The Macrophage–Fibroblast Dipole in the Context of Cardiac Repair and Fibrosis
Abstract
:1. Introduction
2. Cardiac Fibroblasts, Repair, and Fibrosis
3. Cardiac Macrophages, Injury, and Repair
4. The Macrophage–Fibroblast Dipole
5. Macrophages Affecting Cardiac Fibroblasts
6. Cardiac Fibroblasts Affecting Macrophages
7. Macrophage to Fibroblast Conversion
8. Third Party Involvement
9. Translational Opportunities
10. Conclusions—Perspectives
Funding
Conflicts of Interest
References
- Litviňuková, M.; Talavera-López, C.; Maatz, H.; Reichart, D.; Worth, C.L.; Lindberg, E.L.; Kanda, M.; Polanski, K.; Heinig, M.; Lee, M.; et al. Cells of the Adult Human Heart. Nature 2020, 588, 466–472. [Google Scholar] [CrossRef] [PubMed]
- Tucker, N.R.; Chaffin, M.; Fleming, S.J.; Hall, A.W.; Parsons, V.A.; Bedi, K.C.; Akkad, A.D.; Herndon, C.N.; Arduini, A.; Papangeli, I.; et al. Transcriptional and Cellular Diversity of the Human Heart. Circulation 2020, 142, 466–482. [Google Scholar] [CrossRef] [PubMed]
- Farbehi, N.; Patrick, R.; Dorison, A.; Xaymardan, M.; Janbandhu, V.; Wystub-Lis, K.; Ho, J.W.K.; Nordon, R.E.; Harvey, R.P. Single-Cell Expression Profiling Reveals Dynamic Flux of Cardiac Stromal, Vascular and Immune Cells in Health and Injury. eLife 2019, 8, e43882. [Google Scholar] [CrossRef] [PubMed]
- Kanemaru, K.; Cranley, J.; Muraro, D.; Miranda, A.M.A.; Ho, S.Y.; Wilbrey-Clark, A.; Patrick Pett, J.; Polanski, K.; Richardson, L.; Litvinukova, M.; et al. Spatially Resolved Multiomics of Human Cardiac Niches. Nature 2023, 619, 801–810. [Google Scholar] [CrossRef] [PubMed]
- Farah, E.N.; Hu, R.K.; Kern, C.; Zhang, Q.; Lu, T.Y.; Ma, Q.; Tran, S.; Zhang, B.; Carlin, D.; Monell, A.; et al. Spatially Organized Cellular Communities Form the Developing Human Heart. Nature 2024, 627, 854–864. [Google Scholar] [CrossRef]
- Chaffin, M.; Papangeli, I.; Simonson, B.; Akkad, A.D.; Hill, M.C.; Arduini, A.; Fleming, S.J.; Melanson, M.; Hayat, S.; Kost-Alimova, M.; et al. Single-Nucleus Profiling of Human Dilated and Hypertrophic Cardiomyopathy. Nature 2022, 608, 174–180. [Google Scholar] [CrossRef]
- Kuppe, C.; Ramirez Flores, R.O.; Li, Z.; Hayat, S.; Levinson, R.T.; Liao, X.; Hannani, M.T.; Tanevski, J.; Wünnemann, F.; Nagai, J.S.; et al. Spatial Multi-Omic Map of Human Myocardial Infarction. Nature 2022, 608, 766–777. [Google Scholar] [CrossRef]
- Wang, L.; Yu, P.; Zhou, B.; Song, J.; Li, Z.; Zhang, M.; Guo, G.; Wang, Y.; Chen, X.; Han, L.; et al. Single-Cell Reconstruction of the Adult Human Heart during Heart Failure and Recovery Reveals the Cellular Landscape Underlying Cardiac Function. Nat. Cell Biol. 2020, 22, 108–119. [Google Scholar] [CrossRef]
- Koenig, A.L.; Shchukina, I.; Amrute, J.; Andhey, P.S.; Zaitsev, K.; Lai, L.; Bajpai, G.; Bredemeyer, A.; Smith, G.; Jones, C.; et al. Single-Cell Transcriptomics Reveals Cell-Type-Specific Diversification in Human Heart Failure. Nat. Cardiovasc. Res. 2022, 1, 263–280. [Google Scholar] [CrossRef]
- Forte, E.; Skelly, D.A.; Chen, M.; Daigle, S.; Morelli, K.A.; Hon, O.; Philip, V.M.; Costa, M.W.; Rosenthal, N.A.; Furtado, M.B. Dynamic Interstitial Cell Response during Myocardial Infarction Predicts Resilience to Rupture in Genetically Diverse Mice. Cell Rep. 2020, 30, 3149–3163.e6. [Google Scholar] [CrossRef]
- Hortells, L.; Valiente-Alandi, I.; Thomas, Z.M.; Agnew, E.J.; Schnell, D.J.; York, A.J.; Vagnozzi, R.J.; Meyer, E.C.; Molkentin, J.D.; Yutzey, K.E. A Specialized Population of Periostin-Expressing Cardiac Fibroblasts Contributes to Postnatal Cardiomyocyte Maturation and Innervation. Proc. Natl. Acad. Sci. USA 2020, 117, 21469–21479. [Google Scholar] [CrossRef] [PubMed]
- Chen, L.; Li, H.; Liu, X.; Zhang, N.; Wang, K.; Shi, A.; Gao, H.; Akdis, D.; Saguner, A.M.; Xu, X.; et al. PBX/Knotted 1 Homeobox-2 (PKNOX2) Is a Novel Regulator of Myocardial Fibrosis. Signal Transduct. Target. Ther. 2024, 9, 94. [Google Scholar] [CrossRef] [PubMed]
- Ivey, M.J.; Kuwabara, J.T.; Pai, J.T.; Moore, R.E.; Sun, Z.; Tallquist, M.D. Resident Fibroblast Expansion during Cardiac Growth and Remodeling. J. Mol. Cell. Cardiol. 2018, 114, 161–174. [Google Scholar] [CrossRef] [PubMed]
- Khalil, H.; Kanisicak, O.; Prasad, V.; Correll, R.N.; Fu, X.; Schips, T.; Vagnozzi, R.J.; Liu, R.; Huynh, T.; Lee, S.J.; et al. Fibroblast-Specific TGF-β-Smad2/3 Signaling Underlies Cardiac Fibrosis. J. Clin. Investig. 2017, 127, 3770–3783. [Google Scholar] [CrossRef] [PubMed]
- Teekakirikul, P.; Eminaga, S.; Toka, O.; Alcalai, R.; Wang, L.; Wakimoto, H.; Nayor, M.; Konno, T.; Gorham, J.M.; Wolf, C.M.; et al. Cardiac Fibrosis in Mice with Hypertrophic Cardiomyopathy Is Mediated by Non-Myocyte Proliferation and Requires Tgf-β. J. Clin. Investig. 2010, 120, 3520–3529. [Google Scholar] [CrossRef]
- Xintarakou, A.; Tzeis, S.; Psarras, S.; Asvestas, D.; Vardas, P. Atrial Fibrosis as a Dominant Factor for the Development of Atrial Fibrillation: Facts and Gaps. EP Eur. 2020, 22, 342–351. [Google Scholar] [CrossRef]
- de Boer, R.A.; De Keulenaer, G.; Bauersachs, J.; Brutsaert, D.; Cleland, J.G.; Diez, J.; Du, X.J.; Ford, P.; Heinzel, F.R.; Lipson, K.E.; et al. Towards Better Definition, Quantification and Treatment of Fibrosis in Heart Failure. A Scientific Roadmap by the Committee of Translational Research of the Heart Failure Association (HFA) of the European Society of Cardiology. Eur. J. Heart Fail. 2019, 21, 272–285. [Google Scholar] [CrossRef]
- Frangogiannis, N.G. Cardiac Fibrosis. Cardiovasc. Res. 2021, 117, 1450–1488. [Google Scholar] [CrossRef]
- Bujak, M.; Kweon, H.J.; Chatila, K.; Li, N.; Taffet, G.; Frangogiannis, N.G. Aging-Related Defects Are Associated With Adverse Cardiac Remodeling in a Mouse Model of Reperfused Myocardial Infarction. J. Am. Coll. Cardiol. 2008, 51, 1384–1392. [Google Scholar] [CrossRef]
- Porrello, E.R.; Olson, E.N.; Sadek, H.A. Transient Regenerative Potential of the Neonatal Mouse Heart. Science 2011, 331, 1078–1080. [Google Scholar] [CrossRef]
- Wu, R.; Ma, F.; Tosevska, A.; Farrell, C.; Pellegrini, M.; Deb, A. Cardiac Fibroblast Proliferation Rates and Collagen Expression Mature Early and Are Unaltered with Advancing Age. JCI Insight 2020, 5, e140628. [Google Scholar] [CrossRef] [PubMed]
- Vlachou, F.; Varela, A.; Stathopoulou, K.; Ntatsoulis, K.; Synolaki, E.; Pratsinis, H.; Kletsas, D.; Sideras, P.; Davos, C.H.; Capetanaki, Y.; et al. Galectin-3 Interferes with Tissue Repair and Promotes Cardiac Dysfunction and Comorbidities in a Genetic Heart Failure Model. Cell. Mol. Life Sci. 2022, 79, 250. [Google Scholar] [CrossRef] [PubMed]
- Tanner, M.A.; Thomas, T.P.; Maitz, C.A.; Grisanti, L.A. Β2-Adrenergic Receptors Increase Cardiac Fibroblast Proliferation Through the Gαs/ERK1/2-Dependent Secretion of Interleukin-6. Int. J. Mol. Sci. 2020, 21, 8507. [Google Scholar] [CrossRef] [PubMed]
- Olsen, M.B.; Hildrestrand, G.A.; Scheffler, K.; Vinge, L.E.; Alfsnes, K.; Palibrk, V.; Wang, J.; Neurauter, C.G.; Luna, L.; Johansen, J.; et al. NEIL3-Dependent Regulation of Cardiac Fibroblast Proliferation Prevents Myocardial Rupture. Cell Rep. 2017, 18, 82–92. [Google Scholar] [CrossRef]
- Soundararajan, M.; Kannan, S. Fibroblasts and Mesenchymal Stem Cells: Two Sides of the Same Coin? J. Cell. Physiol. 2018, 233, 9099–9109. [Google Scholar] [CrossRef]
- Ugurlu, B.; Karaoz, E. Comparison of Similar Cells: Mesenchymal Stromal Cells and Fibroblasts. Acta Histochem. 2020, 122, 151634. [Google Scholar] [CrossRef]
- Yaniz-Galende, E.; Roux, M.; Nadaud, S.; Mougenot, N.; Bouvet, M.; Claude, O.; Lebreton, G.; Blanc, C.; Pinet, F.; Atassi, F.; et al. Fibrogenic Potential of PW1/Peg3 Expressing Cardiac Stem Cells. J. Am. Coll. Cardiol. 2017, 70, 728–741. [Google Scholar] [CrossRef]
- Masurkar, N.; Bouvet, M.; Logeart, D.; Jouve, C.; Dramé, F.; Claude, O.; Roux, M.; Delacroix, C.; Bergerot, D.; Mercadier, J.J.; et al. Novel Cardiokine GDF3 Predicts Adverse Fibrotic Remodeling After Myocardial Infarction. Circulation 2023, 147, 498–511. [Google Scholar] [CrossRef]
