In Vitro Enzymatic Studies Reveal pH and Temperature Sensitive Properties of the CLIC Proteins
Abstract
:1. Introduction
2. Materials and Methods
2.1. Site-Directed Mutagenesis, Protein Expression and Purification of Recombinant CLIC1, CLIC3, CLIC4, CLIC1- C24A, CLIC1- K37A, and CLIC1-C59A
2.2. HEDS Enzyme Assay
2.3. HEDS Enzyme Assay Conditions Use to Determine Enzyme Kinetics of CLIC1, CLIC3, and CLIC4
2.4. HEDS Enzyme Assay Performed under Varying Temperature Conditions
2.5. Preparation of Transformed Bacterial Whole Cell Lysates with and without Heat-Shock
2.6. HEDS Enzyme Assay Performed under Varying pH Conditions
2.7. HEDS Enzyme Assay Performed Using a Variety of Inhibitor Drugs
3. Results and Discussion
3.1. Purified Recombinant CLIC Protein Enzymatic Activity Assessed via the HEDS Enzyme Assay
3.2. Defining the Kinetic Parameters of CLIC Proteins’ Enzymatic Activity
3.3. Evaluating Temperature Effects on Recombinant CLICs’ Enzymatic Activity
3.3.1. Assessing Thermal Stability by Pre-Heating the Recombinant Proteins for 10 min across a Range of Temperatures
3.3.2. Assessing Thermal Tolerance of the Recombinant CLIC Proteins’ Enzymatic Activity by a Longer (30 min) (Pre) Heat Treatment
3.4. Optimal Reaction Temperature for CLIC1, CLIC3, and CLIC4 in the HEDS Assay
3.5. Evaluating Recombinant CLIC’s Enzymatic Activity under Varying pH Conditions
3.6. Assessing the Effect of Two Newly Identified CLIC4 Inhibitors (Rapamycin and Amphotericin B) on the CLIC Proteins’ Enzymatic Activity in the HEDS Assay
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Littler, D.; Harrop, S.; Goodchild, S.; Phang, J.; Mynott, A.; Jiang, L.; Valenzuela, S.; Mazzanti, M.; Brown, L.; Breit, S.; et al. The enigma of the CLIC proteins: Ion channels, redox proteins, enzymes, scaffolding proteins? FEBS Lett. 2010, 584, 2093–2101. [Google Scholar] [CrossRef] [PubMed]
- Goodchild, S.; Curmi, P.; Brown, L. Structural gymnastics of multifunctional metamorphic proteins. Biophys. Rev. 2011, 3, 143. [Google Scholar] [CrossRef] [PubMed]
- Murzin, A. Biochemistry. Metamorphic proteins. Science 2008, 320, 1725–1726. [Google Scholar] [CrossRef] [PubMed]
- Jeffery, C. Moonlighting proteins. Trends Biochem. Sci 1999, 24, 8–11. [Google Scholar] [CrossRef] [PubMed]
- Jeffery, C. Why study moonlighting proteins? Front. Genet. 2015, 6, 211. [Google Scholar] [CrossRef] [PubMed]
- Tonini, R.; Ferroni, A.; Valenzuela, S.; Warton, K.; Campbell, T.; Breit, S.; Mazzanti, M. Functional characterization of the NCC27 nuclear protein in stable transfected CHO-K1 cells. FASEB J. 2000, 14, 1171–1178. [Google Scholar] [CrossRef] [PubMed]
- Valenzuela, S.; Mazzanti, M.; Tonini, R.; Qiu, M.; Warton, K.; Musgrove, E.; Campbell, T.; Breit, S. The nuclear chloride ion channel NCC27 is involved in regulation of the cell cycle. J. Physiol. 2000, 529, 541–552. [Google Scholar] [CrossRef] [PubMed]
- Singh, H.; Cousin, M.; Ashley, R. Functional reconstitution of mammalian ‘chloride intracellular channels’ CLIC1, CLIC4 and CLIC5 reveals differential regulation by cytoskeletal actin. FEBS J. 2007, 274, 6306–6316. [Google Scholar] [CrossRef]
- Tulk, B.; Edwards, J. NCC27, a homolog of intracellular Cl− channel p64, is expressed in brush border of renal proximal tubule. Am. J. Physiol. 1998, 274, F1140–F1149. [Google Scholar] [CrossRef]
