Enhances Therapeutic Efficacy of ERT via Immune Tolerance Induction. Mol. Ther. Methods Clin. Dev. 2017, 4, 126–136. [Google Scholar] [CrossRef] [PubMed]
- Xu, F.; Ding, E.; Liao, S.X.; Migone, F.; Dai, J.; Schneider, A.; Serra, D.; Chen, Y.T.; Amalfitano, A. Improved efficacy of gene therapy approaches for Pompe Disease using a new, immune-deficient GSD-II mouse model. Gene Ther. 2004, 11, 1590–1598. [Google Scholar] [CrossRef] [PubMed]
- Puppi, J.; Guillonneau, C.; Pichard, V.; Bellodi-Privato, M.; Cuturi, M.C.; Anegon, I.; Ferry, N. Long term transgene expression by hepatocytes transduced with retroviral vectors requires induction of immune tolerance to the transgene. J. Hepatol. 2004, 41, 222–228. [Google Scholar] [CrossRef] [PubMed]
- Han, S.-O.; Li, S.; McCall, A.; Arnson, B.; Everitt, J.I.; Zhang, H.; Young, S.P.; ElMallah, M.K.; Koeberl, D.D. Comparisons of Infant and Adult Mice Reveal Age Effects for Liver Depot Gene Therapy in Pompe Disease. Mol. Ther. Methods Clin. Dev. 2019, 17, 133–142. [Google Scholar] [CrossRef]
- Han, S.O.; Gheorghiu, D.; Chang, A.; Mapatano, S.H.; Li, S.; Brooks, E.; Koerbel, D. Efficacious androgen hormone administration in combination with adeno-associated virus vector-mediated gene therapy in female mice with Pompe Disease. Hum. Gene Ther. 2022, 33, 479–491. [Google Scholar] [CrossRef]
- Unnisa, Z.; Yoon, J.K.; Schindler, J.W.; Mason, C.; van Til, N.P. Gene Therapy Developments for Pompe Disease. Biomedicines 2022, 10, 302. [Google Scholar] [CrossRef]
- Douillard-Guilloux, G.; Richard, E.; Batista, L.; Caillaud, C. Partial phenotypic correction and immune tolerance induction to enzyme replacement therapy after hematopoietic stem cell gene transfer of α-glucosidase in Pompe disease. J. Gene Med. 2009, 11, 279–287. [Google Scholar] [CrossRef]
- Piras, G.; Montiel-Equihua, C.; Chan, Y.-K.A.; Wantuch, S.; Stuckey, D.; Burke, D.; Prunty, H.; Phadke, R.; Chambers, D.; Partida-Gaytan, A.; et al. Lentiviral Hematopoietic Stem Cell Gene Therapy Rescues Clinical Phenotypes in a Murine Model of Pompe Disease. Mol. Ther. Methods Clin. Dev. 2020, 18, 558–570. [Google Scholar] [CrossRef]
- Stok, M.; de Boer, H.; Huston, M.W.; Jacobs, E.H.; Roovers, O.; Visser, T.P.; Jahr, H.; Duncker, D.J.; van Deel, E.D.; Reuser, A.J.; et al. Lentiviral Hematopoietic Stem Cell Gene Therapy Corrects Murine Pompe Disease. Mol. Ther. Methods Clin. Dev. 2020, 17, 1014–1025. [Google Scholar] [CrossRef]
- Tarallo, A.; Damiano, C.; Strollo, S.; Minopoli, N.; Indrieri, A.; Polishchuk, E.; Zappa, F.; Nusco, E.; Fecarotta, S.; Porto, C.; et al. Correction of oxidative stress enhances enzyme replacement therapy in Pompe disease. EMBO Mol. Med. 2021, 13, 14434. [Google Scholar] [CrossRef] [PubMed]
- Van der Wal, E.; Bergsma, A.J.; Pijnenburg, J.M.; Van der Ploeg, A.T.; Pijnappel, W.W.M.P. Antisense oligonucleotides promote exon inclusion and correct the common c. -32-13T > G GAA splicing variant in Pompe Disease. Mol. Ther. Nucleic Acids 2019, 7, 90–100. [Google Scholar] [CrossRef]
- Van der Wal, E.; Bergsma, A.J.; Van Gestel, T.J.M.; In ‘t Groen, S.L.M.; Zaehres, H.; Araúzo-bravo, M.J.; Schöler, H.R.; Van der Ploeg, A.T.; Pijnappel, W.W.M.P. GAA deficiency in Pompe Disease is alleviated by exon inclusion in iPSC-Derived skeletal muscle cells. Mol. Ther. Nucleic Acid. 2017, 7, 101–115. [Google Scholar] [CrossRef]
