Selected Trace Elements and Their Impact on Redox Homeostasis in Eye Health
Abstract
:1. Introduction
2. The Oxidant–Antioxidant Balance and Oxidative Stress in the Eye
3. Impact of Trace Elements on Oxidative Stress
4. Trace Elements in the Eye
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Hsueh, Y.-J.; Chen, Y.-N.; Tsao, Y.-T.; Cheng, C.-M.; Wu, W.-C.; Chen, H.-C. The Pathomechanism, Antioxidant Biomarkers, and Treatment of Oxidative Stress-Related Eye Diseases. Int. J. Mol. Sci. 2022, 23, 1255. [Google Scholar] [CrossRef] [PubMed]
- Daruich, A.; Sauvain, J.-J.; Matet, A.; Eperon, S.; Schweizer, C.; Berthet, A.; Danuser, B.; Behar-Cohen, F. Levels of the Oxidative Stress Biomarker Malondialdehyde in Tears of Patients with Central Serous Chorioretinopathy Relate to Disease Activity. Mol. Vis. 2020, 26, 722–730. [Google Scholar] [PubMed]
- Kaluzhny, Y.; Kinuthia, M.W.; Lapointe, A.M.; Truong, T.; Klausner, M.; Hayden, P. Oxidative Stress in Corneal Injuries of Different Origin: Utilization of 3D Human Corneal Epithelial Tissue Model. Exp. Eye Res. 2020, 190, 107867. [Google Scholar] [CrossRef] [PubMed]
- Vona, R.; Gambardella, L.; Cittadini, C.; Straface, E.; Pietraforte, D. Biomarkers of Oxidative Stress in Metabolic Syndrome and Associated Diseases. Oxid. Med. Cell. Longev. 2019, 2019, 8267234. [Google Scholar] [CrossRef]
- Picard, E.; Ranchon-Cole, I.; Jonet, L.; Beaumont, C.; Behar-Cohen, F.; Courtois, Y.; Jeanny, J.C. Light-Induced Retinal Degeneration Correlates with Changes in Iron Metabolism Gene Expression, Ferritin Level, and Aging. Investig. Ophthalmol. Vis. Sci. 2011, 52, 1261–1274. [Google Scholar] [CrossRef]
- Moussa, Z.; Judeh, Z.M.A.; Ahmed, S.A. Nonenzymatic Exogenous and Endogenous Antioxidants. In Free Radical Medicine and Biology; IntechOpen: London, UK, 2020. [Google Scholar]
- Wills, N.K.; Sadagopa Ramanujam, V.M.; Kalariya, N.; Lewis, J.R.; van Kuijk, F.J.G.M. Copper and Zinc Distribution in the Human Retina: Relationship to Cadmium Accumulation, Age, and Gender. Exp. Eye Res. 2008, 87, 80–88. [Google Scholar] [CrossRef]
- Gorusupudi, A.; Nelson, K.; Bernstein, P.S. The Age-Related Eye Disease 2 Study: Micronutrients in the Treatment of Macular Degeneration. Adv. Nutr. 2017, 8, 40–53. [Google Scholar] [CrossRef]
- Al-Bassam, L.; Shearman, G.C.; Brocchini, S.; Alany, R.G.; Williams, G.R. The Potential of Selenium-Based Therapies for Ocular Oxidative Stress. Pharmaceutics 2024, 16, 631. [Google Scholar] [CrossRef]
- Di Meo, S.; Reed, T.T.; Venditti, P.; Victor, V.M. Role of ROS and RNS Sources in Physiological and Pathological Conditions. Oxid. Med. Cell. Longev. 2016, 2016, 1245049. [Google Scholar] [CrossRef] [PubMed]
- Böhm, E.W.; Buonfiglio, F.; Voigt, A.M.; Bachmann, P.; Safi, T.; Pfeiffer, N.; Gericke, A. Oxidative Stress in the Eye and Its Role in the Pathophysiology of Ocular Diseases. Redox Biol. 2023, 68, 102967. [Google Scholar] [CrossRef]
- Konno, T.; Melo, E.P.; Chambers, J.E.; Avezov, E. Intracellular Sources of ROS/H2O2 in Health and Neurodegeneration: Spotlight on Endoplasmic Reticulum. Cells 2021, 10, 233. [Google Scholar] [CrossRef] [PubMed]