- Skaper, S.; Facci, L.; Giusti, P. Intracellular ion channel CLIC1: Involvement in microglia-mediated β-amyloid peptide (1-42) neurotoxicity. Neurochem. Res. 2013, 38, 1801–1808. [Google Scholar] [CrossRef]
- Valenzuela, S.; Martin, D.; Por, S.; Robbins, J.; Warton, K.; Bootcov, M.; Schofield, P.; Campbell, T.; Breit, S. Molecular cloning and expression of a chloride ion channel of cell nuclei. J. Biol. Chem. 1997, 272, 12575–12582. [Google Scholar] [CrossRef] [PubMed]
- Al Khamici, H.; Brown, L.; Hossain, K.; Hudson, A.; Sinclair-Burton, A.; Ng, J.; Daniel, E.; Hare, J.; Cornell, B.; Curmi, P.; et al. Members of the chloride intracellular ion channel protein family demonstrate glutaredoxin-like enzymatic activity. PLoS ONE 2015, 10, e115699. [Google Scholar] [CrossRef] [PubMed]
- Harrop, S.; DeMaere, M.; Fairlie, W.; Reztsova, T.; Valenzuela, S.; Mazzanti, M.; Tonini, R.; Qiu, M.; Jankova, L.; Warton, K.; et al. Crystal structure of a soluble form of the intracellular chloride ion channel CLIC1 (NCC27) at 1.4-Å resolution. J. Biol. Chem. 2001, 276, 44993–45000. [Google Scholar] [CrossRef] [PubMed]
- Hernandez-Fernaud, J.; Ruengeler, E.; Casazza, A.; Neilson, L.; Pulleine, E.; Santi, A.; Ismail, S.; Lilla, S.; Dhayade, S.; MacPherson, I.; et al. Secreted CLIC3 drives cancer progression through its glutathione-dependent oxidoreductase activity. Nat. Commun. 2017, 8, 14206. [Google Scholar] [CrossRef] [PubMed]
- Turkewitz, D.; Moghaddasi, S.; Alghalayini, A.; D’Amario, C.; Ali, H.; Wallach, M.; Valenzuela, S. Comparative study of His-and Non-His-tagged CLIC proteins, reveals changes in their enzymatic activity. Biochem. Biophys. Rep. 2021, 26, 101015. [Google Scholar] [CrossRef] [PubMed]
- Ponnalagu, D.; Gururaja Rao, S.; Farber, J.; Xin, W.; Hussain, A.; Shah, K.; Tanda, S.; Berryman, M.; Edwards, J.; Singh, H. Molecular identity of cardiac mitochondrial chloride intracellular channel proteins. Mitochondrion 2016, 27, 6–14. [Google Scholar] [CrossRef] [PubMed]
- Ponnalagu, D.; Patel, N.; Chaudhury, A.; Gao, E.; Koch, W.; Kohut, A.; Singh, H. CLIC4 and CLIC5, Mitochondrial Chloride Channel Proteins Mediate Cardioprotection Against Ischemia Reperfusion Injury. Biophys. J. 2018, 114, 657a. [Google Scholar] [CrossRef]
- Copeland, R. Enzymes: A Practical Introduction to Structure, Mechanism, and Data Analysis; John Wiley & Sons: Hoboken, NJ, USA, 2023. [Google Scholar]
- Daniel, R.; Danson, M.; Eisenthal, R. The temperature optima of enzymes: A new perspective on an old phenomenon. Trends Biochem. Sci. 2001, 26, 223–225. [Google Scholar] [CrossRef]
- Nelson, D.; Cox, M. Chapter 6. Enzymes Prıncıples of Biochemıstry: Lehninger; 2008. [Google Scholar]
- Daniel, R.; Danson, M. Temperature and the catalytic activity of enzymes: A fresh understanding. FEBS Lett. 2013, 587, 2738–2743. [Google Scholar] [CrossRef]
- Goodchild, S.; Angstmann, C.; Breit, S.; Curmi, P.; Brown, L. Transmembrane extension and oligomerization of the CLIC1 chloride intracellular channel protein upon membrane interaction. Biochemistry 2011, 50, 10887–10897. [Google Scholar] [CrossRef]
- Begas, P.; Staudacher, V.; Deponte, M. Systematic re-evaluation of the bis (2-hydroxyethyl) disulfide (HEDS) assay reveals an alternative mechanism and activity of glutaredoxins. Chem. Sci. 2015, 6, 3788–3796. [Google Scholar] [CrossRef] [PubMed]