- Aung-Htut, M.T.; Ham, K.A.; Tchan, M.; Johnsen, R.; Schnell, F.J.; Fletcher, S.; Wilton, S.D. Splice modulating antisense oligonucleotides restore some acid-alpha-glucosidase activity in cells derived from patients with late-onset Pompe disease. Sci. Rep. 2020, 10, 6702. [Google Scholar] [CrossRef]
- Clayton, N.P.; Nelson, C.A.; Weeden, T.; Taylor, K.M.; Moreland, R.J.; Scheule, R.K.; Phillips, L.; Leger, A.J.; Cheng, S.H.; Wentworth, B.M. Antisense Oligonucleotide-mediated Suppression of Muscle Glycogen Synthase 1 Synthesis as an Approach for Substrate Reduction Therapy of Pompe Disease. Mol. Ther. Nucleic Acids 2014, 3, e206. [Google Scholar] [CrossRef] [PubMed]
- Tang, B.; Frasinyuk, M.S.; Chikwana, V.M.; Mahalingan, K.K.; Morgan, C.A.; Segvich, D.M.; Bondarenko, S.P.; Mrug, G.P.; Wyrebek, P.; Watt, D.S.; et al. Discovery and Development of Small-Molecule Inhibitors of Glycogen Synthase. J. Med. Chem. 2020, 63, 3538–3551. [Google Scholar] [CrossRef]
DNA Nomenclature | Site | Protein Nomenclature | Type of Variant | Biochemical Evidence | Predicted Severity | Predicted Phenotype with Null Allele | Population | GnomAD Frequency |
---|---|---|---|---|---|---|---|---|
c.-32-13T>G | Intron 1 | p.[=,0] | Deletion (translation initiation site) No effect on splicing | Protein is expressed Variant causes skipping of exon 2 | Potentially mild | LOPD (childhood or adult onset) | Caucasian | 0.00309 |
c.2560C>T | Exon 18 | p.(Arg854*) | Non-sense | No protein expression | Very severe | IOPD | African Descendent | 0.00048 |
c.841C>T | Exon 4 | p.(Arg281Trp) | Missense | Protein is expressed | Potentially mild | LOPD | European (non-Finnish) | 0.00033 |
c.525del | Exon 2 | p.(Glu176Argfs*45) | Frameshift | No protein expression | Very severe | IOPD | European (non-Finnish) | 0.00013 |
c.1979G>A | Exon 14 | p.(Arg660His) | Missense | Protein is expressed | Potentially mild | LOPD (childhood onset) | African | 0.00009 |
c.853C>T | Exon 4 | p.(Pro285Ser) | Missense | Protein is expressed | Mild | LOPD | African | 0.00007 |
c.655G>A | Exon 3 | p.(Gly219Arg) | Missense | Protein is expressed | Potentially mild | IOPD | African | 0.00006 |
c.953T>C | Exon 5 | p.(Met318Thr) | Missense | Protein is expressed | Potentially mild | IOPD | African | 0.00006 |
c.1935C>A | Exon 14 | p.(Asp645Glu) | Missense | Protein is expressed | Potentially mild | IOPD | South Asian | 0.00004 |
LOPD | |
---|---|
Clinical Examination | Limb-girdle and axial weakness Tongue involvement Respiratory insufficiency Easily fatigued |
Systemic Involvement | Musculoskeletal complications (i.e., hyperlordosis, kyphosis, scoliosis, spine rigid syndrome) Brain vascular abnormalities |
Laboratory Tests | Mildly elevated or normal serum creatine kinase levels Elevation of AST/ALT levels |
EMG | Myopathic pattern with spontaneous activity including myotonic discharges, especially in axial muscles |
Muscle MRI | Paravertebral and abdominal muscle involvement Tongue involvement Hip extensor involvement (i.e., adductor magnus) with sparing of leg muscles |
Muscle Biopsy | Vacuolar myopathy with glycogen storage and acid phosphatase reactivity |
Therapy | Mechanism of Action | Status of Approval |
---|---|---|
Alglucosidase alfa | Enzyme replacement therapy by intravenous infusion of recombinant human GAA (rhGAA) | First approved 28 April 2006 (FDA) |
