“A Friend Among Strangers” or the Ambiguous Roles of Runx2
Abstract
:1. Introduction
2. Mechanisms of Osteogenic Differentiation
3. Runx2
3.1. Wnt/LRP5/β-Catenin Signalling Pathway and Runx2
3.2. TGFβ/BMP/Smads Signaling Pathway and Runx2
3.3. FGFs and Runx2
3.4. 1,25-(OH)2-Vitamin D3 Signaling Pathway and Runx2
3.5. Notch Signaling Pathway and Its Effect on Osteogenic Differentiation
4. The Tissue Specificity of Runx2: Is Runx2 Truly Only a Pro-Osteogenic Factor as It Has Been Suggested to Be?
4.1. The Effect of Runx2 on Dental Development
4.2. The Effect of Runx2 on Peripheral Nerve Regeneration
4.3. The Effect of Runx2 on Angiogenesis
4.4. The Effect of Runx2 on Oncogenesis
4.5. The Effect of Runx2 on the Development of Fibrosis
4.6. The Effect of Runx2 on Immune Cells
4.7. The Effect of Runx2 on the Development of Spinal Tissues
4.8. The Relationship Between Pathological Calcification and the Runx2 Transcription Factor
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Kagoshima, H.; Shigesada, K.; Satake, M.; Ito, Y.; Miyoshi, H.; Ohki, M.; Pepling, M.; Gergen, P. The Runt Domain Identifies a New Family of Heterometric Transcriptional Regulators. Trends Genet. 1993, 9, 338–341. [Google Scholar] [CrossRef]
- Nüsslein-Volhard, C.; Wieschaus, E. Mutations Affecting Segment Number and Polarity in Drosophila. Nature 1980, 287, 795–801. [Google Scholar] [CrossRef]
- Komori, T.; Yagi, H.; Nomura, S.; Yamaguchi, A.; Sasaki, K.; Deguchi, K.; Shimizu, Y.; Bronson, R.T.; Gao, Y.-H.; Inada, M.; et al. Targeted Disruption of Results in a Complete Lack of Bone Formation Owing to Maturational Arrest of Osteoblasts. Cell 1997, 89, 755–764. [Google Scholar] [CrossRef]
- Otto, F.; Thornell, A.P.; Crompton, T.; Denzel, A.; Gilmour, K.C.; Rosewell, I.R.; Stamp, G.W.H.; Beddington, R.S.P.; Mundlos, S.; Olsen, B.R.; et al. Cbfa1, a Candidate Gene for Cleidocranial Dysplasia Syndrome, Is Essential for Osteoblast Differentiation and Bone Development. Cell 1997, 89, 765–771. [Google Scholar] [CrossRef]
- Lee, B.; Thirunavukkarasu, K.; Zhou, L.; Pastore, L.; Baldini, A.; Hecht, J.; Geoffrey, V.; Ducy, P.; Karsenty, G. Missense Mutations Abolishing DNA Binding of the Osteoblast-Specific Transcription Factor OSF2/CBFA1 in Cleidocranial Dysplasia. Nat. Genet. 1997, 16, 307–310. [Google Scholar] [CrossRef]
- Mundlos, S.; Otto, F.; Mundlos, C.; Mulliken, J.B.; Aylsworth, A.S.; Albright, S.; Lindhout, D.; Cole, W.G.; Henn, W.; Knoll, J.H.M.; et al. Mutations Involving the Transcription Factor CBFA1 Cause Cleidocranial Dysplasia. Cell 1997, 89, 773–779. [Google Scholar] [CrossRef]
- Lobov, A.; Malashicheva, A. Osteogenic Differentiation: A Universal Cell Program of Heterogeneous Mesenchymal Cells or a Similar Extracellular Matrix Mineralizing Phenotype? Biol. Commun. 2022, 67, 32–48. [Google Scholar] [CrossRef]
- Boskey, A.L. Mineralization of Bones and Teeth. Elements 2007, 3, 385–391. [Google Scholar] [CrossRef]
- Vidavsky, N.; Kunitake, J.A.M.R.; Estroff, L.A. Multiple Pathways for Pathological Calcification in the Human Body. Adv. Healthc. Mater. 2021, 10, 2001271. [Google Scholar] [CrossRef]
- Hartmann, C.; Yang, Y. Molecular and Cellular Regulation of Intramembranous and Endochondral Bone Formation During Embryogenesis. In Principles of Bone Biology; Elsevier: Amsterdam, The Netherlands, 2020; pp. 5–44. ISBN 978-0-12-814841-9. [Google Scholar]
- Komori, T. Whole Aspect of Runx2 Functions in Skeletal Development. Int. J. Mol. Sci. 2022, 23, 5776. [Google Scholar] [CrossRef]
- Xiao, W.; Wang, Y.; Pacios, S.; Li, S.; Graves, D.T. Cellular and Molecular Aspects of Bone Remodeling. In Frontiers of Oral Biology; Kantarci, A., Will, L., Yen, S., Eds.; S. Karger AG: Basel, Switzerland, 2016; Volume 18, pp. 9–16. ISBN 978-3-318-05479-8. [Google Scholar]
- Teitelbaum, S.L. Bone Resorption by Osteoclasts. Science 2000, 289, 1504–1508. [Google Scholar] [CrossRef]
- Cappariello, A.; Maurizi, A.; Veeriah, V.; Teti, A. The Great Beauty of the Osteoclast. Arch. Biochem. Biophys. 2014, 558, 70–78. [Google Scholar] [CrossRef]
- Reznikov, N.; Hoac, B.; Buss, D.J.; Addison, W.N.; Barros, N.M.T.; McKee, M.D. Biological Stenciling of Mineralization in the Skeleton: Local Enzymatic Removal of Inhibitors in the Extracellular Matrix. Bone 2020, 138, 115447. [Google Scholar] [CrossRef]