- Świątkiewicz, I.; Wróblewski, M.; Nuszkiewicz, J.; Sutkowy, P.; Wróblewska, J.; Woźniak, A. The Role of Oxidative Stress Enhanced by Adiposity in Cardiometabolic Diseases. Int. J. Mol. Sci. 2023, 24, 6382. [Google Scholar] [CrossRef]
- Vermot, A.; Petit-Härtlein, I.; Smith, S.M.E.; Fieschi, F. NADPH Oxidases (NOX): An Overview from Discovery, Molecular Mechanisms to Physiology and Pathology. Antioxidants 2021, 10, 890. [Google Scholar] [CrossRef]
- Cheng, M.; Ho, H.; Wu, Y.; Chiu, D.T.-Y. Glucose-6-Phosphate Dehydrogenase-Deficient Cells Show an Increased Propensity for Oxidant-Induced Senescence. Free Radic. Biol. Med. 2004, 36, 580–591. [Google Scholar] [CrossRef] [PubMed]
- Nóbrega-Pereira, S.; Fernandez-Marcos, P.J.; Brioche, T.; Gomez-Cabrera, M.C.; Salvador-Pascual, A.; Flores, J.M.; Viña, J.; Serrano, M. G6PD Protects from Oxidative Damage and Improves Healthspan in Mice. Nat. Commun. 2016, 7, 10894. [Google Scholar] [CrossRef]
- Tsubai, T.; Matsuo, M. Ultraviolet Light-Induced Changes in the Glucose-6-Phosphate Dehydrogenase Activity of Porcine Corneas. Cornea 2002, 21, 495–500. [Google Scholar] [CrossRef]
- Xu, I.M.-J.; Lai, R.K.-H.; Lin, S.-H.; Tse, A.P.-W.; Chiu, D.K.-C.; Koh, H.-Y.; Law, C.-T.; Wong, C.-M.; Cai, Z.; Wong, C.C.-L.; et al. Transketolase Counteracts Oxidative Stress to Drive Cancer Development. Proc. Natl. Acad. Sci. USA 2016, 113, E725–E734. [Google Scholar] [CrossRef]
- Dröge, W. Free Radicals in the Physiological Control of Cell Function. Physiol. Rev. 2002, 82, 47–95. [Google Scholar] [CrossRef] [PubMed]
- Dammak, A.; Pastrana, C.; Martin-Gil, A.; Carpena-Torres, C.; Peral Cerda, A.; Simovart, M.; Alarma, P.; Huete-Toral, F.; Carracedo, G. Oxidative Stress in the Anterior Ocular Diseases: Diagnostic and Treatment. Biomedicines 2023, 11, 292. [Google Scholar] [CrossRef]
- Chen, Y.; Mehta, G.; Vasiliou, V. Antioxidant Defenses in the Ocular Surface. Ocul. Surf. 2009, 7, 176–185. [Google Scholar] [CrossRef]
- Álvarez-Barrios, A.; Álvarez, L.; García, M.; Artime, E.; Pereiro, R.; González-Iglesias, H. Antioxidant Defenses in the Human Eye: A Focus on Metallothioneins. Antioxidants 2021, 10, 89. [Google Scholar] [CrossRef] [PubMed]
- Gaschler, M.M.; Stockwell, B.R. Lipid Peroxidation in Cell Death. Biochem. Biophys. Res. Commun. 2017, 482, 419–425. [Google Scholar] [CrossRef] [PubMed]
- Ayala, A.; Muñoz, M.F.; Argüelles, S. Lipid Peroxidation: Production, Metabolism, and Signaling Mechanisms of Malondialdehyde and 4-Hydroxy-2-Nonenal. Oxid. Med. Cell. Longev. 2014, 2014, 360438. [Google Scholar] [CrossRef] [PubMed]
- Janicka, M.; Kot-Wasik, A.; Kot, J.; Namieśnik, J. Isoprostanes-Biomarkers of Lipid Peroxidation: Their Utility in Evaluating Oxidative Stress and Analysis. Int. J. Mol. Sci. 2010, 11, 4631–4659. [Google Scholar] [CrossRef]
- Shahandeh, A.; Bui, B.V.; Finkelstein, D.I.; Nguyen, C.T.O. Effects of Excess Iron on the Retina: Insights From Clinical Cases and Animal Models of Iron Disorders. Front. Neurosci. 2022, 15, 794809. [Google Scholar] [CrossRef]
- Loh, A.; Hadziahmetovic, M.; Dunaief, J.L. Iron Homeostasis and Eye Disease. Biochim. Biophys. Acta-Gen. Subj. 2009, 1790, 637–649. [Google Scholar] [CrossRef]