- Han, M.; Liu, Z.; Liu, L.; Huang, X.; Wang, H.; Pu, W.; Wang, E.; Liu, X.; Li, Y.; He, L.; et al. Dual Genetic Tracing Reveals a Unique Fibroblast Subpopulation Modulating Cardiac Fibrosis. Nat. Genet. 2023, 55, 665–678. [Google Scholar] [CrossRef]
- Song, S.; Zhang, X.; Huang, Z.; Zhao, Y.; Lu, S.; Zeng, L.; Cai, F.; Wang, T.; Pei, Z.; Weng, X.; et al. TEA Domain Transcription Factor 1(TEAD1) Induces Cardiac Fibroblasts Cells Remodeling through BRD4/Wnt4 Pathway. Signal Transduct. Target. Ther. 2024, 9, 45. [Google Scholar] [CrossRef]
- Francisco, J.; Zhang, Y.; Jeong, J.I.; Mizushima, W.; Ikeda, S.; Ivessa, A.; Oka, S.; Zhai, P.; Tallquist, M.D.; Del Re, D.P. Blockade of Fibroblast YAP Attenuates Cardiac Fibrosis and Dysfunction Through MRTF-A Inhibition. JACC Basic Transl. Sci. 2020, 5, 931–945. [Google Scholar] [CrossRef] [PubMed]
- Burke, R.M.; Dirkx, R.A.; Quijada, P.; Lighthouse, J.K.; Mohan, A.; O’Brien, M.; Wojciechowski, W.; Woeller, C.F.; Phipps, R.P.; Alexis, J.D.; et al. Prevention of Fibrosis and Pathological Cardiac Remodeling by Salinomycin. Circ. Res. 2021, 128, 1663–1678. [Google Scholar] [CrossRef] [PubMed]
- Rubino, M.; Travers, J.G.; Headrick, A.L.; Enyart, B.T.; Lemieux, M.E.; Cavasin, M.A.; Schwisow, J.A.; Hardy, E.J.; Kaltenbacher, K.J.; Felisbino, M.B.; et al. Inhibition of Eicosanoid Degradation Mitigates Fibrosis of the Heart. Circ. Res. 2023, 132, 10–29. [Google Scholar] [CrossRef]
- Nagaraju, C.K.; Robinson, E.L.; Abdesselem, M.; Trenson, S.; Dries, E.; Gilbert, G.; Janssens, S.; Van Cleemput, J.; Rega, F.; Meyns, B.; et al. Myofibroblast Phenotype and Reversibility of Fibrosis in Patients With End-Stage Heart Failure. J. Am. Coll. Cardiol. 2019, 73, 2267–2282. [Google Scholar] [CrossRef]
- Travers, J.G.; Tharp, C.A.; Rubino, M.; McKinsey, T.A. Therapeutic Targets for Cardiac Fibrosis: From Old School to next-Gen. J. Clin. Investig. 2022, 132, e148554. [Google Scholar] [CrossRef]
- Kanisicak, O.; Khalil, H.; Ivey, M.J.; Karch, J.; Maliken, B.D.; Correll, R.N.; Brody, M.J.; Lin, S.C.J.; Aronow, B.J.; Tallquist, M.D.; et al. Genetic Lineage Tracing Defines Myofibroblast Origin and Function in the Injured Heart. Nat. Commun. 2016, 7, 12260. [Google Scholar] [CrossRef]
- McLellan, M.A.; Skelly, D.A.; Dona, M.S.I.; Squiers, G.T.; Farrugia, G.E.; Gaynor, T.L.; Cohen, C.D.; Pandey, R.; Diep, H.; Vinh, A.; et al. High-Resolution Transcriptomic Profiling of the Heart during Chronic Stress Reveals Cellular Drivers of Cardiac Fibrosis and Hypertrophy. Circulation 2020, 142, 1448–1463. [Google Scholar] [CrossRef]
- Ruiz-Villalba, A.; Romero, J.P.; Hernández, S.C.; Vilas-Zornoza, A.; Fortelny, N.; Castro-Labrador, L.; San Martin-Uriz, P.; Lorenzo-Vivas, E.; García-Olloqui, P.; Palacio, M.; et al. Single-Cell RNA Sequencing Analysis Reveals a Crucial Role for CTHRC1 (Collagen Triple Helix Repeat Containing 1) Cardiac Fibroblasts After Myocardial Infarction. Circulation 2020, 142, 1831–1847. [Google Scholar] [CrossRef]
- Saraswati, S.; Marrow, S.M.W.; Watch, L.A.; Young, P.P. Identification of a Pro-Angiogenic Functional Role for FSP1-Positive Fibroblast Subtype in Wound Healing. Nat. Commun. 2019, 10, 3027. [Google Scholar] [CrossRef]
- Hume, R.D.; Deshmukh, T.; Doan, T.; Shim, W.J.; Kanagalingam, S.; Tallapragada, V.; Rashid, F.; Marcuello, M.; Blessing, D.; Selvakumar, D.; et al. PDGF-AB Reduces Myofibroblast Differentiation Without Increasing Proliferation After Myocardial Infarction. JACC Basic Transl. Sci. 2023, 8, 658–674. [Google Scholar] [CrossRef]
- Russo, I.; Cavalera, M.; Huang, S.; Su, Y.; Hanna, A.; Chen, B.; Shinde, A.V.; Conway, S.J.; Graff, J.; Frangogiannis, N.G. Protective Effects of Activated Myofibroblasts in the Pressure-Overloaded Myocardium Are Mediated Through Smad-Dependent Activation of a Matrix-Preserving Program. Circ. Res. 2019, 124, 1214–1227. [Google Scholar] [CrossRef] [PubMed]
- Nakaya, M.; Watari, K.; Tajima, M.; Nakaya, T.; Matsuda, S.; Ohara, H.; Nishihara, H.; Yamaguchi, H.; Hashimoto, A.; Nishida, M.; et al. Cardiac Myofibroblast Engulfment of Dead Cells Facilitates Recovery after Myocardial Infarction. J. Clin. Investig. 2017, 127, 383–401. [Google Scholar] [CrossRef] [PubMed]
- Fan, X.; Huang, K.; Wu, Y.; Jin, S.; Pang, L.; Wang, Y.; Jin, B.; Sun, X. A Specific Inflammatory Suppression Fibroblast Subpopulation Characterized by MHCII Expression in Human Dilated Cardiomyopathy. Mol. Cell Biochem. 2024; Epub ahead of print. [Google Scholar] [CrossRef]
- Ieda, M.; Tsuchihashi, T.; Ivey, K.N.; Ross, R.S.; Hong, T.; Shaw, R.M. Cardiac Fibroblasts Regulate Myocardial Proliferation through b 1 Integrin Signaling. Dev. Cell 2009, 16, 233–244. [Google Scholar] [CrossRef]
- Wu, C.C.; Jeratsch, S.; Graumann, J.; Stainier, D.Y.R. Modulation of Mammalian Cardiomyocyte Cytokinesis by the Extracellular Matrix. Circ. Res. 2020, 127, 896–907. [Google Scholar] [CrossRef] [PubMed]
- de Bakker, D.E.M.; Bouwman, M.; Dronkers, E.; Simões, F.C.; Riley, P.R.; Goumans, M.J.; Smits, A.M.; Bakkers, J. Prrx1b Restricts Fibrosis and Promotes Nrg1-Dependent Cardiomyocyte Proliferation during Zebrafish Heart Regeneration. Development 2021, 148, dev198937. [Google Scholar] [CrossRef] [PubMed]
- Sánchez-iranzo, H.; Galardi-castilla, M.; Minguillón, C.; Sanz-Morejón, A.; González-rosa, J.M.; Felker, A.; Ernst, A.; Guzmán-martínez, G.; Mosimann, C.; Mercader, N.; et al. Transient Fibrosis Resolves via Fibroblast Inactivation in the Regenerating Zebrafish Heart. Proc. Natl. Acad. Sci. USA 2018, 115, 4188–4193. [Google Scholar] [CrossRef]
- Fu, X.; Blaxall, B.C.; Molkentin, J.D.; Fu, X.; Khalil, H.; Kanisicak, O.; Boyer, J.G.; Vagnozzi, R.J.; Maliken, B.D.; Sargent, M.A.; et al. Specialized Fibroblast Differentiated States Underlie Scar Formation in the Infarcted Mouse Heart. J. Clin. Investig. 2018, 128, 2127–2143. [Google Scholar] [CrossRef]
- Pillai, I.C.L.; Li, S.; Romay, M.; Lam, L.; Lu, Y.; Huang, J.; Dillard, N.; Zemanova, M.; Rubbi, L.; Wang, Y.; et al. Cardiac Fibroblasts Adopt Osteogenic Fates and Can Be Targeted to Attenuate Pathological Heart Calcification. Cell Stem Cell 2017, 20, 218–232.e5. [Google Scholar] [CrossRef]
- Medzikovic, L.; Aryan, L.; Ruffenach, G.; Li, M.; Savalli, N.; Sun, W.; Sarji, S.; Hong, J.; Sharma, S.; Olcese, R.; et al. Myocardial Fibrosis and Calcification Are Attenuated by MicroRNA–129-5p Targeting Asporin and Sox9 in Cardiac Fibroblasts. JCI Insight 2023, 8, e168655. [Google Scholar] [CrossRef]
- Alexanian, M.; Przytycki, P.F.; Micheletti, R.; Padmanabhan, A.; Ye, L.; Travers, J.G.; Gonzalez-Teran, B.; Silva, A.C.; Duan, Q.; Ranade, S.S.; et al. A Transcriptional Switch Governs Fibroblast Activation in Heart Disease. Nature 2021, 595, 438–443. [Google Scholar] [CrossRef]
- Eguchi, A.; Coleman, R.; Gresham, K.; Gao, E.; Ibetti, J.; Chuprun, J.K.; Koch, W.J. GRK5 Is a Regulator of Fibroblast Activation and Cardiac Fibrosis. Proc. Natl. Acad. Sci. USA 2021, 118, e2012854118. [Google Scholar] [CrossRef] [PubMed]
- Umbarkar, P.; Tousif, S.; Singh, A.P.; Anderson, J.C.; Zhang, Q.; Tallquist, M.D.; Woodgett, J.; Lal, H. Fibroblast GSK-3α Promotes Fibrosis via RAF-MEK-ERK Pathway in the Injured Heart. Circ. Res. 2022, 131, 620–636. [Google Scholar] [CrossRef] [PubMed]
- Lal, H.; Ahmad, F.; Zhou, J.; Yu, J.E.; Vagnozzi, R.J.; Guo, Y.; Yu, D.; Tsai, E.J.; Woodgett, J.; Gao, E.; et al. Cardiac Fibroblast Glycogen Synthase Kinase-3β Regulates Ventricular Remodeling and Dysfunction in Ischemic Heart. Circulation 2014, 130, 419–430. [Google Scholar] [CrossRef] [PubMed]
- Rao, M.; Wang, X.; Guo, G.; Wang, L.; Chen, S.; Yin, P.; Chen, K.; Chen, L.; Zhang, Z.; Chen, X.; et al. Resolving the Intertwining of Inflammation and Fibrosis in Human Heart Failure at Single-Cell Level. Basic Res. Cardiol. 2021, 116, 55. [Google Scholar] [CrossRef] [PubMed]
