Diverse Response to Local Pharmacological Blockade of Sirt1 Cleavage in Age-Induced versus Trauma-Induced Osteoarthritis Female Mice
Abstract
:1. Introduction
2. Materials and Methods
2.1. Mice Experimental Procedures
2.2. Histology and Immunohistochemistry
2.3. Micro Computed Tomography (μCT) Analysis
2.4. Detection of NT/CT Sirt1 Levels in Mice Serum
2.5. Statistical Analysis
3. Results
3.1. p16INK4A Is Unaffected by Combination Treatment in Young PTOA Mice
3.2. Local Intra-Articular Administration of Combination Treatment to AOA Improves Pain Hyperalgesia without a Structural Effect
3.3. Local Intra-Articular Administration of Combination Treatment to AOA Did Not Elicit Structural Changes in Joint Tissues
3.4. Local Intra-Articular Administration of Combination Treatment to AOA Did Not Alter the NT/CT Sirt1 Ratio or Nuclear p16INK4A Chondrocyte Staining
3.5. AOA Models Treated with Combination Do Not Display Changes in Sirt1/Lef1-Related Mechanisms
4. Discussion
- o
- A diverse structural response to the same Sirt1 targeting treatments is apparent between AOA and PTOA female mice.
- o
- Both AOA and PTOA are responsive to combination treatments for knee mechanical hyperalgesia.
- o
- AOA mice treated with the combination showed an improved pain response but no structural improvement vs. the vehicle control.
- o
- Treatment of the Sirt1 combination in AOA models does not result in variations in the Lef1/Col1 axis, which was not the case with PTOA in previous works [12].
- o
- Combination treatment for PTOA or AOA does not target chondro-senescence in female mice.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Lunenfeld, B.; Stratton, P. The clinical consequences of an ageing world and preventivestrategies. Best Pract. Res. Clin. Obs. Gynaecol. 2013, 27, 643–659. [Google Scholar] [CrossRef] [PubMed]
- Campisi, J. Aging, cellular senescence, and cancer. Annu. Rev. Physiol. 2012, 75, 685–705. [Google Scholar] [CrossRef] [PubMed]
- Jeon, O.H.; Kim, C.; Laberge, R.-M.; Demaria, M.; Rathod, S.; Vasserot, A.P.; Chung, J.W.; Kim, D.H.; Poon, Y.; David, N.; et al. Local clearance of senescent cells attenuates the development of post-traumatic osteoarthritis and creates a pro-regenerativeenvironment. Nat. Med. 2017, 23, 775–781. [Google Scholar] [CrossRef] [PubMed]
- Tchkonia, T.; Zhu, Y.; van Deursen, J.; Campisi, J.; Kirkland, J.L. Cellular senescence and the senescent secretory phenotype: Therapeutic opportunities. J. Clin. Investig. 2013, 123, 966–972. [Google Scholar] [CrossRef] [PubMed]
- Lee, K.A.; Flores, R.R.; Jang, I.H.; Saathoff, A.; Robbins, P.D. Immune Senescence, Immunosenescence and Aging. Front. Aging 2022, 30, 900028. [Google Scholar] [CrossRef]
- Franceschi, C.; Ostan, R.; Mariotti, S.; Monti, D.; Vitale, G. The Aging Thyroid: A Reappraisal Within the Geroscience Integrated Perspective. Endocr. Rev. 2019, 40, 1250–1270. [Google Scholar] [CrossRef] [PubMed]
- Gonçalves, R.S.d.S.A.; Maciel, C.C.; Rolland, Y.; Vellas, B.; Barreto, P.d.S. Frailty biomarkers under the perspective of geroscience: A narrative review. Ageing Res. Rev. 2022, 81, 101737. [Google Scholar] [CrossRef]
- Yeung, F.; Hoberg, J.E.; Ramsey, C.S.; Keller, M.D.; Jones, D.R.; Frye, R.A.; Mayo, M.W. Modulation of NF-kappaB-dependent transcription and cellsurvival by the SIRT1 deacetylase. EMBO J. 2004, 23, 2369–2380. [Google Scholar]
- Vaziri, H.; Dessain, S.K.; Eaton, E.N.; Imai, S.-I.; Frye, R.A.; Pandita, T.K.; Guarente, L.; Weinberg, R.A. hSIR2SIRT1 Functions as an NAD-Dependent p53 Deacetylase. Cell 2001, 107, 149–159. [Google Scholar] [CrossRef]