- Wang, J.; Li, M.; Geng, Z.; Khattak, S.; Ji, X.; Wu, D.; Dang, Y. Role of Oxidative Stress in Retinal Disease and the Early Intervention Strategies: A Review. Oxid. Med. Cell. Longev. 2022, 2022, 7836828. [Google Scholar] [CrossRef]
- Kushwah, N.; Bora, K.; Maurya, M.; Pavlovich, M.C.; Chen, J. Oxidative Stress and Antioxidants in Age-Related Macular Degeneration. Antioxidants 2023, 12, 1379. [Google Scholar] [CrossRef]
- Abokyi, S.; To, C.-H.; Lam, T.T.; Tse, D.Y. Central Role of Oxidative Stress in Age-Related Macular Degeneration: Evidence from a Review of the Molecular Mechanisms and Animal Models. Oxid. Med. Cell. Longev. 2020, 2020, 7901270. [Google Scholar] [CrossRef]
- Zhao, T.; Guo, X.; Sun, Y. Iron Accumulation and Lipid Peroxidation in the Aging Retina: Implication of Ferroptosis in Age-Related Macular Degeneration. Aging Dis. 2021, 12, 529. [Google Scholar] [CrossRef]
- Ghaffarieh, A.; Ciolino, J.B. Potential of Application of Iron Chelating Agents in Ophthalmic Diseases. Semin. Ophthalmol. 2021, 36, 157–161. [Google Scholar] [CrossRef] [PubMed]
- Nemeth, E.; Ganz, T. Hepcidin-Ferroportin Interaction Controls Systemic Iron Homeostasis. Int. J. Mol. Sci. 2021, 22, 6493. [Google Scholar] [CrossRef] [PubMed]
- Glorieux, C.; Calderon, P.B. Catalase, a Remarkable Enzyme: Targeting the Oldest Antioxidant Enzyme to Find a New Cancer Treatment Approach. Biol. Chem. 2017, 398, 1095–1108. [Google Scholar] [CrossRef] [PubMed]
- Nandi, A.; Yan, L.-J.; Jana, C.K.; Das, N. Role of Catalase in Oxidative Stress- and Age-Associated Degenerative Diseases. Oxid. Med. Cell. Longev. 2019, 2019, 9613090. [Google Scholar] [CrossRef]
- Tang, Z.; Ju, Y.; Dai, X.; Ni, N.; Liu, Y.; Zhang, D.; Gao, H.; Sun, H.; Zhang, J.; Gu, P. HO-1-Mediated Ferroptosis as a Target for Protection against Retinal Pigment Epithelium Degeneration. Redox Biol. 2021, 43, 101971. [Google Scholar] [CrossRef]
- Johnson; Rasmussen, H. Nutrients for the Aging Eye. Clin. Interv. Aging 2013, 8, 741. [Google Scholar] [CrossRef]
- Marreiro, D.; Cruz, K.; Morais, J.; Beserra, J.; Severo, J.; De Oliveira, A. Zinc and Oxidative Stress: Current Mechanisms. Antioxidants 2017, 6, 24. [Google Scholar] [CrossRef]
- Rodella, U.; Honisch, C.; Gatto, C.; Ruzza, P.; D’Amato Tóthová, J. Antioxidant Nutraceutical Strategies in the Prevention of Oxidative Stress Related Eye Diseases. Nutrients 2023, 15, 2283. [Google Scholar] [CrossRef]
- Si, M.; Lang, J. The Roles of Metallothioneins in Carcinogenesis. J. Hematol. Oncol. 2018, 11, 107. [Google Scholar] [CrossRef]
- Cobine, P.A.; Moore, S.A.; Leary, S.C. Getting out What You Put in: Copper in Mitochondria and Its Impacts on Human Disease. Biochim. Biophys. Acta-Mol. Cell Res. 2021, 1868, 118867. [Google Scholar] [CrossRef]
- Yin, J.; Fu, P.P.; Lutterodt, H.; Zhou, Y.; Antholine, W.E.; Wamer, W. Dual Role of Selected Antioxidants Found in Dietary Supplements: Crossover between Anti- and Pro-Oxidant Activities in the Presence of Copper. J. Agric. Food Chem. 2012, 60, 2554–2561. [Google Scholar] [CrossRef] [PubMed]