- Graves, D.T.; Oates, T.; Garlet, G.P. Review of Osteoimmunology and the Host Response in Endodontic and Periodontal Lesions. J. Oral Microbiol. 2011, 3, 5304. [Google Scholar] [CrossRef]
- Jiao, H.; Xiao, E.; Graves, D.T. Diabetes and Its Effect on Bone and Fracture Healing. Curr. Osteoporos. Rep. 2015, 13, 327–335. [Google Scholar] [CrossRef]
- Karsenty, G. Transcriptional Control of Skeletogenesis. Annu. Rev. Genom. Hum. Genet. 2008, 9, 183–196. [Google Scholar] [CrossRef]
- Rutkovskiy, A.; Stensløkken, K.-O.; Vaage, I.J. Osteoblast Differentiation at a Glance. Med. Sci. Monit. Basic Res. 2016, 22, 95–106. [Google Scholar] [CrossRef]
- Krasnova, O.; Neganova, I. Assembling the Puzzle Pieces. Insights for in Vitro Bone Remodeling. Stem Cell Rev. Rep. 2023, 19, 1635–1658. [Google Scholar] [CrossRef]
- Ducy, P.; Zhang, R.; Geoffroy, V.; Ridall, A.L.; Karsenty, G. Osf2/Cbfa1: A Transcriptional Activator of Osteoblast Differentiation. Cell 1997, 89, 747–754. [Google Scholar] [CrossRef]
- Stein, G.S.; Lian, J.B.; Wijnen, A.J.V.; Stein, J.L.; Montecino, M.; Javed, A.; Zaidi, S.K.; Young, D.W.; Choi, J.-Y.; Pockwinse, S.M. Runx2 Control of Organization, Assembly and Activity of the Regulatory Machinery for Skeletal Gene Expression. Oncogene 2004, 23, 4315–4329. [Google Scholar] [CrossRef]
- Pokrovskaya, L.A.; Nadezhdin, S.V.; Zubareva, E.V.; Burda, Y.E.; Gnezdyukova, E.S. Expression of RUNX2 and Osterix in Rat Mesenchymal Stem Cells during Culturing in Osteogenic-Conditioned Medium. Bull. Exp. Biol. Med. 2020, 169, 571–575. [Google Scholar] [CrossRef]
- Karner, C.M.; Long, F. Wnt Signaling and Cellular Metabolism in Osteoblasts. Cell. Mol. Life Sci. 2017, 74, 1649–1657. [Google Scholar] [CrossRef]
- Igarashi, M.; Kamiya, N.; Hasegawa, M.; Kasuya, T.; Takahashi, T.; Takagi, M. Inductive Effects of Dexamethasone on the Gene Expression of Cbfa1, Osterix and Bone Matrix Proteins During Differentiation of Cultured Primary Rat Osteoblasts. J. Mol. Histol. 2003, 35, 3–10. [Google Scholar] [CrossRef]
- Gupta, A.; Leong, D.T.; Bai, H.F.; Singh, S.B.; Lim, T.-C.; Hutmacher, D.W. Osteo-Maturation of Adipose-Derived Stem Cells Required the Combined Action of Vitamin D3, β-Glycerophosphate, and Ascorbic Acid. Biochem. Biophys. Res. Commun. 2007, 362, 17–24. [Google Scholar] [CrossRef]
- Enomoto, H.; Furuichi, T.; Zanma, A.; Yamana, K.; Yoshida, C.; Sumitani, S.; Yamamoto, H.; Enomoto-Iwamoto, M.; Iwamoto, M.; Komori, T. Runx2 Deficiency in Chondrocytes Causes Adipogenic Changes in Vitro. J. Cell Sci. 2004, 117, 417–425. [Google Scholar] [CrossRef]
- Matsubara, T.; Kida, K.; Yamaguchi, A.; Hata, K.; Ichida, F.; Meguro, H.; Aburatani, H.; Nishimura, R.; Yoneda, T. BMP2 Regulates Osterix through Msx2 and Runx2 during Osteoblast Differentiation. J. Biol. Chem. 2008, 283, 29119–29125. [Google Scholar] [CrossRef]
- Harada, S.; Rodan, G.A. Control of Osteoblast Function and Regulation of Bone Mass. Nature 2003, 423, 349–355. [Google Scholar] [CrossRef]
- Zippel, N.; Limbach, C.A.; Ratajski, N.; Urban, C.; Luparello, C.; Pansky, A.; Kassack, M.U.; Tobiasch, E. Purinergic Receptors Influence the Differentiation of Human Mesenchymal Stem Cells. Stem Cells Dev. 2012, 21, 884–900. [Google Scholar] [CrossRef]
- Lin, Z.; He, H.; Wang, M.; Liang, J. MicroRNA-130a Controls Bone Marrow Mesenchymal Stem Cell Differentiation towards the Osteoblastic and Adipogenic Fate. Cell Prolif. 2019, 52, e12688. [Google Scholar] [CrossRef]
- Komori, T. Regulation of Osteoblast Differentiation by Transcription Factors. J. Cell. Biochem. 2006, 99, 1233–1239. [Google Scholar] [CrossRef]
- Liu, Q.; Li, M.; Wang, S.; Xiao, Z.; Xiong, Y.; Wang, G. Recent Advances of Osterix Transcription Factor in Osteoblast Differentiation and Bone Formation. Front. Cell Dev. Biol. 2020, 8, 601224. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.-P.; Chu, Y.-L.; Tsuang, Y.-H.; Wu, Y.; Kuo, C.-Y.; Kuo, Y.-J. Anti-Inflammatory Effects of Adenine Enhance Osteogenesis in the Osteoblast-Like MG-63 Cells. Life 2020, 10, 116. [Google Scholar] [CrossRef] [PubMed]
- Mortada, I.; Mortada, R. Dental Pulp Stem Cells and Osteogenesis: An Update. Cytotechnology 2018, 70, 1479–1486. [Google Scholar] [CrossRef] [PubMed]