- Russell-Hallinan, A.; Cappa, O.; Kerrigan, L.; Tonry, C.; Edgar, K.; Glezeva, N.; Ledwidge, M.; McDonald, K.; Collier, P.; Simpson, D.A.; et al. Single-Cell RNA Sequencing Reveals Cardiac Fibroblast-Specific Transcriptomic Changes in Dilated Cardiomyopathy. Cells 2024, 13, 752. [Google Scholar] [CrossRef]
- Alter, C.; Henseler, A.S.; Owenier, C.; Hesse, J.; Ding, Z.; Lautwein, T.; Bahr, J.; Hayat, S.; Kramann, R.; Kostenis, E.; et al. IL-6 in the Infarcted Heart Is Preferentially Formed by Fibroblasts and Modulated by Purinergic Signaling. J. Clin. Investig. 2023, 133, e163799. [Google Scholar] [CrossRef]
- Trial, J.A.; Entman, M.L.; Cieslik, K.A. Mesenchymal Stem Cell-Derived Inflammatory Fibroblasts Mediate Interstitial Fibrosis in the Aging Heart. J. Mol. Cell. Cardiol. 2016, 91, 28–34. [Google Scholar] [CrossRef]
- Cieslik, K.A.; Trial, J.A.; Entman, M.L. Aicar Treatment Reduces Interstitial Fibrosis in Aging Mice: Suppression of the Inflammatory Fibroblast. J. Mol. Cell. Cardiol. 2017, 111, 81–85. [Google Scholar] [CrossRef]
- Kawaguchi, M.; Takahashi, M.; Hata, T.; Kashima, Y.; Usui, F.; Morimoto, H.; Izawa, A.; Takahashi, Y.; Masumoto, J.; Koyama, J.; et al. Inflammasome Activation of Cardiac Fibroblasts Is Essential for Myocardial Ischemia/Reperfusion Injury. Circulation 2011, 123, 594–604. [Google Scholar] [CrossRef]
- Leuschner, F.; Nahrendorf, M. Novel Functions of Macrophages in the Heart: Insights into Electrical Conduction, Stress, and Diastolic Dysfunction. Eur. Heart J. 2020, 41, 989–994. [Google Scholar] [CrossRef]
- Nicolás-Ávila, J.A.; Lechuga-Vieco, A.V.; Esteban-Martínez, L.; Sánchez-Díaz, M.; Díaz-García, E.; Santiago, D.J.; Rubio-Ponce, A.; Li, J.L.Y.; Balachander, A.; Quintana, J.A.; et al. A Network of Macrophages Supports Mitochondrial Homeostasis in the Heart. Cell 2020, 183, 94–109.e23. [Google Scholar] [CrossRef] [PubMed]
- Lavine, K.J.; Epelman, S.; Uchida, K.; Weber, K.J.; Nichols, C.G.; Schilling, J.D.; Ornitz, D.M.; Randolph, G.J.; Mann, D.L. Distinct Macrophage Lineages Contribute to Disparate Patterns of Cardiac Recovery and Remodeling in the Neonatal and Adult Heart. Proc. Natl. Acad. Sci. USA 2014, 111, 16029–16034. [Google Scholar] [CrossRef] [PubMed]
- Heidt, T.; Courties, G.; Dutta, P.; Sager, H.B.; Sebas, M.; Iwamoto, Y.; Sun, Y.; Da Silva, N.; Panizzi, P.; Van Der Lahn, A.M.; et al. Differential Contribution of Monocytes to Heart Macrophages in Steady-State and after Myocardial Infarction. Circ. Res. 2014, 115, 284–295. [Google Scholar] [CrossRef] [PubMed]
- Rizzo, G.; Gropper, J.; Piollet, M.; Vafadarnejad, E.; Rizakou, A.; Bandi, S.R.; Arampatzi, P.; Krammer, T.; DiFabion, N.; Dietrich, O.; et al. Dynamics of Monocyte-Derived Macrophage Diversity in Experimental Myocardial Infarction. Cardiovasc. Res. 2023, 119, 772–785. [Google Scholar] [CrossRef]
- Jung, S.H.; Hwang, B.H.; Shin, S.; Park, E.H.; Park, S.H.; Kim, C.W.; Kim, E.; Choo, E.; Choi, I.J.; Swirski, F.K.; et al. Spatiotemporal Dynamics of Macrophage Heterogeneity and a Potential Function of Trem2hi Macrophages in Infarcted Hearts. Nat. Commun. 2022, 13, 4580. [Google Scholar] [CrossRef]
- Dick, S.A.; Wong, A.; Hamidzada, H.; Nejat, S.; Nechanitzky, R.; Vohra, S.; Mueller, B.; Zaman, R.; Kantores, C.; Aronoff, L.; et al. Three Tissue Resident Macrophage Subsets Coexist across Organs with Conserved Origins and Life Cycles. Sci. Immunol. 2022, 7, eabf7777. [Google Scholar] [CrossRef]
- Zaman, R.; Hamidzada, H.; Kantores, C.; Wong, A.; Dick, S.A.; Wang, Y.; Momen, A.; Aronoff, L.; Lin, J.; Razani, B.; et al. Selective Loss of Resident Macrophage-Derived Insulin-like Growth Factor-1 Abolishes Adaptive Cardiac Growth to Stress. Immunity 2021, 54, 2057–2071.e6. [Google Scholar] [CrossRef]
- Xu, Y.; Jiang, K.; Su, F.; Deng, R.; Cheng, Z.; Wang, D.; Yu, Y.; Xiang, Y. A Transient Wave of Bhlhe41+ Resident Macrophages Enables Remodeling of the Developing Infarcted Myocardium. Cell Rep. 2023, 42, 113174. [Google Scholar] [CrossRef]
- King, K.R.; Aguirre, A.D.; Ye, Y.X.; Sun, Y.; Roh, J.D.; Ng, R.P.; Kohler, R.H.; Arlauckas, S.P.; Yoshiko, V.; Savo, A.; et al. IRF3 and Type i Interferons Fuel a Fatal Response to Myocardial Infarction. Nat. Med. 2017, 23, 1481–1487. [Google Scholar] [CrossRef]
- Calcagno, D.M.; Ng, R.P.; Toomu, A.; Zhang, C.; Huang, K.; Aguirre, A.D.; Weissleder, R.; Daniels, L.B.; Fu, Z.; King, K.R. The Myeloid Type I Interferon Response to Myocardial Infarction Begins in Bone Marrow and Is Regulated by Nrf2-Activated Macrophages. Sci. Immunol. 2020, 5, eaaz1974. [Google Scholar] [CrossRef]
- Shen, S.; Zhang, M.; Wang, X.; Liu, Q.; Su, H.; Sun, B.; Guo, Z.; Tian, B.; Gan, H.; Gong, C.; et al. Single-Cell RNA Sequencing Reveals S100a9hi Macrophages Promote the Transition from Acute Inflammation to Fibrotic Remodeling after Myocardial Ischemia-Reperfusion. Theranostics 2024, 14, 1241–1259. [Google Scholar] [CrossRef] [PubMed]
- Aurora, A.B.; Porrello, E.R.; Tan, W.; Mahmoud, A.I.; Hill, J.A.; Bassel-duby, R.; Sadek, H.A.; Olson, E.N. Macrophages Are Required for Neonatal Heart Regeneration. J. Clin. Investig. 2014, 124, 1382–1392. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Cui, M.; Shah, A.M.; Tan, W.; Liu, N.; Bassel-Duby, R.; Olson, E.N. Cell-Type-Specific Gene Regulatory Networks Underlying Murine Neonatal Heart Regeneration at Single-Cell Resolution. Cell Rep. 2020, 33, 108472. [Google Scholar] [CrossRef] [PubMed]
- Alvarez-Argote, S.; Paddock, S.J.; Flinn, M.A.; Moreno, C.W.; Knas, M.C.; Almeida, V.A.; Buday, S.L.; Bakhshian Nik, A.; Patterson, M.; Chen, Y.G.; et al. IL-13 Promotes Functional Recovery after Myocardial Infarction via Direct Signaling to Macrophages. JCI Insight 2024, 9, e172702. [Google Scholar] [CrossRef] [PubMed]
- Jia, D.; Chen, S.; Bai, P.; Luo, C.; Liu, J.; Sun, A.; Ge, J. Cardiac Resident Macrophage-Derived Legumain Improves Cardiac Repair by Promoting Clearance and Degradation of Apoptotic Cardiomyocytes After Myocardial Infarction. Circulation 2022, 145, 1542–1556. [Google Scholar] [CrossRef]
- Glinton, K.E.; Ma, W.; Lantz, C.; Grigoryeva, L.S.; DeBerge, M.; Liu, X.; Febbraio, M.; Kahn, M.; Oliver, G.; Thorp, E.B. Macrophage-Produced VEGFC Is Induced by Efferocytosis to Ameliorate Cardiac Injury and Inflammation. J. Clin. Investig. 2022, 132, e140685. [Google Scholar] [CrossRef]
- Wong, N.R.; Mohan, J.; Kopecky, B.J.; Guo, S.; Du, L.; Leid, J.; Feng, G.; Lokshina, I.; Dmytrenko, O.; Luehmann, H.; et al. Resident Cardiac Macrophages Mediate Adaptive Myocardial Remodeling. Immunity 2021, 54, 2072–2088.e7. [Google Scholar] [CrossRef]
- Zhang, H.; Xu, A.; Sun, X.; Yang, Y.; Zhang, L.; Bai, H.; Ben, J.; Zhu, X.; Li, X.; Yang, Q.; et al. Self-Maintenance of Cardiac Resident Reparative Macrophages Attenuates Doxorubicin-Induced Cardiomyopathy Through the SR-A1-c-Myc Axis. Circ. Res. 2020, 127, 610–627. [Google Scholar] [CrossRef]
- Gambardella, J.; Santulli, G.; Fiordelisi, A.; Cerasuolo, F.A.; Wang, X.; Prevete, N.; Sommella, E.; Avvisato, R.; Buonaiuto, A.; Altobelli, G.G.; et al. Infiltrating Macrophages Amplify Doxorubicin-Induced Cardiac Damage: Role of Catecholamines. Cell. Mol. Life Sci. 2023, 80, 323. [Google Scholar] [CrossRef]
- Kopecky, B.J.; Dun, H.; Amrute, J.M.; Lin, C.Y.; Bredemeyer, A.L.; Terada, Y.; Bayguinov, P.O.; Koenig, A.L.; Frye, C.C.; Fitzpatrick, J.A.J.; et al. Donor Macrophages Modulate Rejection After Heart Transplantation. Circulation 2022, 146, 623–638. [Google Scholar] [CrossRef]
- Chelko, S.P.; Penna, V.R.; Engel, M.; Shiel, E.A.; Centner, A.M.; Farra, W.; Cannon, E.N.; Landim-Vieira, M.; Schaible, N.; Lavine, K.; et al. NFĸB Signaling Drives Myocardial Injury via CCR2+ Macrophages in a Preclinical Model of Arrhythmogenic Cardiomyopathy. J. Clin. Investig. 2024, 134, e172014. [Google Scholar] [CrossRef] [PubMed]