- Suntres, Z.E.; Lui, E.M.K. Prooxidative Effect of Copper–Metallothionein in the Acute Cytotoxicity of Hydrogen Peroxide in Ehrlich Ascites Tumour Cells. Toxicology 2006, 217, 155–168. [Google Scholar] [CrossRef] [PubMed]
- Jomova, K.; Valko, M. Advances in Metal-Induced Oxidative Stress and Human Disease. Toxicology 2011, 283, 65–87. [Google Scholar] [CrossRef] [PubMed]
- Al-Bayati, M.A.; Jamil, D.A.; Al-Aubaidy, H.A. Cardiovascular Effects of Copper Deficiency on Activity of Superoxide Dismutase in Diabetic Nephropathy. N. Am. J. Med. Sci. 2015, 7, 41–46. [Google Scholar] [CrossRef]
- Nabi, S.U.; Jan, A.; Muzamil, S.; Razaq, R.; Muhee, A.; Ashraf, T.; Ahmad, S.; Makhdoomi, D.M.; Shah, N.N.; Syed, Q. Role of Biometals in Activation of Immune Cum Inflammatory Response in Ovine Ageing Eye: A Potential Model for Understanding Human Geriatric Eye Diseases. BioMetals 2021, 34, 1081–1098. [Google Scholar] [CrossRef] [PubMed]
- Hadrup, N.; Ravn-Haren, G. Acute Human Toxicity and Mortality after Selenium Ingestion: A Review. J. Trace Elem. Med. Biol. 2020, 58, 126435. [Google Scholar] [CrossRef]
- Labunskyy, V.M.; Hatfield, D.L.; Gladyshev, V.N. Selenoproteins: Molecular Pathways and Physiological Roles. Physiol. Rev. 2014, 94, 739–777. [Google Scholar] [CrossRef]
- Dogaru, C.B.; Muscurel, C.; Duță, C.; Stoian, I. “Alphabet” Selenoproteins: Their Characteristics and Physiological Roles. Int. J. Mol. Sci. 2023, 24, 15992. [Google Scholar] [CrossRef]
- Higuchi, A.; Takahashi, K.; Hirashima, M.; Kawakita, T.; Tsubota, K. Selenoprotein P Controls Oxidative Stress in Cornea. PLoS ONE 2010, 5, e9911. [Google Scholar] [CrossRef]
- Andrade, I.G.A.; Suano-Souza, F.I.; Fonseca, F.L.A.; Lago, C.S.A.; Sarni, R.O.S. Selenium Levels and Glutathione Peroxidase Activity in Patients with Ataxia-Telangiectasia: Association with Oxidative Stress and Lipid Status Biomarkers. Orphanet J. Rare Dis. 2021, 16, 83. [Google Scholar] [CrossRef]
- Maia, L.B.; Maiti, B.K.; Moura, I.; Moura, J.J.G. Selenium—More than Just a Fortuitous Sulfur Substitute in Redox Biology. Molecules 2023, 29, 120. [Google Scholar] [CrossRef] [PubMed]
- Ighodaro, O.M.; Akinloye, O.A. First Line Defence Antioxidants-Superoxide Dismutase (SOD), Catalase (CAT) and Glutathione Peroxidase (GPX): Their Fundamental Role in the Entire Antioxidant Defence Grid. Alex. J. Med. 2018, 54, 287–293. [Google Scholar] [CrossRef]
- Bjørklund, G.; Shanaida, M.; Lysiuk, R.; Antonyak, H.; Klishch, I.; Shanaida, V.; Peana, M. Selenium: An Antioxidant with a Critical Role in Anti-Aging. Molecules 2022, 27, 6613. [Google Scholar] [CrossRef] [PubMed]
- Ananth, S.; Miyauchi, S.; Thangaraju, M.; Jadeja, R.N.; Bartoli, M.; Ganapathy, V.; Martin, P.M. Selenomethionine (Se-Met) Induces the Cystine/Glutamate Exchanger SLC7A11 in Cultured Human Retinal Pigment Epithelial (RPE) Cells: Implications for Antioxidant Therapy in Aging Retina. Antioxidants 2021, 10, 9. [Google Scholar] [CrossRef]
- Wróblewski, M.; Wróblewska, J.; Nuszkiewicz, J.; Pawłowska, M.; Wesołowski, R.; Woźniak, A. The Role of Selected Trace Elements in Oxidoreductive Homeostasis in Patients with Thyroid Diseases. Int. J. Mol. Sci. 2023, 24, 4840. [Google Scholar] [CrossRef]
