Efficient Stereo-Selective Fluorination on Vitamin D3 Side-Chain Using Electrophilic Fluorination
Abstract
:1. Introduction
1.1. Previous Studies of C24-Stereoselective Fluorination
1.2. Previous Studies of C22-Stereoselective Fluorination
2. Results and Discussion
2.1. Synthesis of 24-Fluoro-CD-Rings (5,6) via Electrophilic Fluorination
2.2. Synthesis of (22R)-Fluoro-CD-Ring (11) via Electrophilic Fluorination
3. Conclusions
- Experimental Section
- (4R)-3-[(5R)-5-{(1R,3aR,4S,7aR)-4-[(tert-Butyldimethylsilyl)oxy]-7a-methyloctahydro-1H-inden-1-yl}hexanoyl]-4-isopropyloxazolidin-2-one (26)
- (4S)-3-[(5R)-5-{(1R,3aR,4S,7aR)-4-[(tert-Butyldimethylsilyl)oxy]-7a-methyloctahydro-1H-inden-1-yl}hexanoyl]-4-isopropyloxazolidin-2-one (27)
- (1R,3aR,4S,7aR)-1-[(2R,5R)-5-Fluoro-6-hydroxy-6-methylheptan-2-yl]-7a-methyloctahydro-1H-inden-4-ol (5)
- (1R,3aR,4S,7aR)-1-[(2R,5S)-5-Fluoro-6-hydroxy-6-methylheptan-2-yl]-7a-methyloctahydro-1H-inden-4-ol (6)
- (4S)-3-[(3R)-3-{(1R,3aR,4S,7aR)-4-[(tert-Butyldimethylsilyl)oxy]-7a-methyloctahydro-1H-inden-1-yl}butanoyl]-4-isopropyloxazolidin-2-one (30)
- (4S)-3-[(2S,3S)-3-{(1R,3aR,4S,7aR)-4-[(tert-Butyldimethylsilyl)oxy]-7a-methyloctahydro-1H-inden-1-yl}-2-fluorobutanoyl]-4-isopropyloxazolidin-2-one (29) and (4S)-3-[(2R,3S)-3-{(1R,3aR,4S,7aR)-4-[(tert-Butyldimethylsilyl)oxy]-7a-methyloctahydro-1H-inden-1-yl}-2-fluorobutanoyl]-4-isopropyloxazolidin-2-one (33)
- (2S,3S)-3-{(1R,3aR,4S,7aR)-4-[(tert-Butyldimethylsilyl)oxy]-7a-methyloctahydro-1H-inden-1-yl}-2-fluoro-N-methoxy-N-methylbutanamide (34)
- (2R,3S)-3-{(1R,3aR,4S,7aR)-4-[(tert-Butyldimethylsilyl)oxy]-7a-methyloctahydro-1H-inden-1-yl}-2-fluoro-N-methoxy-N-methylbutanamide (35)
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Kawagoe, F.; Mototani, S.; Kittaka, A. Design and synthesis of fluoro analogues of vitamin D. Int. J. Mol. Sci. 2021, 22, 8191. [Google Scholar] [CrossRef] [PubMed]
- Kawagoe, F.; Sugiyama, T.; Uesugi, M.; Kittaka, A. Recent developments for introducing a hexafluoroisopropanol unit into the vitamin D side chain. J. Steroid Biochem. Mol. Biol. 2018, 177, 250–254. [Google Scholar] [CrossRef] [PubMed]
- Kawagoe, F. Synthesis of new 26,26,27,27-tetrafluoro and 26,27-difluoro-25-hydroxyvitamin D3: The effects of the terminal fluorine atoms on affinity to VDR and CYP24A1-dependent metabolism. Chem. Pharm. Bull. 2023, 71, 717–723. [Google Scholar] [CrossRef] [PubMed]
- Kawagoe, F.; Mototani, S.; Yasuda, K.; Nagasawa, K.; Uesugi, M.; Sakaki, T.; Kittaka, A. Introduction of fluorine atoms to vitamin D3 side-chain and synthesis of 24,24-difluoro-25-hydroxyvitamin D3. J. Steroid Biochem. Mol. Biol. 2019, 195, 105477. [Google Scholar] [CrossRef] [PubMed]
- Kawagoe, F.; Mototani, S.; Yasuda, K.; Mano, H.; Sakaki, T.; Kittaka, A. Stereoselective synthesis of 24-fluoro-25-hydroxyvitamin D3 analogues and their stability to hCYP24A1-dependent catabolism. Int. J. Mol. Sci. 2021, 22, 11863. [Google Scholar] [CrossRef]
- Mototani, S.; Kawagoe, F.; Yasuda, K.; Mano, H.; Sakaki, T.; Kittaka, A. The first convergent synthesis of 23,23-difluoro-25-hydroxyvitamin D3 and its 24-hydroxy derivatives: Preliminary assessment of biological activities. Molecules 2022, 27, 5352. [Google Scholar] [CrossRef]
- Kawagoe, F.; Yasuda, K.; Mototani, S.; Sugiyama, T.; Uesugi, M.; Sakaki, T.; Kittaka, A. Synthesis and CYP24A1-dependent metabolism of 23-fluorinated vitamin D3 analogues. ACS Omega 2019, 4, 11332–11337. [Google Scholar] [CrossRef]