- Kumar, A.; Daitsh, Y.; Ben-Aderet, L.; Qiq, O.; Elayyan, J.; Batshon, G.; Reich, E.; Maatuf, Y.H.; Engel, S.; Dvir-Ginzberg, M. A predicted unstructured C-terminal loop domain in SIRT1 is required for cathepsin B cleavage. J. Cell Sci. 2018, 131, jcs.214973. [Google Scholar] [CrossRef]
- Batshon, G.; Elayyan, J.; Qiq, O.; Reich, E.; Ben-Aderet, L.; Kandel, L.; Haze, A.; Steinmeyer, J.; Lefebvre, V.; Zhang, H.; et al. Serum NT/CT SIRT1 ratio reflects early osteoarthritis andchondrosenescence. Ann. Rheum. Dis. 2020, 79, 1370–1380. [Google Scholar] [CrossRef] [PubMed]
- Elayyan, J.; Carmon, I.; Zecharyahu, L.; Batshon, G.; Maatuf, Y.H.; Reich, E.; Dumont, M.; Kandel, L.; Klutstein, M.; Dvir-Ginzberg, M. Lef1 ablation alleviates cartilage mineralization following posttraumatic osteoarthritis induction. Proc. Natl. Acad. Sci. USA 2022, 119, e2116855119. [Google Scholar] [CrossRef] [PubMed]
- McNulty, M.A.; Loeser, R.F.; Davey, C.; Callahan, M.F.; Ferguson, C.M.; Carlson, C.S. A Comprehensive Histological Assessment of Osteoarthritis Lesions in Mice. CARTILAGE 2011, 2, 354–363. [Google Scholar] [CrossRef] [PubMed]
- Carmon, I.; Zecharyahu, L.; Elayyan, J.; Meka, S.R.K.; Reich, E.; Kandel, L.; Bilkei-Gorzo, A.; Zimmer, A.; Mechoulam, R.; Kravchenko-Balasha, N.; et al. HU308 Mitigates Osteoarthritis by Stimulating Sox9-Related Networks of Carbohydrate Metabolism. J. Bone Miner. Res. 2023, 38, 154–170. [Google Scholar] [CrossRef]
- Elayyan, J.; Gabay, O.; Smith, C.A.; Qiq, O.; Reich, E.; Mobasheri, A.; Henrotin, Y.; Kimber, S.J.; Lee, E.-J.; Dvir-Ginzberg, M. LEF1-mediated MMP13 gene expression is repressed by SIRT1 in human chondrocytes. FASEB J. 2017, 31, 3116–3125. [Google Scholar] [CrossRef] [PubMed]
- Glasson, S.; Blanchet, T.; Morris, E. The surgical destabilization of the medial meniscus (DMM) model of osteoarthritis in the 129/SvEv mouse. Osteoarthr. Cartil. 2007, 15, 1061–1069. [Google Scholar] [CrossRef] [PubMed]
- Safwan-Zaiter, H.; Wagner, N.; Wagner, K.-D. P16INK4A—More Than a Senescence Marker. Life 2022, 12, 1332. [Google Scholar] [CrossRef]
- Sis, B.; Tasanarong, A.; Khoshjou, F.; Dadras, F.; Solez, K.; Halloran, P. Accelerated expression of senescence associated cell cycle inhibitor p16INK4A in kidneys with glomerular disease. Kidney Int. 2007, 71, 218–226. [Google Scholar] [CrossRef]
- Diekman, B.O.; Sessions, G.A.; Collins, J.A.; Knecht, A.K.; Strum, S.L.; Mitin, N.K.; Carlson, C.S.; Loeser, R.F.; Sharpless, N.E. Expression of p16INK4a is a biomarker of chondrocyte aging but does not cause osteoarthritis. Aging Cell 2018, 17, e12771. [Google Scholar] [CrossRef]
- Loeser, R.F.; Olex, A.L.; McNulty, M.A.; Carlson, C.S.; Callahan, M.F.; Ferguson Cristin Mand Chou, J.; Leng, X.; Fetrow, J.S. Microarray analysis reveals age-related differences in geneexpression during the development of osteoarthritis in mice. Arthritis Rheum. 2012, 64, 705–717. [Google Scholar] [CrossRef]
- Cake, M.A.; Appleyard, R.C.; Read, R.A.; Smith, M.M.; Murrell, G.A.C.; Ghosh, P. Ovariectomy alters the structural and biomechanical properties ofovine femoro-tibial articular cartilage and increases cartilageiNOS. Osteoarthr. Cartil. 2005, 13, 1066–1075. [Google Scholar] [CrossRef]
- Wei, F.-Y.; Lee, J.K.; Wei, L.; Qu, F.; Zhang, J.-Z. Correlation of insulin-like growth factor 1 and osteoarthriticcartilage degradation: A spontaneous osteoarthritis in guinea-pig. Eur. Rev. Med. Pharmacol. Sci. 2017, 21, 4493–4500. [Google Scholar]
- Visser, A.W.; de Mutsert, R.; le Cessie, S.; den Heijer Mand Rosendaal, F.R.; Kloppenburg, M.; NEO Study Group. The relative contribution of mechanical stress and systemicprocesses in different types of osteoarthritis: The NEO study. Ann. Rheum. Dis. 2014, 74, 1842–1847. [Google Scholar] [CrossRef] [PubMed]