- Higuchi, A.; Inoue, H.; Kaneko, Y.; Oonishi, E.; Tsubota, K. Selenium-Binding Lactoferrin Is Taken into Corneal Epithelial Cells by a Receptor and Prevents Corneal Damage in Dry Eye Model Animals. Sci. Rep. 2016, 6, 36903. [Google Scholar] [CrossRef]
- Higuchi, A. Autologous Serum and Serum Components. Investig. Opthalmology Vis. Sci. 2018, 59, DES121. [Google Scholar] [CrossRef]
- Genchi, G.; Lauria, G.; Catalano, A.; Sinicropi, M.S.; Carocci, A. Biological Activity of Selenium and Its Impact on Human Health. Int. J. Mol. Sci. 2023, 24, 2633. [Google Scholar] [CrossRef]
- Tian, J.; Liu, J.; Li, J.; Zheng, J.; Chen, L.; Wang, Y.; Liu, Q.; Ni, J. The Interaction of Selenoprotein F (SELENOF) with Retinol Dehydrogenase 11 (RDH11) Implied a Role of SELENOF in Vitamin A Metabolism. Nutr. Metab. 2018, 15, 7. [Google Scholar] [CrossRef]
- Kasaikina, M.V.; Fomenko, D.E.; Labunskyy, V.M.; Lachke, S.A.; Qiu, W.; Moncaster, J.A.; Zhang, J.; Wojnarowicz, M.W.; Natarajan, S.K.; Malinouski, M.; et al. Roles of the 15-KDa Selenoprotein (Sep15) in Redox Homeostasis and Cataract Development Revealed by the Analysis of Sep 15 Knockout Mice. J. Biol. Chem. 2011, 286, 33203–33212. [Google Scholar] [CrossRef]
- Han, S.-J.; Lee, B.C.; Yim, S.H.; Gladyshev, V.N.; Lee, S.-R. Characterization of Mammalian Selenoprotein O: A Redox-Active Mitochondrial Protein. PLoS ONE 2014, 9, e95518. [Google Scholar] [CrossRef] [PubMed]
- Flohé, L. Selenium, Selenoproteins and Vision. In Nutrition and the Eye; KARGER: Basel, Switzerland, 2005; Volume 38, pp. 89–102. [Google Scholar]
- Zhang, F.; Li, X.; Wei, Y. Selenium and Selenoproteins in Health. Biomolecules 2023, 13, 799. [Google Scholar] [CrossRef] [PubMed]
- Castellano, S.; Lobanov, A.V.; Chapple, C.; Novoselov, S.V.; Albrecht, M.; Hua, D.; Lescure, A.; Lengauer, T.; Krol, A.; Gladyshev, V.N.; et al. Diversity and Functional Plasticity of Eukaryotic Selenoproteins: Identification and Characterization of the SelJ Family. Proc. Natl. Acad. Sci. USA 2005, 102, 16188–16193. [Google Scholar] [CrossRef]
- Alaunyte, I.; Stojceska, V.; Plunkett, A. Iron and the Female Athlete: A Review of Dietary Treatment Methods for Improving Iron Status and Exercise Performance. J. Int. Soc. Sports Nutr. 2015, 12, 1. [Google Scholar] [CrossRef]
- Milman, N.T. Dietary Iron Intakes in Men in Europe Are Distinctly Above the Recommendations: A Review of 39 National Studies From 20 Countries in the Period 1995–2016. Gastroenterol. Res. 2020, 13, 233–245. [Google Scholar] [CrossRef]
- Frydrych, A.; Krośniak, M.; Jurowski, K. The Role of Chosen Essential Elements (Zn, Cu, Se, Fe, Mn) in Food for Special Medical Purposes (FSMPs) Dedicated to Oncology Patients—Critical Review: State-of-the-Art. Nutrients 2023, 15, 1012. [Google Scholar] [CrossRef]
- Ritchie, R.F.; Palomaki, G.E.; Neveux, L.M.; Navolotskaia, O.; Ledue, T.B.; Craig, W.Y. Reference Distributions for Serum Iron and Transferrin Saturation: A Practical, Simple, and Clinically Relevant Approach in a Large Cohort. J. Clin. Lab. Anal. 2002, 16, 237–245. [Google Scholar] [CrossRef]