- Xia, B.; Wang, J.; Guo, L.; Jiang, Z. Effect of Bone Sialoprotein on Proliferation and Osteodifferentiation of Human Bone Marrow-Derived Mesenchymal Stem Cells in Vitro. Biologicals 2011, 39, 217–223. [Google Scholar] [CrossRef] [PubMed]
- Icer, M.A.; Gezmen-Karadag, M. The Multiple Functions and Mechanisms of Osteopontin. Clin. Biochem. 2018, 59, 17–24. [Google Scholar] [CrossRef]
- Sodek, J.; Ganss, B.; McKee, M.D. Osteopontin. Crit. Rev. Oral Biol. Med. 2000, 11, 279–303. [Google Scholar] [CrossRef]
- Speer, M.Y.; McKee, M.D.; Guldberg, R.E.; Liaw, L.; Yang, H.-Y.; Tung, E.; Karsenty, G.; Giachelli, C.M. Inactivation of the Osteopontin Gene Enhances Vascular Calcification of Matrix Gla Protein–Deficient Mice. J. Exp. Med. 2002, 196, 1047–1055. [Google Scholar] [CrossRef]
- Brennan-Speranza, T.C.; Conigrave, A.D. Osteocalcin: An Osteoblast-Derived Polypeptide Hormone That Modulates Whole Body Energy Metabolism. Calcif. Tissue Int. 2015, 96, 1–10. [Google Scholar] [CrossRef]
- Bruderer, M.; Richards, R.; Alini, M.; Stoddart, M. Role and Regulation of RUNX2 in Osteogenesis. Eur. Cell. Mater. 2014, 28, 269–286. [Google Scholar] [CrossRef]
- Vimalraj, S. Alkaline Phosphatase: Structure, Expression and Its Function in Bone Mineralization. Gene 2020, 754, 144855. [Google Scholar] [CrossRef]
- Sobacchi, C.; Palagano, E.; Villa, A.; Menale, C. Soluble Factors on Stage to Direct Mesenchymal Stem Cells Fate. Front. Bioeng. Biotechnol. 2017, 5, 32. [Google Scholar] [CrossRef]
- Wang, R.; Liu, W.; Du, M.; Yang, C.; Li, X.; Yang, P. The Differential Effect of Basic Fibroblast Growth Factor and Stromal Cell-derived Factor-1 Pretreatment on Bone Morrow Mesenchymal Stem Cells Osteogenic Differentiation Potency. Mol. Med. Rep. 2017, 17, 3715–3721. [Google Scholar] [CrossRef]
- Compton, J.T.; Lee, F.Y. A Review of Osteocyte Function and the Emerging Importance of Sclerostin. J. Bone Jt. Surg. 2014, 96, 1659–1668. [Google Scholar] [CrossRef]
- Boyce, B.F.; Xing, L. Biology of RANK, RANKL, and Osteoprotegerin. Arthritis Res. Ther. 2007, 9, S1. [Google Scholar] [CrossRef]
- Baud’huin, M.; Duplomb, L.; Velasco, C.R.; Fortun, Y.; Heymann, D.; Padrines, M. Key Roles of the OPG–RANK–RANKL System in Bone Oncology. Expert Rev. Anticancer. Ther. 2007, 7, 221–232. [Google Scholar] [CrossRef]
- Chen, Y.; Zhao, X.; Wu, H. Arterial Stiffness: A Focus on Vascular Calcification and Its Link to Bone Mineralization. Arterioscler. Thromb. Vasc. Biol. 2020, 40, 1078–1093. [Google Scholar] [CrossRef]
- Ogawa, E.; Maruyama, M.; Kagoshima, H.; Inuzuka, M.; Lu, J.; Satake, M.; Shigesada, K.; Ito, Y. PEBP2/PEA2 Represents a Family of Transcription Factors Homologous to the Products of the Drosophila Runt Gene and the Human AML1 Gene. Proc. Natl. Acad. Sci. USA 1993, 90, 6859–6863. [Google Scholar] [CrossRef]
- Golling, G.; Li, L.-H.; Pepling, M.; Stebbins, M.; Gergen, J.P. Drosophila Homologs of the Proto-Oncogene Product PEBP2/CBFβ Regulate the DNA-Binding Properties of Runt. Mol. Cell. Biol. 1996, 16, 932–942. [Google Scholar] [CrossRef]
- Kanatani, N.; Fujita, T.; Fukuyama, R.; Liu, W.; Yoshida, C.A.; Moriishi, T.; Yamana, K.; Miyazaki, T.; Toyosawa, S.; Komori, T. Cbfβ Regulates Runx2 Function Isoform-Dependently in Postnatal Bone Development. Dev. Biol. 2006, 296, 48–61. [Google Scholar] [CrossRef]
- Stewart, M.; Terry, A.; Hu, M.; O’Hara, M.; Blyth, K.; Baxter, E.; Cameron, E.; Onions, D.E.; Neil, J.C. Proviral Insertions Induce the Expression of Bone-Specific Isoforms of PEBP2αA (CBFA1): Evidence for a New Myc Collaborating Oncogene. Proc. Natl. Acad. Sci. USA 1997, 94, 8646–8651. [Google Scholar] [CrossRef]
- Sudhakar, S.; Katz, M.S.; Elango, N. Analysis of Type-I and Type-II RUNX2 Protein Expression in Osteoblasts. Biochem. Biophys. Res. Commun. 2001, 286, 74–79. [Google Scholar] [CrossRef] [PubMed]
- Xiao, Z.; Simpson, L.G.; Quarles, L.D. IRES-dependent Translational Control of Cbfa1/Runx2 Expression. J. Cell. Biochem. 2003, 88, 493–505. [Google Scholar] [CrossRef] [PubMed]
- Harada, H.; Tagashira, S.; Fujiwara, M.; Ogawa, S.; Katsumata, T.; Yamaguchi, A.; Komori, T.; Nakatsuka, M. Cbfa1 Isoforms Exert Functional Differences in Osteoblast Differentiation. J. Biol. Chem. 1999, 274, 6972–6978. [Google Scholar] [CrossRef]