- Geraghty, T.; Obeidat, A.M.; Ishihara, S.; Wood, M.J.; Li, J.; Lopes, E.B.P.; Scanzello, C.R.; Griffin, T.M.; Malfait, A.; Miller, R.E. Age-Associated Changes in Knee Osteoarthritis, Pain-Related Behaviors, and Dorsal Root Ganglia Immunophenotyping of Male and Female Mice. Arthritis Rheumatol. 2023, 75, 1770–1780. [Google Scholar] [CrossRef]
- Coryell, P.R.; Diekman, B.O.; Loeser, R.F. Mechanisms and therapeutic implications of cellular senescence in osteoarthritis. Nat. Rev. Rheumatol. 2021, 17, 47–57. [Google Scholar] [CrossRef]
- Mobasheri, A.; Matta, C.; Zákány, R.; Musumeci, G. Chondrosenescence: Definition, hallmarks and potential role in the pathogenesis of osteoarthritis. Maturitas 2015, 80, 237–244. [Google Scholar] [CrossRef]
- Azazmeh, N.; Assouline, B.; Winter, E.; Ruppo, S.; Nevo, Y.; Maly, A.; Meir, K.; Witkiewicz, A.K.; Cohen, J.; Rizou, S.V.; et al. Chronic expression of p16INK4a in the epidermis induces Wnt-mediated hyperplasia and promotes tumor initiation. Nat. Commun. 2020, 11, 2711. [Google Scholar] [CrossRef] [PubMed]
- Hwang, H.S.; Park, I.Y.; Hong, J.-I.; Kim, J.-R.; Kim, H.A. Comparison of joint degeneration and pain in male and female mice in DMM model of osteoarthritis. Osteoarthr. Cartil. 2021, 29, 728–738. [Google Scholar] [CrossRef] [PubMed]
- Jin, J.; Yang, X.; Gong, H.; Li, X. Time- and Gender-Dependent Alterations in Mice during the Aging Process. Int. J. Mol. Sci. 2023, 24, 12790. [Google Scholar] [CrossRef]
- Zhang, L.; Xing, R.; Huang, Z.; Ding, L.; Li, M.; Li, X.; Wang, P.; Mao, J. Synovial Fibrosis Involvement in Osteoarthritis. Front. Med. 2021, 26, 684389. [Google Scholar] [CrossRef]
- Nanus, D.E.; Badoume, A.; Wijesinghe, S.N.; Halsey, A.M.; Hurley, P.; Ahmed, Z.; Botchu, R.; Davis, E.T.; A Lindsay, M.; Jones, S.W. Synovial tissue from sites of joint pain in knee osteoarthritis patients exhibits a differential phenotype with distinct fibroblast subsets. EBioMedicine 2021, 72, 103618. [Google Scholar] [CrossRef]
- Zhang, L.; Li, M.; Li, X.; Liao, T.; Ma, Z.; Xing, R.; Wang, P.; Mao, J. Characteristics of sensory innervation in synovium of rats within different knee osteoarthritis models and the correlation between synovial fibrosis and hyperalgesia. J. Adv. Res. 2022, 35, 141–151. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Maatuf, Y.H.; Marco, M.; Unger-Gelman, S.; Farhat, E.; Zobrab, A.; Roy, A.; Kumar, A.; Carmon, I.; Reich, E.; Dvir-Ginzberg, M. Diverse Response to Local Pharmacological Blockade of Sirt1 Cleavage in Age-Induced versus Trauma-Induced Osteoarthritis Female Mice. Biomolecules 2024, 14, 81. https://doi.org/10.3390/biom14010081
Maatuf YH, Marco M, Unger-Gelman S, Farhat E, Zobrab A, Roy A, Kumar A, Carmon I, Reich E, Dvir-Ginzberg M. Diverse Response to Local Pharmacological Blockade of Sirt1 Cleavage in Age-Induced versus Trauma-Induced Osteoarthritis Female Mice. Biomolecules. 2024; 14(1):81. https://doi.org/10.3390/biom14010081
Chicago/Turabian StyleMaatuf, Yonathan H., Miya Marco, Shani Unger-Gelman, Eli Farhat, Anna Zobrab, Ankita Roy, Ashish Kumar, Idan Carmon, Eli Reich, and Mona Dvir-Ginzberg. 2024. "Diverse Response to Local Pharmacological Blockade of Sirt1 Cleavage in Age-Induced versus Trauma-Induced Osteoarthritis Female Mice" Biomolecules 14, no. 1: 81. https://doi.org/10.3390/biom14010081
APA StyleMaatuf, Y. H., Marco, M., Unger-Gelman, S., Farhat, E., Zobrab, A., Roy, A., Kumar, A., Carmon, I., Reich, E., & Dvir-Ginzberg, M. (2024). Diverse Response to Local Pharmacological Blockade of Sirt1 Cleavage in Age-Induced versus Trauma-Induced Osteoarthritis Female Mice. Biomolecules, 14(1), 81. https://doi.org/10.3390/biom14010081