- Basuli, D.; Stevens, R.G.; Torti, F.M.; Torti, S.V. Epidemiological Associations between Iron and Cardiovascular Disease and Diabetes. Front. Pharmacol. 2014, 5, 117. [Google Scholar] [CrossRef]
- Picard, E.; Daruich, A.; Youale, J.; Courtois, Y.; Behar-Cohen, F. From Rust to Quantum Biology: The Role of Iron in Retina Physiopathology. Cells 2020, 9, 705. [Google Scholar] [CrossRef] [PubMed]
- Ataide, R.; Fielding, K.; Pasricha, S.R.; Bennett, C. Iron Deficiency, Pregnancy, and Neonatal Development. Int. J. Gynecol. Obstet. 2023, 162, 14–22. [Google Scholar] [CrossRef]
- Moriarty-Craige, S.E.; Ha, K.-N.; Sternberg, P.; Lynn, M.; Bressler, S.; Gensler, G.; Jones, D.P. Effects of Long-Term Zinc Supplementation on Plasma Thiol Metabolites and Redox Status in Patients with Age-Related Macular Degeneration. Am. J. Ophthalmol. 2007, 143, 206–211.e2. [Google Scholar] [CrossRef] [PubMed]
- Biesemeier, A.; Kokkinou, D.; Julien, S.; Heiduschka, P.; Berneburg, M.; Bartz-Schmidt, K.U.; Schraermeyer, U. UV-A Induced Oxidative Stress Is More Prominent in Naturally Pigmented Aged Human RPE Cells Compared to Non-Pigmented Human RPE Cells Independent of Zinc Treatment. J. Photochem. Photobiol. B Biol. 2008, 90, 113–120. [Google Scholar] [CrossRef] [PubMed]
- Wood, J.P.; Osborne, N.N. The Influence of Zinc on Caspase-3 and DNA Breakdown in Cultured Human Retinal Pigment Epithelial Cells. Arch. Ophthalmol. 2001, 119, 81–88. [Google Scholar] [PubMed]
- Miceli, M.V.; Tate, D.J.; Alcock, N.W.; Newsome, D.A. Zinc Deficiency and Oxidative Stress in the Retina of Pigmented Rats. Investig. Ophthalmol. Vis. Sci. 1999, 40, 1238–1244. [Google Scholar]
- Duncan, A.; Yacoubian, C.; Watson, N.; Morrison, I. The Risk of Copper Deficiency in Patients Prescribed Zinc Supplements. J. Clin. Pathol. 2015, 68, 723–725. [Google Scholar] [CrossRef]
- Satarug, S.; Kikuchi, M.; Wisedpanichkij, R.; Li, B.; Takeda, K.; Na-Bangchang, K.; Moore, M.R.; Hirayama, K.; Shibahara, S. Prevention of Cadmium Accumulation in Retinal Pigment Epithelium with Manganese and Zinc. Exp. Eye Res. 2008, 87, 587–593. [Google Scholar] [CrossRef] [PubMed]
- Ozdemir, G.; Inanc, F. Zinc May Protect Remote Ocular Injury Caused by Intestinal Ischemia Reperfusion in Rats. Tohoku J. Exp. Med. 2005, 206, 247–251. [Google Scholar] [CrossRef]
- Newsome, D.A.; Miceli, M.V.; Tate, D.J.; Alcock, N.W.; Oliver, P.D. Zinc Content of Human Retinal Pigment Epithelium Decreases with Age and Macular Degeneration, but Superoxide Dismutase Activity Increases. J. Trace Elem. Exp. Med. 1996, 8, 193–199. [Google Scholar] [CrossRef]
- Ha, K.-N.; Chen, Y.; Cai, J.; Sternberg, P. Increased Glutathione Synthesis through an ARE-Nrf2–Dependent Pathway by Zinc in the RPE: Implication for Protection against Oxidative Stress. Investig. Opthalmology Vis. Sci. 2006, 47, 2709. [Google Scholar] [CrossRef]
- Mano, F.; Sakata, S.; Chang, K.-C.; Mano, T. Effects of Zinc Acetate Hydrate Treatment on Serum Oxidative Stress Markers in Patients with Macular Drusen. J. Ocul. Pharmacol. Ther. 2021, 37, 518–524. [Google Scholar] [CrossRef]