- Hayashi, T.; Tiwary, S.K.; Lavine, K.J.; Acharya, S.; Brent, M.; Adamo, L.; Kovacs, A.; Mann, D.L. The Programmed Death-1 Signaling Axis Modulates Inflammation and LV Structure/Function in a Stress-Induced Cardiomyopathy Model. JACC Basic Transl. Sci. 2022, 7, 1120–1139. [Google Scholar] [CrossRef] [PubMed]
- Liao, X.; Chang, E.; Tang, X.; Watanabe, I.; Zhang, R.; Jeong, H.W.; Adams, R.H.; Jain, M.K. Cardiac Macrophages Regulate Isoproterenol-Induced Takotsubo-like Cardiomyopathy. JCI Insight 2022, 7, e156236. [Google Scholar] [CrossRef]
- Tiwary, S.K.; Hayashi, T.; Kovacs, A.; Mann, D.L. Recurrent Myocardial Injury Leads to Disease Tolerance in a Murine Model of Stress-Induced Cardiomyopathy. JACC Basic Transl. Sci. 2023, 8, 783–797. [Google Scholar] [CrossRef]
- Liao, X.; Shen, Y.; Zhang, R.; Sugi, K.; Vasudevan, N.T.; Alaiti, M.A.; Sweet, D.R.; Zhou, L.; Qing, Y.; Gerson, S.L.; et al. Distinct Roles of Resident and Nonresident Macrophages in Nonischemic Cardiomyopathy. Proc. Natl. Acad. Sci. USA 2018, 115, E4661–E4669. [Google Scholar] [CrossRef]
- Patel, B.; Bansal, S.S.; Ismahil, M.A.; Hamid, T.; Rokosh, G.; Mack, M.; Prabhu, S.D. CCR2+ Monocyte-Derived Infiltrating Macrophages Are Required for Adverse Cardiac Remodeling During Pressure Overload. JACC Basic Transl. Sci. 2018, 3, 230–244. [Google Scholar] [CrossRef]
- Revelo, X.S.; Parthiban, P.; Chen, C.; Barrow, F.; Fredrickson, G.; Wang, H.; Yücel, D.; Herman, A.; Van Berlo, J.H. Cardiac Resident Macrophages Prevent Fibrosis and Stimulate Angiogenesis. Circ. Res. 2021, 129, 1086–1101. [Google Scholar] [CrossRef]
- Burkhoff, D.; Topkara, V.K.; Sayer, G.; Uriel, N. Reverse Remodeling With Left Ventricular Assist Devices. Circ. Res. 2021, 128, 1594–1612. [Google Scholar] [CrossRef]
- Bajpai, G.; Schneider, C.; Wong, N.; Bredemeyer, A.; Hulsmans, M.; Nahrendorf, M.; Epelman, S.; Kreisel, D.; Liu, Y.; Itoh, A.; et al. The Human Heart Contains Distinct Macrophage Subsets with Divergent Origins and Functions. Nat. Med. 2018, 24, 1234–1245. [Google Scholar] [CrossRef]
- Valaperti, A.; Nishii, M.; Liu, Y.; Naito, K.; Chan, M.; Zhang, L.; Skurk, C.; Schultheiss, H.P.; Wells, G.A.; Eriksson, U.; et al. Innate Immune Interleukin-1 Receptor-Associated Kinase 4 Exacerbates Viral Myocarditis by Reducing CCR5+CD11b+ Monocyte Migration and Impairing Interferon Production. Circulation 2013, 128, 1542–1554. [Google Scholar] [CrossRef]
- Deniset, J.F.; Belke, D.; Lee, W.Y.; Jorch, S.K.; Deppermann, C.; Hassanabad, A.F.; Turnbull, J.D.; Teng, G.; Rozich, I.; Hudspeth, K.; et al. Gata6+ Pericardial Cavity Macrophages Relocate to the Injured Heart and Prevent Cardiac Fibrosis. Immunity 2019, 51, 131–140.e5. [Google Scholar] [CrossRef] [PubMed]
- Dick, S.A.; Macklin, J.A.; Nejat, S.; Momen, A.; Clemente-Casares, X.; Althagafi, M.G.; Chen, J.; Kantores, C.; Hosseinzadeh, S.; Aronoff, L.; et al. Self-Renewing Resident Cardiac Macrophages Limit Adverse Remodeling Following Myocardial Infarction. Nat. Immunol. 2019, 20, 29–39. [Google Scholar] [CrossRef] [PubMed]
- Mouton, A.J.; DeLeon-Pennell, K.Y.; Rivera Gonzalez, O.J.; Flynn, E.R.; Freeman, T.C.; Saucerman, J.J.; Garrett, M.R.; Ma, Y.; Harmancey, R.; Lindsey, M.L. Mapping Macrophage Polarization over the Myocardial Infarction Time Continuum. Basic Res. Cardiol. 2018, 113, 26. [Google Scholar] [CrossRef] [PubMed]
- Howangyin, K.Y.; Zlatanova, I.; Pinto, C.; Ngkelo, A.; Cochain, C.; Rouanet, M.; Vilar, J.; Lemitre, M.; Stockmann, C.; Fleischmann, B.K.; et al. Myeloid-Epithelial-Reproductive Receptor Tyrosine Kinase and Milk Fat Globule Epidermal Growth Factor 8 Coordinately Improve Remodeling after Myocardial Infarction via Local Delivery of Vascular Endothelial Growth Factor. Circulation 2016, 133, 826–839. [Google Scholar] [CrossRef] [PubMed]
- Nahrendorf, M.; Swirski, F.K.; Aikawa, E.; Stangenberg, L.; Wurdinger, T.; Figueiredo, J.-L.; Libby, P.; Weissleder, R.; Pittet, M.J. The Healing Myocardium Sequentially Mobilizes Two Monocyte Subsets with Divergent and Complementary Functions. J. Exp. Med. 2007, 204, 3037–3047. [Google Scholar] [CrossRef]
- Sansonetti, M.; Al Soodi, B.; Thum, T.; Jung, M. Macrophage-Based Therapeutic Approaches for Cardiovascular Diseases. Basic Res. Cardiol. 2024, 119, 1–33. [Google Scholar] [CrossRef]
- Holt, M.; Lin, J.; Cicka, M.; Wong, A.; Epelman, S.; Lavine, K.J. Dissecting and Visualizing the Functional Diversity of Cardiac Macrophages. Circ. Res. 2024, 134, 1791–1807. [Google Scholar] [CrossRef]
- Lavine, K.J.; Pinto, A.R.; Epelman, S.; Kopecky, B.J.; Clemente-Casares, X.; Godwin, J.; Rosenthal, N.; Kovacic, J.C. The Macrophage in Cardiac Homeostasis and Disease: JACC Macrophage in CVD Series (Part 4). J. Am. Coll. Cardiol. 2018, 72, 2213–2230. [Google Scholar] [CrossRef]
- Chen, R.; Zhang, H.; Tang, B.; Luo, Y.; Yang, Y.; Zhong, X.; Chen, S.; Xu, X.; Huang, S.; Liu, C. Macrophages in Cardiovascular Diseases: Molecular Mechanisms and Therapeutic Targets. Signal Transduct. Target. Ther. 2024, 9, 130. [Google Scholar] [CrossRef]
- Nahrendorf, M.; Swirski, F.K. Abandoning M1/M2 for a Network Model of Macrophage Function. Circ. Res. 2016, 119, 414–417. [Google Scholar] [CrossRef]
- Zhou, Q.; Zhang, G.; Liu, Z.; Zhang, J.; Shi, R. Identification and Exploration of Novel M2 Macrophage-Related Biomarkers in the Development of Acute Myocardial Infarction. Front. Cardiovasc. Med. 2022, 9, 974353. [Google Scholar] [CrossRef] [PubMed]
- Wei, K.H.; Lin, I.T.; Chowdhury, K.; Lim, K.L.; Liu, K.T.; Ko, T.M.; Chang, Y.M.; Yang, K.C.; Lai, S.L. Ben Comparative Single-Cell Profiling Reveals Distinct Cardiac Resident Macrophages Essential for Zebrafish Heart Regeneration. eLife 2023, 12, e84679. [Google Scholar] [CrossRef] [PubMed]
- Bruton, F.A.; Kaveh, A.; Ross-Stewart, K.M.; Matrone, G.; Oremek, M.E.M.; Solomonidis, E.G.; Tucker, C.S.; Mullins, J.J.; Lucas, C.D.; Brittan, M.; et al. Macrophages Trigger Cardiomyocyte Proliferation by Increasing Epicardial Vegfaa Expression during Larval Zebrafish Heart Regeneration. Dev. Cell 2022, 57, 1512–1528.e5. [Google Scholar] [CrossRef] [PubMed]
- Chen, F.M.; Tse, J.K.Y.; Jin, L.; Chook, C.Y.B.; Leung, F.P.; Tse, G.; Woo, C.W.; Xu, A.; Chawla, A.; Tian, X.Y.; et al. Type 2 Innate Immunity Drives Distinct Neonatal Immune Profile Conducive for Heart Regeneration. Theranostics 2022, 12, 1161–1172. [Google Scholar] [CrossRef]
- Nguyen-Chi, M.; Laplace-Builhe, B.; Travnickova, J.; Luz-Crawford, P.; Tejedor, G.; Phan, Q.T.; Duroux-Richard, I.; Levraud, J.P.; Kissa, K.; Lutfalla, G.; et al. Identification of Polarized Macrophage Subsets in Zebrafish. eLife 2015, 4, e07288. [Google Scholar] [CrossRef]
- Zhang, S.; Weinberg, S.; DeBerge, M.; Gainullina, A.; Schipma, M.; Kinchen, J.M.; Ben-Sahra, I.; Gius, D.R.; Yvan-Charvet, L.; Chandel, N.S.; et al. Efferocytosis Fuels Requirements of Fatty Acid Oxidation and the Electron Transport Chain to Polarize Macrophages for Tissue Repair. Cell Metab. 2019, 29, 443–456.e5. [Google Scholar] [CrossRef]
- Cai, S.; Zhao, M.; Zhou, B.; Yoshii, A.; Bugg, D.; Villet, O.; Sahu, A.; Olson, G.S.; Davis, J.; Tian, R. Mitochondrial Dysfunction in Macrophages Promotes Inflammation and Suppresses Repair after Myocardial Infarction. J. Clin. Investig. 2023, 133, e159498. [Google Scholar] [CrossRef]
- Zhang, S.; Zhang, Y.; Duan, X.; Wang, B.; Zhan, Z. Targeting NPM1 Epigenetically Promotes Postinfarction Cardiac Repair by Reprogramming Reparative Macrophage Metabolism. Circulation 2024, 149, 1982–2001. [Google Scholar] [CrossRef]
- Zhang, M.; Wang, C.; Wang, R.; Xu, J.; Wang, Z.; Yan, J.; Cai, Y.; Li, L.; Huo, Y.; Dong, S. Adenosine kinase promotes post-infarction cardiac repair by epigenetically maintaining reparative macrophage phenotype. J. Mol. Cell Cardiol. 2023, 174, 88–100. [Google Scholar] [CrossRef]
- Yu, Q.; Ju, P.; Kou, W.; Zhai, M.; Zeng, Y.; Maimaitiaili, N.; Shi, Y.; Xu, X.; Zhao, Y.; Jian, W.; et al. Macrophage-Specific NLRC5 Protects from Cardiac Remodeling Through Interaction with HSPA8. JACC Basic Transl. Sci. 2023, 8, 479–496. [Google Scholar] [CrossRef]