- Xiao, Z.S.; Thomas, R.; Hinson, T.K.; Quarles, L.D. Genomic Structure and Isoform Expression of the Mouse, Rat and Human Cbfa1/Osf2 Transcription Factor. Gene 1998, 214, 187–197. [Google Scholar] [CrossRef]
- Ge, C.; Xiao, G.; Jiang, D.; Franceschi, R.T. Critical Role of the Extracellular Signal–Regulated Kinase–MAPK Pathway in Osteoblast Differentiation and Skeletal Development. J. Cell Biol. 2007, 176, 709–718. [Google Scholar] [CrossRef]
- Vimalraj, S.; Arumugam, B.; Miranda, P.J.; Selvamurugan, N. Runx2: Structure, Function, and Phosphorylation in Osteoblast Differentiation. Int. J. Biol. Macromol. 2015, 78, 202–208. [Google Scholar] [CrossRef]
- Meyer, M.B.; Benkusky, N.A.; Pike, J.W. The RUNX2 Cistrome in Osteoblasts. J. Biol. Chem. 2014, 289, 16016–16031. [Google Scholar] [CrossRef]
- Meyer, M.B.; Benkusky, N.A.; Pike, J.W. Selective Distal Enhancer Control of the Mmp13 Gene Identified Through Clustered Regularly Interspaced Short Palindromic Repeat (CRISPR) Genomic Deletions. J. Biol. Chem. 2015, 290, 11093–11107. [Google Scholar] [CrossRef]
- Sato, M.; Morii, E.; Komori, T.; Kawahata, H.; Sugimoto, M.; Terai, K.; Shimizu, H.; Yasui, T.; Ogihara, H.; Yasui, N.; et al. Transcriptional Regulation of Osteopontin Gene in Vivo by PEBP2αA/CBFA1 and ETS1 in the Skeletal Tissues. Oncogene 1998, 17, 1517–1525. [Google Scholar] [CrossRef]
- Hojo, H.; Saito, T.; He, X.; Guo, Q.; Onodera, S.; Azuma, T.; Koebis, M.; Nakao, K.; Aiba, A.; Seki, M.; et al. Runx2 Regulates Chromatin Accessibility to Direct the Osteoblast Program at Neonatal Stages. Cell Rep. 2022, 40, 111315. [Google Scholar] [CrossRef]
- Frenkel, B.; White, W.; Tuckermann, J. Glucocorticoid-Induced Osteoporosis. In Glucocorticoid Signaling; Wang, J.-C., Harris, C., Eds.; Springer: New York, NY, USA, 2015; Volume 872, pp. 179–215. ISBN 978-1-4939-2894-1. [Google Scholar]
- Abdelmagid, S.M.; Barbe, M.F.; Safadi, F.F. Role of Inflammation in the Aging Bones. Life Sci. 2015, 123, 25–34. [Google Scholar] [CrossRef] [PubMed]
- Kato, M.; Patel, M.S.; Levasseur, R.; Lobov, I.; Chang, B.H.-J.; Glass, D.A.; Hartmann, C.; Li, L.; Hwang, T.-H.; Brayton, C.F.; et al. Cbfa1 -Independent Decrease in Osteoblast Proliferation, Osteopenia, and Persistent Embryonic Eye Vascularization in Mice Deficient in Lrp5, a Wnt Coreceptor. J. Cell Biol. 2002, 157, 303–314. [Google Scholar] [CrossRef]
- Day, T.F.; Guo, X.; Garrett-Beal, L.; Yang, Y. Wnt/β-Catenin Signaling in Mesenchymal Progenitors Controls Osteoblast and Chondrocyte Differentiation during Vertebrate Skeletogenesis. Dev. Cell 2005, 8, 739–750. [Google Scholar] [CrossRef]
- Hill, T.P.; Später, D.; Taketo, M.M.; Birchmeier, W.; Hartmann, C. Canonical Wnt/β-Catenin Signaling Prevents Osteoblasts from Differentiating into Chondrocytes. Dev. Cell 2005, 8, 727–738. [Google Scholar] [CrossRef]
- Mbalaviele, G.; Sheikh, S.; Stains, J.P.; Salazar, V.S.; Cheng, S.-L.; Chen, D.; Civitelli, R. Beta-Catenin and BMP-2 Synergize to Promote Osteoblast Differentiation and New Bone Formation. J. Cell. Biochem. 2005, 94, 403–418. [Google Scholar] [CrossRef]
- Chen, Q.; Shou, P.; Zheng, C.; Jiang, M.; Cao, G.; Yang, Q.; Cao, J.; Xie, N.; Velletri, T.; Zhang, X.; et al. Fate Decision of Mesenchymal Stem Cells: Adipocytes or Osteoblasts? Cell Death Differ. 2016, 23, 1128–1139. [Google Scholar] [CrossRef]
- Westendorf, J.J.; Kahler, R.A.; Schroeder, T.M. Wnt Signaling in Osteoblasts and Bone Diseases. Gene 2004, 341, 19–39. [Google Scholar] [CrossRef]
- Kahler, R.A.; Westendorf, J.J. Lymphoid Enhancer Factor-1 and Beta-Catenin Inhibit Runx2-Dependent Transcriptional Activation of the Osteocalcin Promoter. J. Biol. Chem. 2003, 278, 11937–11944. [Google Scholar] [CrossRef]
- Gaur, T.; Lengner, C.J.; Hovhannisyan, H.; Bhat, R.A.; Bodine, P.V.N.; Komm, B.S.; Javed, A.; Van Wijnen, A.J.; Stein, J.L.; Stein, G.S.; et al. Canonical WNT Signaling Promotes Osteogenesis by Directly Stimulating Runx2 Gene Expression. J. Biol. Chem. 2005, 280, 33132–33140. [Google Scholar] [CrossRef]
- Wang, F.-S.; Lin, C.-L.; Chen, Y.-J.; Wang, C.-J.; Yang, K.D.; Huang, Y.-T.; Sun, Y.-C.; Huang, H.-C. Secreted Frizzled-Related Protein 1 Modulates Glucocorticoid Attenuation of Osteogenic Activities and Bone Mass. Endocrinology 2005, 146, 2415–2423. [Google Scholar] [CrossRef]