- Satyam, S.M.; Bairy, L.K.; Pirasanthan, R.; Vaishnav, R.L. Grape Seed Extract and Zinc Containing Nutritional Food Supplement Prevents Onset and Progression of Age-Related Cataract in Wistar Rats. J. Nutr. Health Aging 2014, 18, 524–530. [Google Scholar] [CrossRef]
- Liu, Y.; Miao, J. An Emerging Role of Defective Copper Metabolism in Heart Disease. Nutrients 2022, 14, 700. [Google Scholar] [CrossRef] [PubMed]
- Ruiz, L.M.; Libedinsky, A.; Elorza, A.A. Role of Copper on Mitochondrial Function and Metabolism. Front. Mol. Biosci. 2021, 8, 711227. [Google Scholar] [CrossRef] [PubMed]
- Zlatic, S.; Comstra, H.S.; Gokhale, A.; Petris, M.J.; Faundez, V. Molecular Basis of Neurodegeneration and Neurodevelopmental Defects in Menkes Disease. Neurobiol. Dis. 2015, 81, 154–161. [Google Scholar] [CrossRef]
- Galhardi, C.M.; Diniz, Y.S.; Faine, L.A.; Rodrigues, H.G.; Burneiko, R.C.M.; Ribas, B.O.; Novelli, E.L.B. Toxicity of Copper Intake: Lipid Profile, Oxidative Stress and Susceptibility to Renal Dysfunction. Food Chem. Toxicol. 2004, 42, 2053–2060. [Google Scholar] [CrossRef]
- Bardak, H.; Uğuz, A.C.; Bardak, Y.; Rocha-Pimienta, J.; Delgado-Adámez, J.; Espino, J. Selenium Protects ARPE-19 and ACBRI 181 Cells against High Glucose-Induced Oxidative Stress. Molecules 2023, 28, 5961. [Google Scholar] [CrossRef]
- Yazici, A.; Aksit, H.; Sari, E.S.; Yay, A.; Erken, H.A.; Aksit, D.; Cakmak, H.; Seyrek, K.; Ermis, S.S. Comparison of Pre-Treatment and Post-Treatment Use of Selenium in Retinal Ischemia Reperfusion Injury. Int. J. Ophthalmol. 2015, 8, 263–268. [Google Scholar] [CrossRef]
- Gao, M.; Hu, J.; Zhu, Y.; Wang, X.; Zeng, S.; Hong, Y.; Zhao, G. Ferroptosis and Apoptosis Are Involved in the Formation of L-Selenomethionine-Induced Ocular Defects in Zebrafish Embryos. Int. J. Mol. Sci. 2022, 23, 4783. [Google Scholar] [CrossRef]
- Ou, L.; Wu, Z.; Hu, X.; Huang, J.; Yi, Z.; Gong, Z.; Li, H.; Peng, K.; Shu, C.; Koole, L.H. A Tissue-Adhesive F127 Hydrogel Delivers Antioxidative Copper-Selenide Nanoparticles for the Treatment of Dry Eye Disease. Acta Biomater. 2024, 175, 353–368. [Google Scholar] [CrossRef]
- Le Bras, M.; Clément, M.V.; Pervaiz, S.; Brenner, C. Reactive Oxygen Species and the Mitochondrial Signaling Pathway of Cell Death. Histol. Histopathol. 2005, 20, 205–220. [Google Scholar] [CrossRef] [PubMed]
Selenoprotein | Functions in the Eye | References |
---|---|---|
Selenoprotein P (SELENOP) | Transports selenium to the cornea, protecting it from oxidative stress; elevated levels in tear fluid help maintain ocular surface health, particularly in dry eye syndrome. | [50,57,58] |
Selenoprotein M (SELENOM) | Contributes to redox regulation and may play a role in protecting the lens from oxidative damage, although specific evidence for tissue expression is not yet available. | [59] |
Selenoprotein F (SELENOF) | Involved in protein folding and antioxidant protection in ocular tissues. Dysregulation is linked to cataract development, potentially due to protein misfolding in the endoplasmic reticulum. | [60,61] |
Selenoprotein O (SELENOO) | Functions as a mitochondrial redox regulator, potentially protecting retinal cells from oxidative damage. Its role in the eye is still speculative, with more research needed. | [62] |