- Falkenham, A.; De Antueno, R.; Rosin, N.; Betsch, D.; Lee, T.D.G.; Duncan, R.; Légaré, J.F. Nonclassical Resident Macrophages Are Important Determinants in the Development of Myocardial Fibrosis. Am. J. Pathol. 2015, 185, 927–942. [Google Scholar] [CrossRef] [PubMed]
- Westermann, D.; Lindner, D.; Kasner, M.; Zietsch, C.; Savvatis, K.; Escher, F.; Von Schlippenbach, J.; Skurk, C.; Steendijk, P.; Riad, A.; et al. Cardiac Inflammation Contributes to Changes in the Extracellular Matrix in Patients with Heart Failure and Normal Ejection Fraction. Circ. Hear. Fail. 2011, 4, 44–52. [Google Scholar] [CrossRef] [PubMed]
- Garlapati, V.; Molitor, M.; Michna, T.; Harms, G.S.; Finger, S.; Jung, R.; Lagrange, J.; Efentakis, P.; Wild, J.; Knorr, M.; et al. Targeting Myeloid Cell Coagulation Signaling Blocks MAP Kinase/TGF-Β1–Driven Fibrotic Remodeling in Ischemic Heart Failure. J. Clin. Investig. 2023, 133, e156436. [Google Scholar] [CrossRef] [PubMed]
- Cao, D.J.; Schiattarella, G.G.; Villalobos, E.; Jiang, N.; May, H.I.; Li, T.; Chen, Z.J.; Gillette, T.G.; Hill, J.A. Cytosolic DNA Sensing Promotes Macrophage Transformation and Governs Myocardial Ischemic Injury. Circulation 2018, 137, 2613–2634. [Google Scholar] [CrossRef] [PubMed]
- Hoeft, K.; Schaefer, G.J.L.; Kim, H.; Schumacher, D.; Bleckwehl, T.; Long, Q.; Klinkhammer, B.M.; Peisker, F.; Koch, L.; Nagai, J.; et al. Platelet-Instructed SPP1+ Macrophages Drive Myofibroblast Activation in Fibrosis in a CXCL4-Dependent Manner. Cell Rep. 2023, 42, 112131. [Google Scholar] [CrossRef]
- Zhang, N.; Ma, Q.; You, Y.; Xia, X.; Xie, C.; Huang, Y.; Wang, Z.; Ye, F.; Yu, Z.; Xie, X. CXCR4-Dependent Macrophage-to-Fibroblast Signaling Contributes to Cardiac Diastolic Dysfunction in Heart Failure with Preserved Ejection Fraction. Int. J. Biol. Sci. 2022, 18, 1271–1287. [Google Scholar] [CrossRef]
- Hulsmans, M.; Sager, H.B.; Roh, J.D.; Muñoz, M.V.; Houstis, N.E.; Iwamoto, Y.; Sun, Y.; Wilson, R.M.; Wojtkiewicz, G.; Tricot, B.; et al. Cardiac Macrophages Promote Diastolic Dysfunction. J. Exp. Med. 2018, 215, 423–440. [Google Scholar] [CrossRef]
- Psarras, S.; Mavroidis, M.; Sanoudou, D.; Davos, C.H.; Xanthou, G.; Varela, A.E.; Panoutsakopoulou, V.; Capetanaki, Y. Regulation of Adverse Remodelling by Osteopontin in a Genetic Heart Failure Model. Eur. Heart J. 2012, 33, 1954–1963. [Google Scholar] [CrossRef]
- Hulsmans, M.; Schloss, M.J.; Lee, I.H.; Bapat, A.; Iwamoto, Y.; Vinegoni, C.; Paccalet, A.; Yamazoe, M.; Grune, J.; Pabel, S.; et al. Recruited Macrophages Elicit Atrial Fibrillation. Science 2023, 381, 231–239. [Google Scholar] [CrossRef]
- Liu, H.; Huang, Y.; Zhao, Y.; Kang, G.J.; Feng, F.; Wang, X.; Liu, M.; Shi, G.; Revelo, X.; Bernlohr, D.; et al. Inflammatory Macrophage Interleukin-1β Mediates High-Fat Diet-Induced Heart Failure With Preserved Ejection Fraction. JACC Basic Transl. Sci. 2023, 8, 174–185. [Google Scholar] [CrossRef]
- Alexanian, M.; Padmanabhan, A.; Nishino, T.; Travers, J.; Ye, L.; Lee, C.; Sadagopan, N.; Huang, Y.; Pelonero, A.; Auclair, K.; et al. Chromatin remodelling drives immune cell-fibroblast communication in heart failure. Nature, 2024; Epub ahead of print. [Google Scholar] [CrossRef]
- Ma, F.; Li, Y.; Jia, L.; Han, Y.; Cheng, J.; Li, H.; Qi, Y.; Du, J. Macrophage-Stimulated Cardiac Fibroblast Production of IL-6 Is Essential for TGF β/Smad Activation and Cardiac Fibrosis Induced by Angiotensin II. PLoS ONE 2012, 7, e35144. [Google Scholar] [CrossRef] [PubMed]
- Ramanujam, D.; Schön, A.P.; Beck, C.; Vaccarello, P.; Felician, G.; Dueck, A.; Esfandyari, D.; Meister, G.; Meitinger, T.; Schulz, C.; et al. MiR-21-Dependent Macrophage-to-Fibroblast Signaling Determines the Cardiac Response to Pressure Overload. Circulation 2021, 143, 1513–1525. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.; Zhang, C.; Liu, L.; Xi, A.; Chen, B.; Li, Y.; Du, J. Macrophage-Derived Mir-155-Containing Exosomes Suppress Fibroblast Proliferation and Promote Fibroblast Inflammation during Cardiac Injury. Mol. Ther. 2017, 25, 192–204. [Google Scholar] [CrossRef] [PubMed]
- Abe, H.; Takeda, N.; Isagawa, T.; Semba, H.; Nishimura, S.; Morioka, M.S.; Nakagama, Y.; Sato, T.; Soma, K.; Koyama, K.; et al. Macrophage Hypoxia Signaling Regulates Cardiac Fibrosis via Oncostatin M. Nat. Commun. 2019, 10, 2824. [Google Scholar] [CrossRef]
- Apaydin, O.; Altaikyzy, A.; Filosa, A.; Sawamiphak, S. Alpha-1 Adrenergic Signaling Drives Cardiac Regeneration via Extracellular Matrix Remodeling Transcriptional Program in Zebrafish Macrophages. Dev. Cell 2023, 58, 2460–2476.e7. [Google Scholar] [CrossRef]
- Godwin, J.W.; Debuque, R.; Salimova, E.; Rosenthal, N.A. Heart Regeneration in the Salamander Relies on Macrophage-Mediated Control of Fibroblast Activation and the Extracellular Landscape. NPJ Regen. Med. 2017, 2, 22. [Google Scholar] [CrossRef]
- Zhao, J.; Chen, Y.; Chen, Q.; Hong, T.; Zhong, Z.; He, J.; Ni, C. Curcumin Ameliorates Cardiac Fibrosis by Regulating Macrophage-Fibroblast Crosstalk via IL18-P-SMAD2/3 Signaling Pathway Inhibition. Front. Pharmacol. 2022, 12, 784041. [Google Scholar] [CrossRef]
- Yue, Y.; Huang, S.; Wang, L.; Wu, Z.; Liang, M.; Li, H.; Lv, L.; Li, W.; Wu, Z. M2b Macrophages Regulate Cardiac Fibroblast Activation and Alleviate Cardiac Fibrosis after Reperfusion Injury. Circ. J. 2020, 84, 626–635. [Google Scholar] [CrossRef]
- Hamid, T.; Xu, Y.; Ismahil, M.A.; Rokosh, G.; Jinno, M.; Zhou, G.; Wang, Q.; Prabhu, S.D. Cardiac Mesenchymal Stem Cells Promote Fibrosis and Remodeling in Heart Failure: Role of PDGF Signaling. JACC Basic Transl. Sci. 2022, 7, 465–483. [Google Scholar] [CrossRef]
- Yue, Y.; Huang, S.; Li, H.; Li, W.; Hou, J.; Luo, L.; Liu, Q.; Wang, C.; Yang, S.; Lv, L.; et al. M2b Macrophages Protect against Myocardial Remodeling after Ischemia/Reperfusion Injury by Regulating Kinase Activation of Platelet-Derived Growth Factor Receptor of Cardiac Fibroblast. Ann. Transl. Med. 2020, 8, 1409. [Google Scholar] [CrossRef]
- Jung, M.; Ma, Y.; Iyer, R.P.; DeLeon-Pennell, K.Y.; Yabluchanskiy, A.; Garrett, M.R.; Lindsey, M.L. IL-10 Improves Cardiac Remodeling after Myocardial Infarction by Stimulating M2 Macrophage Polarization and Fibroblast Activation. Basic Res. Cardiol. 2017, 112, 33. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Zhang, Y.; Li, J.; Li, C.; Zhao, R.; Shen, C.; Liu, W.; Rong, J.; Wang, Z.; Ge, J.; et al. Hypoxia Induces M2 Macrophages to Express VSIG4 and Mediate Cardiac Fibrosis After Myocardial Infarction. Theranostics 2023, 13, 2192–2209. [Google Scholar] [CrossRef] [PubMed]
- Shiraishi, M.; Shintani, Y.; Shintani, Y.; Ishida, H.; Saba, R.; Yamaguchi, A.; Adachi, H.; Yashiro, K.; Suzuki, K. Alternatively Activated Macrophages Determine Repair of the Infarcted Adult Murine Heart. J. Clin. Investig. 2016, 126, 2151–2166. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Li, C.; Zhao, R.; Qiu, Z.; Shen, C.; Wang, Z.; Liu, W.; Zhang, W.; Ge, J.; Shi, B. CircUbe3a from M2 Macrophage-Derived Small Extracellular Vesicles Mediates Myocardial Fibrosis after Acute Myocardial Infarction. Theranostics 2021, 11, 6315–6333. [Google Scholar] [CrossRef]
- Kang, S.; Wang, B.; Xie, Y.; Cao, X.; Wang, M. The Role of M1 and M2 Myocardial Macrophages in Promoting Proliferation and Healing via Activating Epithelial-to-Mesenchymal Transition. Biomedicines 2023, 11, 2666. [Google Scholar] [CrossRef]
- Shiraishi, M.; Yamaguchi, A.; Suzuki, K. Nrg1/ErbB Signaling-Mediated Regulation of Fibrosis after Myocardial Infarction. FASEB J. 2022, 36, e22150. [Google Scholar] [CrossRef]
- Chen, H.; Chew, G.; Devapragash, N.; Loh, J.Z.; Huang, K.Y.; Guo, J.; Liu, S.; Tan, E.L.S.; Chen, S.; Tee, N.G.Z.; et al. The E3 Ubiquitin Ligase WWP2 Regulates Pro-Fibrogenic Monocyte Infiltration and Activity in Heart Fibrosis. Nat. Commun. 2022, 13, 7375. [Google Scholar] [CrossRef]