- Littler, D.; Harrop, S.; Fairlie, W.; Brown, L.; Pankhurst, G.; Pankhurst, S.; DeMaere, M.; Campbell, T.; Bauskin, A.; Tonini, R.; et al. The intracellular chloride ion channel protein CLIC1 undergoes a redox-controlled structural transition. J. Biol. Chem. 2004, 279, 9298–9305. [Google Scholar] [CrossRef] [PubMed]
- Averaimo, S.; Abeti, R.; Savalli, N.; Brown, L.; Curmi, P.; Breit, S.; Mazzanti, M. Point mutations in the transmembrane region of the clic1 ion channel selectively modify its biophysical properties. PLoS ONE 2013, 8, e74523. [Google Scholar] [CrossRef] [PubMed]
- Discola, K.; de Oliveira, M.; Rosa Cussiol, J.; Monteiro, G.; Bárcena, J.; Porras, P.; Padilla, C.; Guimarães, B.; Netto, L. Structural aspects of the distinct biochemical properties of glutaredoxin 1 and glutaredoxin 2 from Saccharomyces cerevisiae. J. Mol. Biol. 2009, 385, 889–901. [Google Scholar] [CrossRef] [PubMed]
- Holmgren, A. Reduction of disulfides by thioredoxin. Exceptional reactivity of insulin and suggested functions of thioredoxin in mechanism of hormone action. J. Biol. Chem. 1979, 254, 9113–9119. [Google Scholar] [CrossRef] [PubMed]
- Gururaja Rao, S.; Ponnalagu, D.; Sukur, S.; Singh, H.; Sanghvi, S.; Mei, Y.; Jin, D.; Singh, H. Identification and characterization of a bacterial homolog of chloride intracellular channel (CLIC) protein. Sci. Rep. 2017, 7, 8500. [Google Scholar] [CrossRef] [PubMed]
- Chuang, H.; Cheng, C.; Chen, Y.; Shaw, J. Novel highly active recombinant glutaredoxin from Chlorella sorokiniana T-89. J. Agric. Food Chem. 2014, 62, 927–933. [Google Scholar] [CrossRef]
- Holmgren, A.; Aslund, F. [29] Glutaredoxin. In Methods in Enzymology; Elsevier: Amsterdam, The Netherlands, 1995; Volume 252, pp. 283–292. [Google Scholar]
- Liang, J.; Shaulov, Y.; Savage-Dunn, C.; Boissinot, S.; Hoque, T. Chloride intracellular channel proteins respond to heat stress in Caenorhabditis elegans. PLoS ONE 2017, 12, e0184308. [Google Scholar] [CrossRef]
- Tulk, B.; Schlesinger, P.; Kapadia, S.; Edwards, J. CLIC-1 functions as a chloride channel when expressed and purified from bacteria. J. Biol. Chem. 2000, 275, 26986–26993. [Google Scholar] [CrossRef]
- Board, P.; Coggan, M.; Watson, S.; Gage, P.; Dulhunty, A. CLIC-2 modulates cardiac ryanodine receptor Ca2+ release channels. Int. J. Biochem. Cell Biol. 2004, 36, 1599–1612. [Google Scholar] [CrossRef]
- Dulhunty, A.; Pouliquin, P.; Coggan, M.; Gage, P.; Board, P. A recently identified member of the glutathione transferase structural family modifies cardiac RyR2 substate activity, coupled gating and activation by Ca2+ and ATP. Biochem. J. 2005, 390, 333–343. [Google Scholar] [CrossRef] [PubMed]
- Meng, X.; Wang, G.; Viero, C.; Wang, Q.; Mi, W.; Su, X.; Wagenknecht, T.; Williams, A.; Liu, Z.; Yin, C. CLIC2-RyR1 Interaction and Structural Characterization by Cryo-electron Microscopy. J. Mol. Biol. 2009, 387, 320–334. [Google Scholar] [CrossRef] [PubMed]
- Qian, Z.; Okuhara, D.; Abe, M.; Rosner, M. Molecular cloning and characterization of a mitogen-activated protein kinase-associated intracellular chloride channel. J. Biol. Chem. 1999, 274, 1621–1627. [Google Scholar] [CrossRef] [PubMed]