- Kawagoe, F.; Mototani, S.; Yasuda, K.; Takeuchi, A.; Mano, H.; Kakuda, S.; Saitoh, H.; Sakaki, T.; Kittaka, A. Synthesis of (22R)-, (22S)-22-fluoro-, and 22,22-difluoro-25-hydroxyvitamin D3 and effects of side-chain fluorination on biological activity and CYP24A1-dependent metabolism. J. Org. Chem. 2023, 88, 12394–12408. [Google Scholar] [CrossRef]
- Nagata, A.; Akagi, Y.; Asano, L.; Kotake, K.; Kawagoe, F.; Mendoza, A.; Masoud, S.S.; Usuda, K.; Yasui, K.; Takemoto, Y.; et al. Synthetic chemical probes that dissect vitamin D activities. ACS Chem. Biol. 2019, 14, 2851–2858. [Google Scholar] [CrossRef]
- Kawagoe, F.; Mendoza, A.; Hayata, Y.; Asano, L.; Kotake, K.; Mototani, S.; Kawamura, S.; Kurosaki, S.; Akagi, Y.; Takemoto, Y.; et al. Discovery of a vitamin D receptor-silent vitamin D derivative that impairs sterol regulatory element-binding protein in vivo. J. Med. Chem. 2021, 64, 5689–5709. [Google Scholar] [CrossRef]
- Kawagoe, F.; Mototani, S.; Mendoza, A.; Takemoto, Y.; Uesugi, M.; Kittaka, A. Structure-activity relationship studies on vitamin D-based selective SREBP/SCAP inhibitor KK-052. RSC Med. Chem. 2023, 14, 2030–2034. [Google Scholar] [CrossRef]
- Sakaki, T.; Sawada, N.; Komai, K.; Shiozawa, S.; Yamada, S.; Yamamoto, K.; Ohyama, Y.; Inouye, K. Dual metabolic pathway of 25-hydroxyvitamin D3 catalyzed by human CYP24. Eur. J. Biochem. 2000, 267, 6158–6165. [Google Scholar] [CrossRef] [PubMed]
- Sakaki, T.; Kagawa, N.; Yamamoto, K.; Inouye, K. Metabolism of vitamin D3 by cytochromes P450. Front. Biosci. 2005, 10, 119–134. [Google Scholar]
- Yasuda, K.; Nishikawa, M.; Okamoto, K.; Horibe, K.; Mano, H.; Yamaguchi, M.; Okon, R.; Nakagawa, K.; Tsugawa, N.; Okano, T.; et al. Elucidation of metabolic pathways of 25-hydroxyvitamin D3 mediated by Cyp24A1 and Cyp3A using Cyp24a1 knockout rats generated by CRISPR/Cas9 system. J. Biol. Chem. 2021, 296, 100668. [Google Scholar] [CrossRef] [PubMed]
- Kobayashi, Y.; Taguchi, T.; Terada, T.; Oshida, J.-I.; Morisaki, M.; Ikekawa, N. Synthesis of 24,24-difluoro- and 24ξ-fluoro-25-hydroxyvitamin D3. Tetrahedron Lett. 1979, 20, 2023–2026. [Google Scholar] [CrossRef]
- Shiuey, S.-J.; Partridge, J.J.; Chadha, N.K.; Boris, A.; Uskoković, M.R. Stereospecific synthesis of 1α,25-dihydroxy-24R-fluorocholecalciferol (Ro23-0233). In Vitamin D, Chemical, Biochemical and Clinical Update; Walter de Gruyter: Berlin, Germany, 1985; pp. 765–766. [Google Scholar]
- Shiuey, S.-J.; Partridge, J.J.; Uskoković, M.R. Triply convergent synthesis of 1α,25-dihydroxy-24(R)-fluorocholecalciferol. J. Org. Chem. 1988, 53, 1040–1046. [Google Scholar] [CrossRef]
- Yamada, S.; Ohmori, M.; Takayama, H. Synthesis of 24,24-difluoro-25-hydroxyvitamin D3. Tetrahedron Lett. 1979, 20, 1859–1862. [Google Scholar] [CrossRef]
- Gill, H.S.; Londowski, J.M.; Corradino, R.A.; Zinsmeister, A.R.; Kumar, R. Synthesis and biological activity of novel vitamin D analogues: 24,24-difluoro-25-hydroxy-26,27-dimethylvitamin D3 and 24,24-difluoro-1α,25-dihydroxy-26,27-dimethylvitamin D3. J. Med. Chem. 1990, 33, 480–490. [Google Scholar] [CrossRef]
- Konno, K.; Ojima, K.; Hayashi, T.; Takayama, H. An alternative and efficient synthesis of 24,24-difluoro-1α,25-dihydroxyvitamin D3. Chem. Pharm. Bull. 1992, 40, 1120–1124. [Google Scholar] [CrossRef]
- Ando, K.; Kondo, F.; Koike, F.; Takayama, H. An improved synthesis of 24,24-difluoro-1α,25-dihydroxyvitamin D3 from vitamin D2. Chem. Pharm. Bull. 1992, 40, 1662–1664. [Google Scholar] [CrossRef]