- Zhong, Z.; Zylstra-Diegel, C.R.; Schumacher, C.A.; Baker, J.J.; Carpenter, A.C.; Rao, S.; Yao, W.; Guan, M.; Helms, J.A.; Lane, N.E.; et al. Wntless Functions in Mature Osteoblasts to Regulate Bone Mass. Proc. Natl. Acad. Sci. USA 2012, 109, E2197–E2204. [Google Scholar] [CrossRef]
- Devlin, R.D.; Du, Z.; Pereira, R.C.; Kimble, R.B.; Economides, A.N.; Jorgetti, V.; Canalis, E. Skeletal Overexpression of Noggin Results in Osteopenia and Reduced Bone Formation. Endocrinology 2003, 144, 1972–1978. [Google Scholar] [CrossRef]
- Wu, X.-B.; Li, Y.; Schneider, A.; Yu, W.; Rajendren, G.; Iqbal, J.; Yamamoto, M.; Alam, M.; Brunet, L.J.; Blair, H.C.; et al. Impaired Osteoblastic Differentiation, Reduced Bone Formation, and Severe Osteoporosis in Noggin-Overexpressing Mice. J. Clin. Investig. 2003, 112, 924–934. [Google Scholar] [CrossRef]
- Katagiri, T.; Yamaguchi, A.; Ikeda, T.; Yoshiki, S.; Wozney, J.M.; Rosen, V.; Wang, E.A.; Tanaka, H.; Omura, S.; Suda, T. The Non-Osteogenic Mouse Pluripotent Cell Line, C3H10T1/2, Is Induced to Differentiate into Osteoblastic Cells by Recombinant Human Bone Morphogenetic Protein-2. Biochem. Biophys. Res. Commun. 1990, 172, 295–299. [Google Scholar] [CrossRef]
- Lee, K.-S.; Kim, H.-J.; Li, Q.-L.; Chi, X.-Z.; Ueta, C.; Komori, T.; Wozney, J.M.; Kim, E.-G.; Choi, J.-Y.; Ryoo, H.-M.; et al. Runx2 Is a Common Target of Transforming Growth Factor Β1 and Bone Morphogenetic Protein 2, and Cooperation between Runx2 and Smad5 Induces Osteoblast-Specific Gene Expression in the Pluripotent Mesenchymal Precursor Cell Line C2C12. Mol. Cell. Biol. 2000, 20, 8783–8792. [Google Scholar] [CrossRef]
- Yamaguchi, A.; Katagiri, T.; Ikeda, T.; Wozney, J.M.; Rosen, V.; Wang, E.A.; Kahn, A.J.; Suda, T.; Yoshiki, S. Recombinant Human Bone Morphogenetic Protein-2 Stimulates Osteoblastic Maturation and Inhibits Myogenic Differentiation in Vitro. J. Cell Biol. 1991, 113, 681–687. [Google Scholar] [CrossRef]
- Bonewald, L.F.; Dallas, S.L. Role of Active and Latent Transforming Growth Factor β in Bone Formation. J. Cell. Biochem. 1994, 55, 350–357. [Google Scholar] [CrossRef]
- Derynck, R.; Zhang, Y.E. Smad-Dependent and Smad-Independent Pathways in TGF-β Family Signalling. Nature 2003, 425, 577–584. [Google Scholar] [CrossRef]
- Nishimura, R.; Kato, Y.; Chen, D.; Harris, S.E.; Mundy, G.R.; Yoneda, T. Smad5 and DPC4 Are Key Molecules in Mediating BMP-2-Induced Osteoblastic Differentiation of the Pluripotent Mesenchymal Precursor Cell Line C2C12. J. Biol. Chem. 1998, 273, 1872–1879. [Google Scholar] [CrossRef]
- Yamamoto, N.; Akiyama, S.; Katagiri, T.; Namiki, M.; Kurokawa, T.; Suda, T. Smad1 and Smad5 Act Downstream of Intracellular Signalings of BMP-2 That Inhibits Myogenic Differentiation and Induces Osteoblast Differentiation in C2C12 Myoblasts. Biochem. Biophys. Res. Commun. 1997, 238, 574–580. [Google Scholar] [CrossRef]
- Rahman, M.S.; Akhtar, N.; Jamil, H.M.; Banik, R.S.; Asaduzzaman, S.M. TGF-β/BMP Signaling and Other Molecular Events: Regulation of Osteoblastogenesis and Bone Formation. Bone Res. 2015, 3, 15005. [Google Scholar] [CrossRef]
- Zhou, Y.-X. A Pro250Arg Substitution in Mouse Fgfr1 Causes Increased Expression of Cbfa1 and Premature Fusion of Calvarial Sutures. Hum. Mol. Genet. 2000, 9, 2001–2008. [Google Scholar] [CrossRef] [PubMed]
- Kawane, T.; Qin, X.; Jiang, Q.; Miyazaki, T.; Komori, H.; Yoshida, C.A.; Matsuura-Kawata, V.K.D.S.; Sakane, C.; Matsuo, Y.; Nagai, K.; et al. Runx2 Is Required for the Proliferation of Osteoblast Progenitors and Induces Proliferation by Regulating Fgfr2 and Fgfr3. Sci. Rep. 2018, 8, 13551. [Google Scholar] [CrossRef]
- Maehata, Y.; Takamizawa, S.; Ozawa, S.; Kato, Y.; Sato, S.; Kubota, E.; Hata, R.-I. Both Direct and Collagen-Mediated Signals Are Required for Active Vitamin D3-Elicited Differentiation of Human Osteoblastic Cells: Roles of Osterix, an Osteoblast-Related Transcription Factor. Matrix Biol. 2006, 25, 47–58. [Google Scholar] [CrossRef]
- Paredes, R.; Arriagada, G.; Cruzat, F.; Villagra, A.; Olate, J.; Zaidi, K.; Van Wijnen, A.; Lian, J.B.; Stein, G.S.; Stein, J.L.; et al. Bone-Specific Transcription Factor Runx2 Interacts with the 1α,25-Dihydroxyvitamin D 3 Receptor to Up-Regulate Rat Osteocalcin Gene Expression in Osteoblastic Cells. Mol. Cell. Biol. 2004, 24, 8847–8861. [Google Scholar] [CrossRef]