- Money, T.; King, R.; Wong, M.; Stevenson, J.; Kalionis, B.; Erwich, J.; Huisman, M.; Timmer, A.; Hiden, U.; Desoye, G.; et al. Expression and Cellular Localisation of Chloride Intracellular Channel 3 in Human Placenta and Fetal Membranes. Placenta 2007, 28, 429–436. [Google Scholar] [CrossRef] [PubMed]
- Howell, S.; Duncan, R.; Ashley, R. Identification and characterisation of a homologue of p64 in rat tissues. FEBS Lett. 1996, 390, 207–210. [Google Scholar] [CrossRef] [PubMed]
- Duncan, R.; Westwood, P.; Boyd, A.; Ashley, R. Rat brain p64H1, expression of a new member of the p64 chloride channel protein family in endoplasmic reticulum. J. Biol. Chem. 1997, 272, 23880–23886. [Google Scholar] [CrossRef] [PubMed]
- Chuang, J.; Milner, T.; Zhu, M.; Sung, C. A 29 kDa intracellular chloride channel p64H1 is associated with large dense-core vesicles in rat hippocampal neurons. J. Neurosci. 1999, 19, 2919–2928. [Google Scholar] [CrossRef]
- Suh, K.; Crutchley, J.; Koochek, A.; Ryscavage, A.; Bhat, K.; Tanaka, T.; Oshima, A.; Fitzgerald, P.; Yuspa, S. Reciprocal modifications of CLIC4 in tumor epithelium and stroma mark malignant progression of multiple human cancers. Clin. Cancer Res. 2007, 13, 121–131. [Google Scholar] [CrossRef]
- Suh, K.; Malik, M.; Shukla, A.; Yuspa, S. CLIC4, skin homeostasis and cutaneous cancer: Surprising connections. Mol. Carcinog. 2007, 46, 599–604. [Google Scholar] [CrossRef]
- Suh, K.; Mutoh, M.; Mutoh, T.; Li, L.; Ryscavage, A.; Crutchley, J.; Dumont, R.; Cheng, C.; Yuspa, S. CLIC4 mediates and is required for Ca2+-induced keratinocyte differentiation. J. Cell Sci. 2007, 120, 2631–2640. [Google Scholar] [CrossRef]
- Padmakumar, V.; Masiuk, K.; Luger, D.; Lee, C.; Coppola, V.; Tessarollo, L.; Hoover, S.; Karavanova, I.; Buonanno, A.; Simpson, R.; et al. Detection of differential fetal and adult expression of chloride intracellular channel 4 (CLIC4) protein by analysis of a green fluorescent protein knock-in mouse line. BMC Dev. Biol. 2014, 14, 24. [Google Scholar] [CrossRef] [PubMed]
- Padmakumar, V.; Speer, K.; Pal-Ghosh, S.; Masiuk, K.; Ryscavage, A.; Dengler, S.; Hwang, S.; Edwards, J.; Coppola, V.; Tessarollo, L.; et al. Spontaneous skin erosions and reduced skin and corneal wound healing characterize CLIC4NULL mice. Am. J. Pathol. 2012, 181, 74–84. [Google Scholar] [CrossRef] [PubMed]
- Shukla, A.; Yang, Y.; Madanikia, S.; Ho, Y.; Li, M.; Sanchez, V.; Cataisson, C.; Huang, J.; Yuspa, S. Elevating CLIC4 in Multiple Cell Types Reveals a TGF-β Dependent Induction of a Dominant Negative Smad7 Splice Variant. PLoS ONE 2016, 11, e0161410. [Google Scholar] [CrossRef] [PubMed]
- Berryman, M.; Bretscher, A. Identification of a Novel Member of the Chloride Intracellular Channel Gene Family (CLIC5) That Associates with the Actin Cytoskeleton of Placental Microvilli. Mol. Biol. Cell 2000, 11, 1509–1521. [Google Scholar] [CrossRef] [PubMed]
- Gagnon, L.; Longo-Guess, C.; Berryman, M.; Shin, J.; Saylor, K.; Yu, H.; Gillespie, P.; Johnson, K. The chloride intracellular channel protein CLIC5 is expressed at high levels in hair cell stereocilia and is essential for normal inner ear function. J. Neurosci. 2006, 26, 10188–10198. [Google Scholar] [CrossRef] [PubMed]