- Li, Z.; Liu, X.; Zhang, X.; Zhang, W.; Gong, M.; Qin, X.; Luo, J.; Fang, Y.; Liu, B.; Wei, Y. TRIM21 Aggravates Cardiac Injury after Myocardial Infarction by Promoting M1 Macrophage Polarization. Front. Immunol. 2022, 13, 1053171. [Google Scholar] [CrossRef]
- Anzai, A.; Choi, J.L.; He, S.; Fenn, A.M.; Nairz, M.; Rattik, S.; McAlpine, C.S.; Mindur, J.E.; Chan, C.T.; Iwamoto, Y.; et al. The Infarcted Myocardium Solicits GM-CSF for the Detrimental Oversupply of Inflammatory Leukocytes. J. Exp. Med. 2017, 214, 3293–3310. [Google Scholar] [CrossRef]
- Wu, L.; Ong, S.; Talor, M.V.; Barin, J.G.; Baldeviano, G.C.; Kass, D.A.; Bedja, D.; Zhang, H.; Sheikh, A.; Margolick, J.B.; et al. Cardiac Fibroblasts Mediate IL-17A–Driven Inflammatory Dilated Cardiomyopathy. J. Exp. Med. 2014, 211, 1449–1464. [Google Scholar] [CrossRef]
- Chen, G.; Bracamonte-Baran, W.; Diny, N.L.; Hou, X.; Talor, M.V.; Fu, K.; Liu, Y.; Davogustto, G.; Vasquez, H.; Taegtmeyer, H.; et al. Sca-1+ Cardiac Fibroblasts Promote Development of Heart Failure. Eur. J. Immunol. 2018, 48, 1522–1538. [Google Scholar] [CrossRef] [PubMed]
- Hou, X.; Chen, G.; Bracamonte-Baran, W.; Choi, H.S.; Diny, N.L.; Sung, J.; Hughes, D.; Won, T.; Wood, M.K.; Talor, M.V.; et al. The Cardiac Microenvironment Instructs Divergent Monocyte Fates and Functions in Myocarditis. Cell Rep. 2019, 28, 172–189.e7. [Google Scholar] [CrossRef] [PubMed]
- Pappritz, K.; Savvatis, K.; Koschel, A.; Miteva, K.; Tschöpe, C.; Van Linthout, S. Cardiac (Myo)Fibroblasts Modulate the Migration of Monocyte Subsets. Sci. Rep. 2018, 8, 5575. [Google Scholar] [CrossRef] [PubMed]
- Ismahil, M.A.; Hamid, T.; Bansal, S.S.; Patel, B.; Kingery, J.R.; Prabhu, S.D. Remodeling of the Mononuclear Phagocyte Network Underlies Chronic Inflammation and Disease Progression in Heart Failure Critical Importance of the Cardiosplenic Axis. Circ. Res. 2014, 114, 266–282. [Google Scholar] [CrossRef]
- Pappritz, K.; Puhl, S.L.; Matz, I.; Brauer, E.; Shia, Y.X.; El-Shafeey, M.; Koch, S.E.; Miteva, K.; Mucha, C.; Duda, G.N.; et al. Sex- and Age-Related Differences in the Inflammatory Properties of Cardiac Fibroblasts: Impact on the Cardiosplenic Axis and Cardiac Fibrosis. Front. Cardiovasc. Med. 2023, 10, 1117419. [Google Scholar] [CrossRef]
- Francisco, J.; Zhang, Y.; Nakada, Y.; Jeong, J.I.; Huang, C.Y.; Ivessa, A.; Oka, S.; Babu, G.J.; Del Re, D.P. AAV-Mediated YAP Expression in Cardiac Fibroblasts Promotes Inflammation and Increases Fibrosis. Sci. Rep. 2021, 11, 10553. [Google Scholar] [CrossRef]
- Xiao, Y.; Hill, M.C.; Li, L.; Deshmukh, V.; Martin, T.J.; Wang, J.; Martin, J.F. Hippo Pathway Deletion in Adult Resting Cardiac Fibroblasts Initiates a Cell State Transition with Spontaneous and Self-Sustaining Fibrosis. Genes Dev. 2019, 33, 1491–1505. [Google Scholar] [CrossRef]
- Lu, H.; Chen, R.; Barnie, P.A.; Tian, Y.; Zhang, S.; Xu, H.; Chakrabarti, S.; Su, Z. Fibroblast Transdifferentiation Promotes Conversion of M1 Macrophages and Replenishment of Cardiac Resident Macrophages Following Cardiac Injury in Mice. Eur. J. Immunol. 2020, 50, 795–808. [Google Scholar] [CrossRef]
- Chen, X.Q.; Zhang, D.L.; Zhang, M.J.; Guo, M.; Zhan, Y.Y.; Liu, F.; Jiang, W.F.; Zhou, L.; Zhao, L.; Wang, Q.X.; et al. TRIF Promotes Angiotensin II-Induced Cross-Talk between Fibroblasts and Macrophages in Atrial Fibrosis. Biochem. Biophys. Res. Commun. 2015, 464, 100–105. [Google Scholar] [CrossRef]
- Humeres, C.; Shinde, A.; Tuleta, I.; Hernandez, S.; Hanna, A.; Huang, S.; Venugopal, H.; Aguilan, J.; Conway, S.; Sidoli, S.; et al. Fibroblast Smad7 Induction Protects the Remodeling Pressure-Overloaded Heart. Circ. Res. 2024, 135, 453–469. [Google Scholar] [CrossRef]
- Vagnozzi, R.J.; Maillet, M.; Sargent, M.A.; Khalil, H.; Johansen, A.K.Z.; Schwanekamp, J.A.; York, A.J.; Huang, V.; Nahrendorf, M.; Sadayappan, S.; et al. An Acute Immune Response Underlies the Benefit of Cardiac Stem Cell Therapy. Nature 2020, 577, 405–409. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Yang, J.; Cai, Y.; Zhao, Y. Macrophages Suppress Cardiac Reprogramming of Fibroblasts In Vivo via IFN-Mediated Intercellular Self-Stimulating Circuit. Protein Cell 2024, pwae013. [Google Scholar] [CrossRef]
- Adler, M.; Mayo, A.; Zhou, X.; Franklin, R.A.; Meizlish, M.L.; Medzhitov, R.; Kallenberger, S.M.; Alon, U. Principles of Cell Circuits for Tissue Repair and Fibrosis. IScience 2020, 23, 100841. [Google Scholar] [CrossRef] [PubMed]
- Simon-Chica, A.; Wülfers, E.M.; Kohl, P. Nonmyocytes as Electrophysiological Contributors to Cardiac Excitation and Conduction. Am. J. Physiol.-Hear. Circ. Physiol. 2023, 325, H475–H491. [Google Scholar] [CrossRef] [PubMed]
- Pakshir, P.; Alizadehgiashi, M.; Wong, B.; Coelho, N.M.; Chen, X.; Gong, Z.; Shenoy, V.B.; McCulloch, C.; Hinz, B. Dynamic Fibroblast Contractions Attract Remote Macrophages in Fibrillar Collagen Matrix. Nat. Commun. 2019, 10, 1850. [Google Scholar] [CrossRef] [PubMed]
- Whitehead, A.J.; Engler, A.J. Regenerative Cross Talk between Cardiac Cells and Macrophages. Am. J. Physiol.-Hear. Circ. Physiol. 2021, 320, H2211–H2221. [Google Scholar] [CrossRef]
- Mallikarjun, V.; Yin, B.; Caggiano, L.; Blimbaum, S.; Pavelec, C.; Holmes, J.; Ewald, S. Automated Spatially Targeted Optical Micro Proteomics Identifies Fibroblast- and Macrophage-Specific Regulation of Myocardial Infarction Scar Maturation in Rats. J. Mol. Cell Cardiol. 2024, 186, 1–15. [Google Scholar] [CrossRef]
- Ke, D.; Cao, M.; Ni, J.; Yuan, Y.; Deng, J.; Chen, S.; Dai, X.; Zhou, H. Macrophage and Fibroblast Trajectory Inference and Crosstalk Analysis during Myocardial Infarction Using Integrated Single-Cell Transcriptomic Datasets. J. Transl. Med. 2024, 22, 560. [Google Scholar] [CrossRef]
- Amrute, J.M.; Lai, L.; Ma, P.; Koenig, A.L.; Kamimoto, K.; Bredemeyer, A.; Shankar, T.S.; Kuppe, C.; Kadyrov, F.F.; Schulte, L.J.; et al. Defining Cardiac Functional Recovery in End-Stage Heart Failure at Single-Cell Resolution. Nat. Cardiovasc. Res. 2023, 2, 399–416. [Google Scholar] [CrossRef]
- Wang, X.; Gaur, M.; Mounzih, K.; Rodriguez, H.; Qiu, H.; Chen, M.; Yan, L.; Cooper, B.; Narayan, S.; Derakhshandeh, R.; et al. Inhibition of Galectin-3 Post-Infarction Impedes Progressive Fibrosis by Regulating Inflammatory Profibrotic Cascades. Cardiovasc. Res. 2023, 119, 2536–2549. [Google Scholar] [CrossRef]
- Everett, B.M.; Cornel, J.H.; Lainscak, M.; Anker, S.D.; Abbate, A.; Thuren, T.; Libby, P.; Glynn, R.J.; Ridker, P.M. Anti-Inflammatory Therapy with Canakinumab for the Prevention of Hospitalization for Heart Failure. Circulation 2019, 139, 1289–1299. [Google Scholar] [CrossRef] [PubMed]
- Caño-Carrillo, S.; Lozano-Velasco, E.; Castillo-Casas, J.M.; Sánchez-Fernández, C.; Franco, D. The Role of NcRNAs in Cardiac Infarction and Regeneration. J. Cardiovasc. Dev. Dis. 2023, 10, 123. [Google Scholar] [CrossRef] [PubMed]
- Mouton, A.J.; Ma, Y.; Rivera Gonzalez, O.J.; Daseke, M.J.; Flynn, E.R.; Freeman, T.C.; Garrett, M.R.; DeLeon-Pennell, K.Y.; Lindsey, M.L. Fibroblast Polarization over the Myocardial Infarction Time Continuum Shifts Roles from Inflammation to Angiogenesis. Basic Res. Cardiol. 2019, 114, 6. [Google Scholar] [CrossRef] [PubMed]
- Sandstedt, J.; Sandstedt, M.; Lundqvist, A.; Jansson, M.; Sopasakis, V.R.; Jeppsson, A.; Hultén, L.M. Human Cardiac Fibroblasts Isolated from Patients with Severe Heart Failure Are Immune-Competent Cells Mediating an Inflammatory Response. Cytokine 2019, 113, 319–325. [Google Scholar] [CrossRef]
- Martin, T.G.; Leinwand, L.A. Hearts Apart: Sex Differences in Cardiac Remodeling in Health and Disease. J. Clin. Investig. 2024, 134, e180074. [Google Scholar] [CrossRef]
- Simões, F.C.; Cahill, T.J.; Kenyon, A.; Gavriouchkina, D.; Vieira, J.M.; Sun, X.; Pezzolla, D.; Ravaud, C.; Masmanian, E.; Weinberger, M.; et al. Macrophages Directly Contribute Collagen to Scar Formation during Zebrafish Heart Regeneration and Mouse Heart Repair. Nat. Commun. 2020, 11, 600. [Google Scholar] [CrossRef]