- Drissi, H. 1,25-(OH)2-Vitamin D3 Suppresses the Bone-Related Runx2/Cbfa1 Gene Promoter. Exp. Cell Res. 2002, 274, 323–333. [Google Scholar] [CrossRef]
- Sooy, K.; Sabbagh, Y.; Demay, M.B. Osteoblasts Lacking the Vitamin D Receptor Display Enhanced Osteogenic Potential in Vitro. J. Cell. Biochem. 2005, 94, 81–87. [Google Scholar] [CrossRef]
- Yang, D.; Anderson, P.H.; Wijenayaka, A.R.; Barratt, K.R.; Triliana, R.; Stapledon, C.J.M.; Zhou, H.; Findlay, D.M.; Morris, H.A.; Atkins, G.J. Both Ligand and VDR Expression Levels Critically Determine the Effect of 1α,25-Dihydroxyvitamin-D3 on Osteoblast Differentiation. J. Steroid Biochem. Mol. Biol. 2018, 177, 83–90. [Google Scholar] [CrossRef]
- Ahmadi, A.; Mazloomnejad, R.; Kasravi, M.; Gholamine, B.; Bahrami, S.; Sarzaeem, M.M.; Niknejad, H. Recent Advances on Small Molecules in Osteogenic Differentiation of Stem Cells and the Underlying Signaling Pathways. Stem Cell Res. Ther. 2022, 13, 518. [Google Scholar] [CrossRef]
- Siu, S.C.; Silversides, C.K. Bicuspid Aortic Valve Disease. J. Am. Coll. Cardiol. 2010, 55, 2789–2800. [Google Scholar] [CrossRef]
- Garg, V.; Muth, A.N.; Ransom, J.F.; Schluterman, M.K.; Barnes, R.; King, I.N.; Grossfeld, P.D.; Srivastava, D. Mutations in NOTCH1 Cause Aortic Valve Disease. Nature 2005, 437, 270–274. [Google Scholar] [CrossRef] [PubMed]
- Wagley, Y.; Chesi, A.; Acevedo, P.K.; Lu, S.; Wells, A.D.; Johnson, M.E.; Grant, S.F.A.; Hankenson, K.D. Canonical Notch Signaling Is Required for Bone Morphogenetic Protein-Mediated Human Osteoblast Differentiation. Stem Cells 2020, 38, 1332–1347. [Google Scholar] [CrossRef]
- Shang, X.; Wang, J.; Luo, Z.; Wang, Y.; Morandi, M.M.; Marymont, J.V.; Hilton, M.J.; Dong, Y. Notch Signaling Indirectly Promotes Chondrocyte Hypertrophy via Regulation of BMP Signaling and Cell Cycle Arrest. Sci. Rep. 2016, 6, 25594. [Google Scholar] [CrossRef]
- Xiao, D.; Bi, R.; Liu, X.; Mei, J.; Jiang, N.; Zhu, S. Notch Signaling Regulates MMP-13 Expression via Runx2 in Chondrocytes. Sci. Rep. 2019, 9, 15596. [Google Scholar] [CrossRef]
- Zanotti, S.; Smerdel-Ramoya, A.; Canalis, E. HES1 (Hairy and Enhancer of Split 1) Is a Determinant of Bone Mass. J. Biol. Chem. 2011, 286, 2648–2657. [Google Scholar] [CrossRef]
- Salie, R.; Kneissel, M.; Vukevic, M.; Zamurovic, N.; Kramer, I.; Evans, G.; Gerwin, N.; Mueller, M.; Kinzel, B.; Susa, M. Ubiquitous Overexpression of Hey1 Transcription Factor Leads to Osteopenia and Chondrocyte Hypertrophy in Bone. Bone 2010, 46, 680–694. [Google Scholar] [CrossRef]
- McLarren, K.W.; Lo, R.; Grbavec, D.; Thirunavukkarasu, K.; Karsenty, G.; Stifani, S. The Mammalian Basic Helix Loop Helix Protein HES-1 Binds to and Modulates the Transactivating Function of the Runt-Related Factor Cbfa1. J. Biol. Chem. 2000, 275, 530–538. [Google Scholar] [CrossRef]
- McLarren, K.W.; Theriault, F.M.; Stifani, S. Association with the Nuclear Matrix and Interaction with Groucho and RUNX Proteins Regulate the Transcription Repression Activity of the Basic Helix Loop Helix Factor Hes1. J. Biol. Chem. 2001, 276, 1578–1584. [Google Scholar] [CrossRef]
- Shen, Q.; Christakos, S. The Vitamin D Receptor, Runx2, and the Notch Signaling Pathway Cooperate in the Transcriptional Regulation of Osteopontin. J. Biol. Chem. 2005, 280, 40589–40598. [Google Scholar] [CrossRef]
- Semenova, D.; Bogdanova, M.; Kostina, A.; Golovkin, A.; Kostareva, A.; Malashicheva, A. Dose-Dependent Mechanism of Notch Action in Promoting Osteogenic Differentiation of Mesenchymal Stem Cells. Cell Tissue Res. 2020, 379, 169–179. [Google Scholar] [CrossRef]
- Kostina, A.; Lobov, A.; Semenova, D.; Kiselev, A.; Klausen, P.; Malashicheva, A. Context-Specific Osteogenic Potential of Mesenchymal Stem Cells. Biomedicines 2021, 9, 673. [Google Scholar] [CrossRef]
- D’Souza, R.N.; Åberg, T.; Gaikwad, J.; Cavender, A.; Owen, M.; Karsenty, G.; Thesleff, I. Cbfa1 Is Required for Epithelial-Mesenchymal Interactions Regulating Tooth Development in Mice. Development 1999, 126, 2911–2920. [Google Scholar] [CrossRef]