- Shanks, R.; Larocca, M.; Berryman, M.; Edwards, J.; Urushidani, T.; Navarre, J.; Goldenring, J. AKAP350 at the Golgi Apparatus II. Association of AKAP350 with a Novel Chloride Intracellular Channel (CLIC) Family Member. J. Biol. Chem. 2002, 277, 40973–40980. [Google Scholar] [CrossRef] [PubMed]
- Nishizawa, T.; Nagao, T.; Iwatsubo, T.; Forte, J.; Urushidani, T. Molecular cloning and characterization of a novel chloride intracellular channel-related protein, parchorin, expressed in water-secreting cells. J. Biol. Chem. 2000, 275, 11164–11173. [Google Scholar] [CrossRef] [PubMed]
- Griffon, N.; Jeanneteau, F.; Prieur, F.; Diaz, J.; Sokoloff, P. CLIC6, a member of the intracellular chloride channel family, interacts with dopamine D2-like receptors. Brain Res. Mol. Brain Res. 2003, 117, 47–57. [Google Scholar] [CrossRef]
- Stoychev, S.; Nathaniel, C.; Fanucchi, S.; Brock, M.; Li, S.; Asmus, K.; Woods, V.J.; Dirr, H. Structural dynamics of soluble chloride intracellular channel protein CLIC1 examined by amide hydrogen−deuterium exchange mass spectrometry. Biochemistry 2009, 48, 8413–8421. [Google Scholar] [CrossRef]
- Warton, K.; Tonini, R.; Fairlie, W.; Matthews, J.; Valenzuela, S.; Qiu, M.; Wu, W.; Pankhurst, S.; Bauskin, A.; Harrop, S.; et al. Recombinant CLIC1 (NCC27) assembles in lipid bilayers via a pH-dependent two-state process to form chloride ion channels with identical characteristics to those observed in Chinese hamster ovary cells expressing CLIC1. J. Biol. Chem. 2002, 277, 26003–26011. [Google Scholar] [CrossRef]
- Paroutis, P.; Touret, N.; Grinstein, S. The pH of the secretory pathway: Measurement, determinants, and regulation. Physiology 2004, 19, 207–215. [Google Scholar] [CrossRef] [PubMed]
- Carnell, L.; Moore, H. Transport via the regulated secretory pathway in semi-intact PC12 cells: Role of intra-cisternal calcium and pH in the transport and sorting of secretogranin II. J. Cell Biol. 1994, 127, 693–705. [Google Scholar] [CrossRef] [PubMed]
- Chanat, E.; Huttner, W. Milieu-induced, selective aggregation of regulated secretory proteins in the trans-Golgi network. J. Cell Biol. 1991, 115, 1505–1519. [Google Scholar] [CrossRef] [PubMed]
- Schreiber, G.; Fersht, A. Interaction of barnase with its polypeptide inhibitor barstar studied by protein engineering. Biochemistry 1993, 32, 5145–5150. [Google Scholar] [CrossRef] [PubMed]
- Schreiber, G.; Fersht, A. Energetics of protein-protein interactions: Analysis ofthe Barnase-Barstar interface by single mutations and double mutant cycles. J. Mol. Biol. 1995, 248, 478–486. [Google Scholar] [CrossRef] [PubMed]
- Olson, L.; Hindsgaul, O.; Dahms, N.; Kim, J. Structural insights into the mechanism of pH-dependent ligand binding and release by the cation-dependent mannose 6-phosphate receptor. J. Biol. Chem. 2008, 283, 10124–10134. [Google Scholar] [CrossRef] [PubMed]
- Chaves, F.; Richards, K.; Torelli, A.; Wedekind, J.; Sant, A. Peptide-binding motifs for the I-Ad MHC class II molecule: Alternate pH-dependent binding behavior. Biochemistry 2006, 45, 6426–6433. [Google Scholar] [CrossRef]
- Kawai, C.; Prado, F.; Nunes, G.; Di Mascio, P.; Carmona-Ribeiro, A.; Nantes, I. pH-dependent interaction of cytochrome c with mitochondrial mimetic membranes The role of an array of positively charged amino acids. J. Biol. Chem. 2005, 280, 34709–34717. [Google Scholar] [CrossRef]