- McDonald, L.T.; Zile, M.R.; Zhang, Y.; Van Laer, A.O.; Baicu, C.F.; Stroud, R.E.; Jones, J.A.; LaRue, A.C.; Bradshaw, A.D.; Baicu, C.F.; et al. Increased Macrophage-Derived SPARC Precedes Collagen Deposition in Myocardial Fibrosis. Am. J. Physiol. Circ. Physiol. 2018, 315, H92–H100. [Google Scholar] [CrossRef]
- Hardy, S.A.; Liesinger, L.; Patrick, R.; Poettler, M.; Rech, L.; Gindlhuber, J.; Mabotuwana, N.S.; Ashour, D.E.; Stangl, V.; Bigland, M.; et al. Extracellular Matrix Protein-1 as a Mediator of Inflammation-Induced Fibrosis After Myocardial Infarction. JACC Basic Transl. Sci. 2023, 8, 1539–1554. [Google Scholar] [CrossRef]
- Mia, M.M.; Cibi, D.M.; Ghani, S.A.B.A.; Song, W.; Tee, N.; Ghosh, S.; Mao, J.; Olson, E.N.; Singh, M.K. YAP/TAZ Deficiency Reprograms Macrophage Phenotype and Improves Infarct Healing and Cardiac Function after Myocardial Infarction. PLoS Biol. 2020, 18, e3000941. [Google Scholar] [CrossRef]
- Francisco, J.; Guan, J.; Zhang, Y.; Nakada, Y.; Mareedu, S.; Sung, E.; Hu, C.; Oka, S.; Zhai, P.; Sadoshima, J.; et al. Suppression of Myeloid YAP Antagonizes Adverse Cardiac Remodeling during Pressure Overload Stress. J. Mol. Cell Cardiol. 2023, 181, 1–14. [Google Scholar] [CrossRef]
- Zhuang, T.; Chen, M.H.; Wu, R.X.; Wang, J.; Hu, X.D.; Meng, T.; Wu, A.H.; Li, Y.; Yang, Y.F.; Lei, Y.; et al. ALKBH5-Mediated M6A Modification of IL-11 Drives Macrophage-to-Myofibroblast Transition and Pathological Cardiac Fibrosis in Mice. Nat. Commun. 2024, 15, 1995. [Google Scholar] [CrossRef] [PubMed]
- Haider, N.; Boscá, L.; Zandbergen, H.R.; Kovacic, J.C.; Narula, N.; González-Ramos, S.; Fernandez-Velasco, M.; Agrawal, S.; Paz-García, M.; Gupta, S.; et al. Transition of Macrophages to Fibroblast-Like Cells in Healing Myocardial Infarction. J. Am. Coll. Cardiol. 2019, 74, 3124–3135. [Google Scholar] [CrossRef] [PubMed]
- Chen, B.; Li, R.; Kubota, A.; Alex, L.; Frangogiannis, N.G. Identification of Macrophages in Normal and Injured Mouse Tissues Using Reporter Lines and Antibodies. Sci. Rep. 2022, 12, 4542. [Google Scholar] [CrossRef] [PubMed]
- Psarras, S.; Beis, D.; Nikouli, S.; Tsikitis, M.; Capetanaki, Y. Three in a Box: Understanding Cardiomyocyte, Fibroblast, and Innate Immune Cell Interactions to Orchestrate Cardiac Repair Processes. Front. Cardiovasc. Med. 2019, 6, 32. [Google Scholar] [CrossRef]
- Hoque, M.M.; Gbadegoye, J.O.; Hassan, F.O.; Raafat, A.; Lebeche, D. Cardiac Fibrogenesis: An Immuno-Metabolic Perspective. Front. Physiol. 2024, 15, 1336551. [Google Scholar] [CrossRef]
- Martins-Marques, T.; Hausenloy, D.J.; Sluijter, J.P.G.; Leybaert, L.; Girao, H. Intercellular Communication in the Heart: Therapeutic Opportunities for Cardiac Ischemia. Trends Mol. Med. 2020, 27, 248–262. [Google Scholar] [CrossRef]
- Jian, Y.; Zhou, X.; Shan, W.; Chen, C.; Ge, W.; Cui, J.; Yi, W.; Sun, Y. Crosstalk between Macrophages and Cardiac Cells after Myocardial Infarction. Cell Commun. Signal. 2023, 21, 109. [Google Scholar] [CrossRef]
- Chalise, U.; Becirovic-Agic, M.; Lindsey, M.L. Neutrophil Crosstalk during Cardiac Wound Healing after Myocardial Infarction. Curr. Opin. Physiol. 2021, 24, 100485. [Google Scholar] [CrossRef]
- Hall, C.; Gehmlich, K.; Denning, C.; Pavlovic, D. Complex Relationship between Cardiac Fibroblasts and Cardiomyocytes in Health and Disease. J. Am. Heart Assoc. 2021, 10, e019338. [Google Scholar] [CrossRef]
- Psarras, S.; Xanthou, G. Fibroblast and Immune Cell Cross Talk in Cardiac Repair. In Immune Cells, Inflammation and Heart Diseases; Bansal, S., Ed.; CRC Press: Boca Raton, FL, USA, 2021; pp. 83–107. [Google Scholar]
- Sugita, J.; Fujiu, K.; Nakayama, Y.; Matsubara, T.; Matsuda, J.; Oshima, T.; Liu, Y.; Maru, Y.; Hasumi, E.; Kojima, T.; et al. Cardiac Macrophages Prevent Sudden Death during Heart Stress. Nat. Commun. 2021, 12, 1910. [Google Scholar] [CrossRef]
- Ma, Y.; Yabluchanskiy, A.; Iyer, R.P.; Cannon, P.L.; Flynn, E.R.; Jung, M.; Henry, J.; Cates, C.A.; Deleon-Pennell, K.Y.; Lindsey, M.L. Temporal Neutrophil Polarization Following Myocardial Infarction. Cariovasc. Res. 2016, 110, 51–61. [Google Scholar] [CrossRef] [PubMed]
- Horckmans, M.; Ring, L.; Duchene, J.; Santovito, D.; Schloss, M.J.; Drechsler, M.; Weber, C.; Soehnlein, O.; Steffens, S. Neutrophils Orchestrate Post-Myocardial Infarction Healing by Polarizing Macrophages towards a Reparative Phenotype. Eur. Heart J. 2017, 38, 187–197. [Google Scholar] [CrossRef] [PubMed]
- Daseke, M.J.; Valerio, F.M.; Kalusche, W.J.; Ma, Y.; DeLeon-Pennell, K.Y.; Lindsey, M.L. Neutrophil Proteome Shifts over the Myocardial Infarction Time Continuum. Basic Res. Cardiol. 2019, 114, 37. [Google Scholar] [CrossRef]
- Antipenko, S.; Mayfield, N.; Jinno, M.; Gunzer, M.; Ismahil, M.A.; Hamid, T.; Prabhu, S.D.; Rokosh, G. Neutrophils Are Indispensable for Adverse Cardiac Remodeling in Heart Failure. J. Mol. Cell. Cardiol. 2024, 189, 1–11. [Google Scholar] [CrossRef]
- Buechler, M.B.; Fu, W.; Turley, S.J. Fibroblast-Macrophage Reciprocal Interactions in Health, Fibrosis, and Cancer. Immunity 2021, 54, 903–915. [Google Scholar] [CrossRef]
- Yang, B.; Qiao, Y.; Yan, D.; Meng, Q. Targeting Interactions between Fibroblasts and Macrophages to Treat Cardiac Fibrosis. Cells 2024, 13, 764. [Google Scholar] [CrossRef]
- Schimmel, K.; Jung, M.; Foinquinos, A.; José, G.S.; Beaumont, J.; Bock, K.; Grote-Levi, L.; Xiao, K.; Bär, C.; Pfanne, A.; et al. Natural Compound Library Screening Identifies New Molecules for the Treatment of Cardiac Fibrosis and Diastolic Dysfunction. Circulation 2020, 141, 751–767. [Google Scholar] [CrossRef]
- Jun, J.I.; Lau, L.F. Resolution of Organ Fibrosis. J. Clin. Investig. 2018, 128, 97–107. [Google Scholar] [CrossRef]
- Gomes, R.N.; Manuel, F.; Nascimento, D.S. The Bright Side of Fibroblasts: Molecular Signature and Regenerative Cues in Major Organs. NPJ Regen. Med. 2021, 6, 43. [Google Scholar] [CrossRef]
- Morfino, P.; Aimo, A.; Castiglione, V.; Gálvez-Montón, C.; Emdin, M.; Bayes-Genis, A. Treatment of Cardiac Fibrosis: From Neuro-Hormonal Inhibitors to CAR-T Cell Therapy. Heart Fail. Rev. 2023, 28, 555–569. [Google Scholar] [CrossRef]
- Fuster-Martínez, I.; Calatayud, S. The Currrent Landscape of Antifibrotic Therapy across Different Organs: A Systematic Approach. Pharmacol. Res. 2024, 205, 107245. [Google Scholar] [CrossRef] [PubMed]
- Kologrivova, I.; Shtatolkina, M.; Suslova, T.; Ryabov, V. Cells of the Immune System in Cardiac Remodeling: Main Players in Resolution of Inflammation and Repair After Myocardial Infarction. Front. Immunol. 2021, 12, 664457. [Google Scholar] [CrossRef] [PubMed]
- Hashimoto, H.; Olson, E.N.; Bassel-Duby, R. Therapeutic Approaches for Cardiac Regeneration and Repair. Nat. Rev. Cardiol. 2018, 15, 585–600. [Google Scholar] [CrossRef] [PubMed]
- Shrestha, S.; McFadden, M.; Gramolini, A.; Santerre, J. Proteome Analysis of Secretions from Human Monocyte-Derived Macrophages Post-Exposure to Biomaterials and the Effect of Secretions on Cardiac Fibroblast Fibrotic Character. Acta Biomater. 2020, 111, 80–90. [Google Scholar] [CrossRef]
- Anker, S.D.; Butler, J.; Filippatos, G.; Ferreira, J.P.; Bocchi, E.; Böhm, M.; Brunner–La Rocca, H.-P.; Choi, D.-J.; Chopra, V.; Chuquiure-Valenzuela, E.; et al. Empagliflozin in Heart Failure with a Preserved Ejection Fraction. N. Engl. J. Med. 2021, 385, 1451–1461. [Google Scholar] [CrossRef]
- Bosch, A.; Poglitsch, M.; Kannenkeril, D.; Kolwelter, J.; Striepe, K.; Ott, C.; Rauh, M.; Schiffer, M.; Achenbach, S.; Schmieder, R.E. Angiotensin Pathways under Therapy with Empagliflozin in Patients with Chronic Heart Failure. ESC Hear. Fail. 2023, 10, 1635–1642. [Google Scholar] [CrossRef]
- Elsayed, M.; Moustafa, Y.M.; Mehanna, E.T.; Elrayess, R.A.; El-Sayed, N.M.; Hazem, R.M. Empagliflozin protects against isoprenaline-induced fibrosis in rat heart through modulation of TGF-β/SMAD pathway. Life Sci. 2024, 337, 122354. [Google Scholar] [CrossRef]