- Åberg, T.; Wang, X.-P.; Kim, J.-H.; Yamashiro, T.; Bei, M.; Rice, R.; Ryoo, H.-M.; Thesleff, I. Runx2 Mediates FGF Signaling from Epithelium to Mesenchyme during Tooth Morphogenesis. Dev. Biol. 2004, 270, 76–93. [Google Scholar] [CrossRef]
- James, M.J.; Järvinen, E.; Wang, X.-P.; Thesleff, I. Different Roles of Runx2 During Early Neural Crest–Derived Bone and Tooth Development. J. Bone Miner. Res. 2006, 21, 1034–1044. [Google Scholar] [CrossRef]
- Chen, B.; Banton, M.C.; Singh, L.; Parkinson, D.B.; Dun, X. Single Cell Transcriptome Data Analysis Defines the Heterogeneity of Peripheral Nerve Cells in Homeostasis and Regeneration. Front. Cell. Neurosci. 2021, 15, 624826. [Google Scholar] [CrossRef]
- Hu, R.; Dun, X.; Singh, L.; Banton, M.C. Runx2 Regulates Peripheral Nerve Regeneration to Promote Schwann Cell Migration and Re-Myelination. Neural Regen. Res. 2024, 19, 1575–1583. [Google Scholar] [CrossRef]
- Clements, M.P.; Byrne, E.; Guerrero, L.F.C.; Cattin, A.-L.; Zakka, L.; Ashraf, A.; Burden, J.J.; Khadayate, S.; Lloyd, A.C.; Marguerat, S.; et al. The Wound Microenvironment Reprograms Schwann Cells to Invasive Mesenchymal-like Cells to Drive Peripheral Nerve Regeneration. Neuron 2017, 96, 98-114.e7. [Google Scholar] [CrossRef]
- Qiao, M.; Shapiro, P.; Fosbrink, M.; Rus, H.; Kumar, R.; Passaniti, A. Cell Cycle-Dependent Phosphorylation of the RUNX2 Transcription Factor by Cdc2 Regulates Endothelial Cell Proliferation. J. Biol. Chem. 2006, 281, 7118–7128. [Google Scholar] [CrossRef]
- Sun, L.; Vitolo, M.; Passaniti, A. Runt-Related Gene 2 in Endothelial Cells: Inducible Expression and Specific Regulation of Cell Migration and Invasion. Cancer Res. 2001, 61, 4994–5001. [Google Scholar]
- Blyth, K.; Cameron, E.R.; Neil, J.C. The Runx Genes: Gain or Loss of Function in Cancer. Nat. Rev. Cancer 2005, 5, 376–387. [Google Scholar] [CrossRef]
- Fidler, I.J. The Pathogenesis of Cancer Metastasis: The “seed and Soil” Hypothesis Revisited. Nat. Rev. Cancer 2003, 3, 453–458. [Google Scholar] [CrossRef]
- Lin, T.-C. RUNX2 and Cancer. Int. J. Mol. Sci. 2023, 24, 7001. [Google Scholar] [CrossRef]
- Vega, O.A.; Lucero, C.M.J.; Araya, H.F.; Jerez, S.; Tapia, J.C.; Antonelli, M.; Salazar-Onfray, F.; Las Heras, F.; Thaler, R.; Riester, S.M.; et al. Wnt/β-Catenin Signaling Activates Expression of the Bone-Related Transcription Factor RUNX2 in Select Human Osteosarcoma Cell Types. J. Cell. Biochem. 2017, 118, 3662–3674. [Google Scholar] [CrossRef]
- Pulica, R.; Cohen Solal, K.; Lasfar, A. Role of RUNX2 in Melanoma: A New Player in Tumor Progression and Resistance to Therapy. In Melanoma; Lasfar, A., Cohen-Solal, K., Eds.; IntechOpen: London, UK, 2021; ISBN 978-1-83880-878-5. [Google Scholar]
- Lu, H.; Jiang, T.; Ren, K.; Li, Z.L.; Ren, J.; Wu, G.; Han, X. RUNX2 Plays an Oncogenic Role in Esophageal Carcinoma by Activating the PI3K/AKT and ERK Signaling Pathways. Cell. Physiol. Biochem. 2018, 49, 217–225. [Google Scholar] [CrossRef]
- Krishnan, V. The RUNX Family of Proteins, DNA Repair, and Cancer. Cells 2023, 12, 1106. [Google Scholar] [CrossRef]
- Zhang, P.; Liu, L.; Zhang, L.; He, X.; Xu, X.; Lu, Y.; Li, F. Runx2 Is Required for Activity of CD44+/CD24-/Low Breast Cancer Stem Cell in Breast Cancer Development. Am. J. Transl. Res. 2020, 12, 2305–2318. [Google Scholar]
- Zhong, L.; Zhao, J.; Huang, L.; Liu, Y.; Pang, X.; Zhan, K.; Li, S.; Xue, Q.; Pan, X.; Deng, L. Runx2 Activates Hepatic Stellate Cells to Promote Liver Fibrosis via Transcriptionally Regulating Itgav Expression. Clin. Transl. Med. 2023, 13, e1316. [Google Scholar] [CrossRef]
- Raaz, U.; Schellinger, I.N.; Chernogubova, E.; Warnecke, C.; Kayama, Y.; Penov, K.; Hennigs, J.K.; Salomons, F.; Eken, S.; Emrich, F.C.; et al. Transcription Factor Runx2 Promotes Aortic Fibrosis and Stiffness in Type 2 Diabetes Mellitus. Circ. Res. 2015, 117, 513–524. [Google Scholar] [CrossRef]
- Chen, J.; Lin, Y.; Sun, Z. Deficiency in the Anti-aging Gene Klotho Promotes Aortic Valve Fibrosis through AMPK A-mediated Activation of RUNX 2. Aging Cell 2016, 15, 853–860. [Google Scholar] [CrossRef]
- Vaillant, F.; Blyth, K.; Andrew, L.; Neil, J.C.; Cameron, E.R. Enforced Expression of Runx2 Perturbs T Cell Development at a Stage Coincident with β-Selection. J. Immunol. 2002, 169, 2866–2874. [Google Scholar] [CrossRef]