- Yoo, S. pH-dependent interaction of chromogranin A with integral membrane proteins of secretory vesicle including 260-kDa protein reactive to inositol 1, 4, 5-triphosphate receptor antibody. J. Biol. Chem. 1994, 269, 12001–12006. [Google Scholar] [CrossRef]
- Kono, K.; Kimura, S.; Imanishi, Y. pH-dependent interaction of amphiphilic polypeptide poly (Lys-Aib-Leu-Aib) with lipid bilayer membrane. Biochemistry 1990, 29, 3631–3637. [Google Scholar] [CrossRef]
- Fanucchi, S.; Adamson, R.; Dirr, H. Formation of an unfolding intermediate state of soluble chloride intracellular channel protein CLIC1 at acidic pH. Biochemistry 2008, 47, 11674–11681. [Google Scholar] [CrossRef]
- Fischer, A.; Dubbs, W.; Baker, R.; Fuller, M.; Stephenson, L.; Grimes, H. Protein dynamics, activity and cellular localization of soybean lipoxygenases indicate distinct functional roles for individual isoforms. Plant J. 1999, 19, 543–554. [Google Scholar] [CrossRef]
- Olotu, F.; Medina-Carmona, E.; Serrano-Sanchez, A.; Ossa, F.; El-Hamdaoui, A.; Bishop, Ö.; Ortega-Roldan, J.; Abdul-Salam, V. Structure-based discovery and in vitro validation of inhibitors of chloride intracellular channel 4 protein. Comput. Struct. Biotechnol. J. 2023, 21, 688–701. [Google Scholar] [CrossRef]
- Singh, H. Two decades with dimorphic Chloride Intracellular Channels (CLICs). FEBS Lett. 2010, 584, 2112–2121. [Google Scholar] [CrossRef]
- Ashley, R. Challenging accepted ion channel biology: p64 and the CLIC family of putative intracellular anion channel proteins. Mol. Membr. Biol. 2003, 20, 1–11. [Google Scholar] [CrossRef]
- Valenzuela, S.; Alkhamici, H.; Brown, L.; Almond, O.; Goodchild, S.; Carne, S.; Curmi, P.; Holt, S.; Cornell, B. Regulation of the membrane insertion and conductance activity of the metamorphic chloride intracellular channel protein CLIC1 by cholesterol. PLoS ONE 2013, 8, e56948. [Google Scholar] [CrossRef] [PubMed]
Km (mM) | Vmax (μmol·min−1·mg−1) | Kcat (1/S) | S−1·mM−1 (1/S/mM) | |
---|---|---|---|---|
CLIC1 | 0.2738 | 5.573 | 99.87455 | 364.7719 |
CLIC3 | 0.2663 | 6.153 | 115.6579 | 434.3143 |
CLIC4 | 0.345 | 5.396 | 93.68056 | 271.5378 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alghalayini, A.; Hossain, K.R.; Moghaddasi, S.; Turkewitz, D.R.; D’Amario, C.; Wallach, M.; Valenzuela, S.M. In Vitro Enzymatic Studies Reveal pH and Temperature Sensitive Properties of the CLIC Proteins. Biomolecules 2023, 13, 1394. https://doi.org/10.3390/biom13091394
Alghalayini A, Hossain KR, Moghaddasi S, Turkewitz DR, D’Amario C, Wallach M, Valenzuela SM. In Vitro Enzymatic Studies Reveal pH and Temperature Sensitive Properties of the CLIC Proteins. Biomolecules. 2023; 13(9):1394. https://doi.org/10.3390/biom13091394
Chicago/Turabian StyleAlghalayini, Amani, Khondker Rufaka Hossain, Saba Moghaddasi, Daniel R. Turkewitz, Claudia D’Amario, Michael Wallach, and Stella M. Valenzuela. 2023. "In Vitro Enzymatic Studies Reveal pH and Temperature Sensitive Properties of the CLIC Proteins" Biomolecules 13, no. 9: 1394. https://doi.org/10.3390/biom13091394
APA StyleAlghalayini, A., Hossain, K. R., Moghaddasi, S., Turkewitz, D. R., D’Amario, C., Wallach, M., & Valenzuela, S. M. (2023). In Vitro Enzymatic Studies Reveal pH and Temperature Sensitive Properties of the CLIC Proteins. Biomolecules, 13(9), 1394. https://doi.org/10.3390/biom13091394