Avalglucosidase alfa | Enzyme replacement therapy by intravenous infusion of recombinant human GAA (rhGAA) | First approved 6 August 2021 (FDA) Active study recruiting: An Open-label, Multinational, Multicenter, Intravenous Infusion Study of the Efficacy, Safety, Pharmacokinetics, and Pharmacodynamics of Avalglucosidase Alfa in Treatment Naïve Pediatric Participants With Infantile-Onset Pompe Disease (IOPD) |
Cipaglucosidase alfa + miglustat | Enzyme replacement therapy by intravenous infusion of recombinant human GAA (rhGAA) + small-molecule ligands (chaperones) as enzyme stabilizers | First approved 23 March 2023 for LOPD (EU) Active study recruiting: Open-label Study to Evaluate the Safety, Efficacy, Pharmacokinetics, Pharmacodynamics, and Immunogenicity of Cipaglucosidase Alfa/Miglustat in Both ERT-Experienced and ERT- Naïve Pediatric Subjects With Infantile-Onset Pompe Disease Aged 0 to < 18 Years Open-label Study of the Safety, Pharmacokinetics, Efficacy, Pharmacodynamics, and Immunogenicity of Cipaglucosidase Alfa/Miglustat in Pediatric Subjects Aged 0 to < 18 Years With Late- Onset Pompe Disease |
Gene Therapy | Providing cells with a healthy copy of the GAA gene to restore functional GAA enzyme production | Not approved. Active study recruiting: Single Arm, Multicenter, Open and Dose-Escalation Clinical Study on Safety, Tolerance, and Efficacy of GC301, an AAV-Delivered Gene Transfer Therapy in Patients with Infantile-Onset Pompe Disease Active study, not recruiting: Phase 1 Study of the Safety of AAV2/8-LSPhGAA (ACTUS-101) in Late-Onset Pompe Disease Phase 1/2, Dose-Escalation Study to Evaluate the Safety, Tolerability, and Efficacy of a Single Intravenous Infusion of SPK-3006 in Adults with Late-Onset Pompe Disease Open-Label, Fixed-Sequence, Ascending-Dose, First-in-Human Study to Assess the Safety, Tolerability, Pharmacokinetics, Pharmacodynamics, and Efficacy of Intravenous Infusions of ATB200 Co-Administered with Oral AT2221 in Adult Subjects with Pompe Disease Phase 3 Open-label Extension Study to Assess the Long-Term Safety and Efficacy of Intravenous ATB200 Co-Administered With Oral AT2221 in Adult Subjects with Late-Onset Pompe Disease |
Substrate Reduction Therapy | Small-molecule inhibitors of human skeletal muscle glycogen synthase | Not approved. Active study, not recruiting: Phase 1, Randomized, Double-Blind, Placebo-Controlled, Single and Multiple Ascending Dose Study of MZE001 to Evaluate the Safety, Tolerability, Pharmacokinetics, and Pharmacodynamics in Healthy Subjects |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Labella, B.; Cotti Piccinelli, S.; Risi, B.; Caria, F.; Damioli, S.; Bertella, E.; Poli, L.; Padovani, A.; Filosto, M. A Comprehensive Update on Late-Onset Pompe Disease. Biomolecules 2023, 13, 1279. https://doi.org/10.3390/biom13091279
Labella B, Cotti Piccinelli S, Risi B, Caria F, Damioli S, Bertella E, Poli L, Padovani A, Filosto M. A Comprehensive Update on Late-Onset Pompe Disease. Biomolecules. 2023; 13(9):1279. https://doi.org/10.3390/biom13091279
Chicago/Turabian StyleLabella, Beatrice, Stefano Cotti Piccinelli, Barbara Risi, Filomena Caria, Simona Damioli, Enrica Bertella, Loris Poli, Alessandro Padovani, and Massimiliano Filosto. 2023. "A Comprehensive Update on Late-Onset Pompe Disease" Biomolecules 13, no. 9: 1279. https://doi.org/10.3390/biom13091279
APA StyleLabella, B., Cotti Piccinelli, S., Risi, B., Caria, F., Damioli, S., Bertella, E., Poli, L., Padovani, A., & Filosto, M. (2023). A Comprehensive Update on Late-Onset Pompe Disease. Biomolecules, 13(9), 1279. https://doi.org/10.3390/biom13091279