- Wahlen, S.; Matthijssens, F.; Loocke, W.V.; Taveirne, S.; Kiekens, L.; Persyn, E.; Ammel, E.V.; Vos, Z.D.; Munter, S.D.; Matthys, P.; et al. The Transcription Factor RUNX2 Drives the Generation of Human NK Cells and Promotes Tissue Residency. eLife 2022, 11, e80320. [Google Scholar] [CrossRef] [PubMed]
- Maeda, Y.; Nakamura, E.; Nguyen, M.-T.; Suva, L.J.; Swain, F.L.; Razzaque, M.S.; Mackem, S.; Lanske, B. Indian Hedgehog Produced by Postnatal Chondrocytes Is Essential for Maintaining a Growth Plate and Trabecular Bone. Proc. Natl. Acad. Sci. USA 2007, 104, 6382–6387. [Google Scholar] [CrossRef] [PubMed]
- Liao, L.; Jiang, H.; Fan, Y.; Lu, R.S.; Wei, C.; Takarada, T.; He, S.; Chen, D. Runx2 Is Required for Postnatal Intervertebral Disc Tissue Growth and Development. J. Cell. Physiol. 2019, 234, 6679–6687. [Google Scholar] [CrossRef]
- Ghadially, F.N. As You Like It, Part 3: A Critique and Historical Review of Calcification as Seen with the Electron Microscope. Ultrastruct. Pathol. 2001, 25, 243–267. [Google Scholar] [CrossRef]
- Majno, G.; Joris, I. Cells, Tissues, and Disease: Principles of General Pathology, 2nd ed.; Oxford University Press: New York, NY, USA, 2004; ISBN 978-0-19-514090-3. [Google Scholar]
- Kumar, V.; Abbas, A.K.; Aster, J.C.; Perkins, J.A.; Robbins, S.L.; Cotran, R.S. Robbins and Cotran Pathologic Basis of Disease, Student Consult, 9th ed.; Elsevier, Saunders: Philadelphia, PA, USA, 2015; ISBN 978-0-8089-2450-0. [Google Scholar]
- Tan, A.C.S.; Pilgrim, M.G.; Fearn, S.; Bertazzo, S.; Tsolaki, E.; Morrell, A.P.; Li, M.; Messinger, J.D.; Dolz-Marco, R.; Lei, J.; et al. Calcified Nodules in Retinal Drusen Are Associated with Disease Progression in Age-Related Macular Degeneration. Sci. Transl. Med. 2018, 10, eaat4544. [Google Scholar] [CrossRef]
- Shanahan, C.M. Mechanisms of Vascular Calcification in Renal Disease. Clin. Nephrol. 2005, 63, 146–157. [Google Scholar] [CrossRef]
- Ignatieva, E.; Kostina, D.; Irtyuga, O.; Uspensky, V.; Golovkin, A.; Gavriliuk, N.; Moiseeva, O.; Kostareva, A.; Malashicheva, A. Mechanisms of Smooth Muscle Cell Differentiation Are Distinctly Altered in Thoracic Aortic Aneurysms Associated with Bicuspid or Tricuspid Aortic Valves. Front. Physiol. 2017, 8, 536. [Google Scholar] [CrossRef]
- Rutkovskiy, A.; Lund, M.; Siamansour, T.S.; Reine, T.M.; Kolset, S.O.; Sand, K.L.; Ignatieva, E.; Gordeev, M.L.; Stensløkken, K.-O.; Valen, G.; et al. Mechanical Stress Alters the Expression of Calcification-Related Genes in Vascular Interstitial and Endothelial Cells. Interact. Cardiovasc. Thorac. Surg. 2019, 28, 803–811. [Google Scholar] [CrossRef]
- Yu, W.; Zhu, X.; Liu, J.; Zhou, J. Biofunctionalized Decellularized Tissue-Engineered Heart Valve with Mesoporous Silica Nanoparticles for Controlled Release of VEGF and RunX2-siRNA against Calcification. Bioengineering 2023, 10, 859. [Google Scholar] [CrossRef]
- Ibragimova, A.G.; Stanishevskiy, Y.M.; Plakkhin, A.M.; Zubko, A.V.; Darvish, N.A.; Koassary, A.K.; Shindyapina, A.V. Comparative Analysis of Calcified Soft Tissues Revealed Shared Deregulated Pathways. Front. Aging Neurosci. 2023, 15, 1131548. [Google Scholar] [CrossRef]
- Kostina, A.; Shishkova, A.; Ignatieva, E.; Irtyuga, O.; Bogdanova, M.; Levchuk, K.; Golovkin, A.; Zhiduleva, E.; Uspenskiy, V.; Moiseeva, O.; et al. Different Notch Signaling in Cells from Calcified Bicuspid and Tricuspid Aortic Valves. J. Mol. Cell. Cardiol. 2018, 114, 211–219. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Azarkina, K.; Gromova, E.; Malashicheva, A. “A Friend Among Strangers” or the Ambiguous Roles of Runx2. Biomolecules 2024, 14, 1392. https://doi.org/10.3390/biom14111392
Azarkina K, Gromova E, Malashicheva A. “A Friend Among Strangers” or the Ambiguous Roles of Runx2. Biomolecules. 2024; 14(11):1392. https://doi.org/10.3390/biom14111392
Chicago/Turabian StyleAzarkina, Kseniia, Ekaterina Gromova, and Anna Malashicheva. 2024. "“A Friend Among Strangers” or the Ambiguous Roles of Runx2" Biomolecules 14, no. 11: 1392. https://doi.org/10.3390/biom14111392
APA StyleAzarkina, K., Gromova, E., & Malashicheva, A. (2024). “A Friend Among Strangers” or the Ambiguous Roles of Runx2. Biomolecules, 14(11), 1392. https://doi.org/10.3390/biom14111392