- Kondo, F.; Maki, S.; Konno, K.; Takayama, H. The first synthesis of 24,24-difluoro-1α-hydroxyvitamin D3 by means of radical deoxygenation of alcohols. Chem. Pharm. Bull. 1996, 44, 62–66. [Google Scholar] [CrossRef]
- Iwasaki, H.; Hosotani, R.; Miyamoto, Y.; Nakano, Y.; Yamamoto, K.; Yamada, S.; Shinki, T.; Suda, T.; Yamaguchi, K.; Konno, K.; et al. Stereoselective synthesis and structural establishment of (25S)-24,24-difluoro-1α,25,26-trihydroxyvitamin D3, a major metabolite of 24,24-difluoro-1α,25-dihydroxyvitamin D3. Tetrahedron 1998, 54, 14705–14724. [Google Scholar] [CrossRef]
- Flores, A.; Massarelli, I.; Thoden, J.B.; Plum, L.A.; DeLuca, H.F. A methylene group on C-2 of 24,24-difluoro-19-nor-1α,25-dihydroxyvitamin D3 markedly increases bone calcium mobilization in nivo. J. Med. Chem. 2015, 58, 9731–9741. [Google Scholar] [CrossRef] [PubMed]
- Tanaka, Y.; DeLuca, H.F.; Schnoes, H.K.; Ikekawa, N.; Kobayashi, Y. 24,24-difluoro-1,25-dihydroxyvitamin D3: In vitro production, isolation, and biological activity. Arch. Biochem. Biophys. 1980, 199, 473–478. [Google Scholar] [CrossRef] [PubMed]
- Gill, H.S.; Londowski, J.M.; Corradino, R.A.; Kumar, R. The synthesis and biological activity of 22-fluorovitamin D3: A new vitamin D analog. Steroids 1986, 48, 93–108. [Google Scholar]
- Davis, F.A.; Kasu, P.V.N. Asymmetric synthesis of α-fluoro ketones using α-fluoro oxazolidinone carboximides. Tetrahedron Lett. 1998, 39, 6135–6138. [Google Scholar] [CrossRef]
- Less, S.L.; Handa, S.; Millburn, K.; Leadlay, P.F.; Dutton, C.J.; Staunton, J. Biosynthesis of Tetronasin: Part 6. Preparation of structural analogues of the diketide and triketide biosynthetic precursors to Tetronasin. Tetrahedron Lett. 1996, 37, 3515–3518. [Google Scholar] [CrossRef]
- Brunet, V.A.; O’Hagan, D.; Slawin, A.M.Z. Titanium mediated asymmetric aldol reaction with α-fluoropropionimide enolates. J. Fluor. Chem. 2007, 128, 1271–1279. [Google Scholar] [CrossRef]
- Mascareñas, J.L.; Pérez-Sestelo, J.; Castedo, L.; Mouriño, A. A short, flexible route to vitamin D metabolites and their side chain analogues. Tetrahedron Lett. 1991, 32, 2813–2816. [Google Scholar] [CrossRef]
- Nicoletti, D.; Mouriño, A.; Torneiro, M.S. Synthesis of 25-hydroxyvitamin D3 and 26,26,26,27,27,27-hexadeutero-25-hydroxyvitamin D3 on solid support. J. Org. Chem. 2009, 74, 4782–4786. [Google Scholar] [CrossRef]
- Yu, O.B.; Mutchie, T.R.; Di Milo, E.S.; Arnold, L.A. Synthesis and biological evaluation of calcioic acid. Steroids 2020, 154, 108536. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kawagoe, F.; Mototani, S.; Kittaka, A. Efficient Stereo-Selective Fluorination on Vitamin D3 Side-Chain Using Electrophilic Fluorination. Biomolecules 2024, 14, 37. https://doi.org/10.3390/biom14010037
Kawagoe F, Mototani S, Kittaka A. Efficient Stereo-Selective Fluorination on Vitamin D3 Side-Chain Using Electrophilic Fluorination. Biomolecules. 2024; 14(1):37. https://doi.org/10.3390/biom14010037
Chicago/Turabian StyleKawagoe, Fumihiro, Sayuri Mototani, and Atsushi Kittaka. 2024. "Efficient Stereo-Selective Fluorination on Vitamin D3 Side-Chain Using Electrophilic Fluorination" Biomolecules 14, no. 1: 37. https://doi.org/10.3390/biom14010037
APA StyleKawagoe, F., Mototani, S., & Kittaka, A. (2024). Efficient Stereo-Selective Fluorination on Vitamin D3 Side-Chain Using Electrophilic Fluorination. Biomolecules, 14(1), 37. https://doi.org/10.3390/biom14010037