Glutathione Peroxidases (GPX1 and GPX4) | Critical for reducing oxidative damage in the lens and retina. GPX1 deficiency is associated with cataract formation, while GPX4 helps prevent lipid peroxidation in retinal cells and lens tissues. | [9,63] |
Thioredoxin Reductase (TxnRd) | Helps maintain redox balance in tissues, protecting them from oxidative stress and preventing damage caused by reactive oxygen species, although specific evidence for its role in ocular tissues is not provided. | [64] |
SelJ | Expressed in the eye lens of certain fish species, suggesting a potential structural role. While not found in humans, it highlights the diversity and plasticity of selenoproteins in the eye across species. | [65] |
Trace Element | Primary Functions | Antioxidant Mechanisms | Effects of Deficiency | Effects of Excess | Associated Ocular Diseases | References |
---|---|---|---|---|---|---|
Iron (Fe) | Oxygen transport, enzymatic activity, cellular energy production, retinal function | CAT activity, Fenton reaction prevention | Anemia, retinal degeneration, impaired visual function | Oxidative stress, photoreceptor dysfunction, AMD progression | AMD, cataracts, retinal degeneration | [5,8,26,27] |
Zinc (Zn) | Enzyme constituent, protein structure, cell membrane integrity | SOD activity, metallothionein production | Night blindness, impaired vision, increased oxidative stress | Toxicity, disrupted copper absorption, potential neurotoxicity | AMD, diabetic retinopathy, cataracts | [7,8,37,74,75,76,78,79,80,81,82] |
Copper (Cu) | Enzyme cofactor, electron transfer, photoreceptor survival | SOD activity, ceruloplasmin function | Optic neuropathy, impaired photoreceptor function | Oxidative stress, mitochondrial dysfunction, cell death | Wilson’s disease, Menkes disease, retinal degeneration | [7,8,41,42,43,44,45] |
Selenium (Se) | Selenoprotein synthesis, antioxidant enzyme function | GPX activity, TrxR function | Increased oxidative stress, susceptibility to infections | Selenosis, increased risk of diabetes, cardiovascular diseases | Cataracts, glaucoma, AMD, ocular surface damage | [9,47,50,51,52,53,54,55,56,89,90,91] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wróblewska, J.; Nuszkiewicz, J.; Wróblewski, M.; Wróblewska, W.; Woźniak, A. Selected Trace Elements and Their Impact on Redox Homeostasis in Eye Health. Biomolecules 2024, 14, 1356. https://doi.org/10.3390/biom14111356
Wróblewska J, Nuszkiewicz J, Wróblewski M, Wróblewska W, Woźniak A. Selected Trace Elements and Their Impact on Redox Homeostasis in Eye Health. Biomolecules. 2024; 14(11):1356. https://doi.org/10.3390/biom14111356
Chicago/Turabian StyleWróblewska, Joanna, Jarosław Nuszkiewicz, Marcin Wróblewski, Weronika Wróblewska, and Alina Woźniak. 2024. "Selected Trace Elements and Their Impact on Redox Homeostasis in Eye Health" Biomolecules 14, no. 11: 1356. https://doi.org/10.3390/biom14111356
APA StyleWróblewska, J., Nuszkiewicz, J., Wróblewski, M., Wróblewska, W., & Woźniak, A. (2024). Selected Trace Elements and Their Impact on Redox Homeostasis in Eye Health. Biomolecules, 14(11), 1356. https://doi.org/10.3390/biom14111356