- Wu, Q.; Yao, Q.; Hu, T.; Yu, J.; Jiang, K.; Wan, Y.; Tang, Q. Dapagliflozin Protects against Chronic Heart Failure in Mice by Inhibiting Macrophage-Mediated Inflammation, Independent of SGLT2. Cell Rep. Med. 2023, 4, 101334. [Google Scholar] [CrossRef]
- Baehr, A.; Umansky, K.B.; Bassat, E.; Jurisch, V.; Klett, K.; Bozoglu, T.; Hornaschewitz, N.; Solyanik, O.; Kain, D.; Ferraro, B.; et al. Agrin Promotes Coordinated Therapeutic Processes Leading to Improved Cardiac Repair in Pigs. Circulation 2020, 142, 868–881. [Google Scholar] [CrossRef]
- Wang, Z.; Long, D.W.; Huang, Y.; Chen, W.C.W.; Kim, K.; Wang, Y. Decellularized Neonatal Cardiac Extracellular Matrix Prevents Widespread Ventricular Remodeling in Adult Mammals after Myocardial Infarction. Acta Biomater. 2019, 87, 140–151. [Google Scholar] [CrossRef]
- Callaghan, N.I.; Hadipour-Lakmehsari, S.; Lee, S.H.; Gramolini, A.O.; Simmons, C.A. Modeling Cardiac Complexity: Advancements in Myocardial Models and Analytical Techniques for Physiological Investigation and Therapeutic Development in Vitro. APL Bioeng. 2019, 3, 011501. [Google Scholar] [CrossRef] [PubMed]
- Reyat, J.S.; di Maio, A.; Grygielska, B.; Pike, J.; Kemble, S.; Rodriguez-Romero, A.; Simoglou Karali, C.; Croft, A.P.; Psaila, B.; Simões, F.; et al. Modelling the Pathology and Treatment of Cardiac Fibrosis in Vascularised Atrial and Ventricular Cardiac Microtissues. Front. Cardiovasc. Med. 2023, 10, 1156759. [Google Scholar] [CrossRef] [PubMed]
- Perbellini, F.; Watson, S.A.; Scigliano, M.; Alayoubi, S.; Tkach, S.; Bardi, I.; Quaife, N.; Kane, C.; Dufton, N.P.; Simon, A.; et al. Investigation of Cardiac Fibroblasts Using Myocardial Slices. Cardiovasc. Res. 2018, 114, 77–89. [Google Scholar] [CrossRef] [PubMed]
- Perbellini, F.; Thum, T. Living Myocardial Slices: A Novel Multicellular Model for Cardiac Translational Research. Eur. Heart J. 2019, 49, 2405–2408. [Google Scholar] [CrossRef] [PubMed]
- Maselli, D.; Matos, R.S.; Johnson, R.D.; Chiappini, C.; Camelliti, P.; Campagnolo, P. Epicardial Slices: An Innovative 3D Organotypic Model to Study Epicardial Cell Physiology and Activation. NPJ Regen. Med. 2022, 7, 7. [Google Scholar] [CrossRef]
- Richards, D.J.; Coyle, R.C.; Tan, Y.; Jia, J.; Wong, K.; Toomer, K.; Menick, D.R.; Mei, Y. Inspiration from Heart Development: Biomimetic Development of Functional Human Cardiac Organoids. Biomaterials 2017, 142, 112–123. [Google Scholar] [CrossRef]
- Thomas, D.; Choi, S.; Alamana, C.; Parker, K.K.; Wu, J.C. Cellular and Engineered Organoids for Cardiovascular Models. Circ. Res. 2022, 130, 1780–1802. [Google Scholar] [CrossRef]
- Ellis, B.W.; Acun, A.; Isik Can, U.; Zorlutuna, P. Human IPSC-Derived Myocardium-on-Chip with Capillary-like Flow for Personalized Medicine. Biomicrofluidics 2017, 11, 024105. [Google Scholar] [CrossRef]
- Zuppinger, C. 3D Cardiac Cell Culture: A Critical Review of Current Technologies and Applications. Front. Cardiovasc. Med. 2019, 6, 87. [Google Scholar] [CrossRef]
Species | Main Protocol (Number of Cells/Nuclei) | Fb Subtypes | Fb Common Signature | Main Subpopulations and Signatures | Characteristics (Pathway Enrichment) | Ref. | |
---|---|---|---|---|---|---|---|
Human | snRNASeq (363,213) | 7 populations | DCN, GSN, PDGFRA | FB1 | SCN7A, BMPER, ACSM1 | Ventricular specificity. Canonical gene expression | [1] |
FB2 | CFH, ID4, KCNT2 | Atrial specificity. Canonical gene expression | |||||
FB3 | PTX3, OSMR, IL6ST | Pronounced cytokine receptor expression | |||||
FB4 | POSTN, TNC, FAP | Response to TGFβ | |||||
FB5 | FBLN2, PCOLCE2, LINC01133 | ECM regulation | |||||
FB6 | CD36, EGFLAM, FTL1 | ||||||
snRNASeq (287,269) | 3 clusters (FBI-III). 4 sub-clusters (FB-S1 to 4). | DCN, ELN | FB-S2 | NPPA | Atrial cardiomyocyte marker | [2] | |
FB-S3 | NOX4, IGF-1 | ECM regulation, fibrosis | |||||
FB-S4 | ADAMTS4, VCAN, AXL | Profibrotic markers | |||||
scRNASeq (7495) | 3 clusters | DCN, C7, LUM, FBLN1, COL1A2 | FB1 | ECM regulation, proliferation, atrial interactions | [8] | ||
FB2 | Striated muscle tissue development | ||||||
snRNASeq (704,296) ATAC-Seq (144,762) | 6 clusters | FBN1, SCARA5, ADAMTS2, COL6A3, PDGFRA | FB4 | TNC, COL1A2, COL3A1, COL8A1, FN1 | Activated fibrotic sub-cluster | [4] | |
snRNASeq | 6 clusters | CD10+ | NEPRILYSIN | Basal fibroblasts | [12] | ||
Basal | Basal fibroblasts | ||||||
Activated | POSTN, COLIA2, COL3A1, MEOX1, AEBP1, | Fibrosis | |||||
MSC-like | SHISA6, LINC01133 | Pluripotent pathway expression | |||||
Adventitial | NR4A, PPARG | Angiogenesis | |||||
Mechanical | Muscle contraction gene expression | ||||||
Human (MI) | snRNASeq (191,795); ATAC-RNASeq | 4 clusters | Fib1 | SCARA5, PCOLCE2 | [7] | ||
Fib2 | PSOTN, TNC, COL1A1, FN1, RUNX1 | Fibrotic remodeling; myofibroblast identity | |||||
Fib3 | C7, ABCA9 | ||||||
Fib4 | COL15A1, SCN7A | ||||||
Human (DCM, HCM) | snRNASeq (592,689) | 6 clusters | Activated Fbs | POSTN, NOX4, FAP, COL1A1, COL1A2, THBS4 | Profibrotic | [6] | |
Human (HF) | snRNASeq (220,752) and scRNASeq (49,723) | 9 populations | DCN, LUM, CCDC80, FN1, NEGR1, ABCA8, CDH19 (GPX3, PID1, TGFBR3, ACSM3, APOD: donor hearts) | Fb1 | Major basal subpopulation | [9] | |
Fb2 | Major basal subpopulation | ||||||
Fb3 | GPX3 | ||||||
Fb4 | PLA2G2A | ||||||
Fb5 | ELN | ||||||
Fb6 | TNC | ||||||
Fb7 | CCL2 | ||||||
Fb8 | THBS4, POSTN | Activated fibroblasts | |||||
Fb9 | SERPINE1 | ||||||
Mouse (MI) | scRNASeq (13,331 in healthy; 16,787 GFP+ cells in MI) | 5 major clusters; 11 sub-clusters | Col1a1, Pdgfra | F-Act | Activated fibroblasts | [3] | |
F-SH | Ly6a (Sca1) high | ||||||
F-SL | Ly6a low | ||||||
MYO | Postn and/or Acta2 | Myofibroblasts | |||||
F-WNTX | Wnt signaling | ||||||
Mouse (MI) | scRNASeq (36,847) | 3 populations (steady state) | Wt1 | Type I | Col1a1, Gsn, Dcn | [10] | |
Type II | Wif1, Dkk3 | ||||||
Type III | Mt2, Timp1 | ||||||
MyoFb | Cthrc1, Acta2, Postn | Myofibroblasts |
Condition | Effector Cell | Target Cell | Mediators-Pathways Involved | Outcome | Ref. |
---|---|---|---|---|---|
MI; Ndufs4−/− | Mac | cFb | Mitochondrial dysfunction | Impaired Fb proliferation, MyoFb formation, and repair | [108] |
TAC; Nlrc5−/− | Mac | cFb | Hsp8, IL6 | Increased MyoFb formation and fibrosis | [111] |
AngII, HFpEF | CD11b+ Mac | cFb | TGFβ, MMP-1 | Increased collagen production, MyoFb formation, and fibrosis | [112,113] |
MI, HF | CCR2+ Mac | cFb | Coagulation, TGFβ | Fibrosis | [114] |
TAC | Mac | cFb | TGFβ, IL10 | Fibrosis | [88] |
MI (early) | iMac | cFb | cGAS/STING, Fn1 | MyoFb formation and repair | [70] |
MI | Spp1+ Fn1+ Arg1+ Mac | cFb | CXCL4 | Fb activation and fibrosis | [115,116] |
HFpEF (SAUNA) | Mac | cFb | CXCL3 | MyoFb formation and fibrosis | [117] |
Stress; Aging | Mac | cFb | OPN, IL-10 | Fibrosis; diastolic dysfunction | [118] |
des−/− HF | Mac | cFb | OPN, Gal3 | Reduced repair activities; Fibrosis; HF | [22,119] |
AF (HOMER) | Spp1+ CCR2+ Mac | aFb | TGFβ | Atrial fibrosis and fibrillation | [120] |
HFpEF (HFD), TAC | CD86+ CCR2+ Cx3Cr1+ Mac | iFb | IL1β, BRD4, MEOX1, TGFβ | MyoFb formation and fibrosis | [121,122] |
AngII | Mac | cFb | IL6 | Fibrosis | [123] |
TAC | Mac | cFb | miR-21 | MyoFb formation and fibrosis | [124] |
MI | Mac | cFb | miR-155, Sos1, | Inhibition of Fb proliferation; cardiac rupture | [125] |
MI | Mac | cFb | miR-155, Socs1 | Inflammation; cardiac rupture | [125] |
TAC (early) | LY6Chi Mac | cFb | OSM | Inhibition of MyoFb formation; reduced fibrosis | [126] |
MI | Bhlhe4+ Mac | cFb | Progranulin, TNFR1 | Inhibition of MyoFb formation; repair | [69] |
Pharmacological injury (zebrafish larvae) | tnfa-neg Mac | cFb | adra1, midkine, collagen 12 | Regeneration | [127] |
cryoinjury (salamander) | Mac | cFb | Lysyl oxidase | Moderate collagen cross linking; repair/regeneration | [128] |
MI | Mac | cFb | IL18 | Fibrosis | [129] |
MI; I/R | M2b Mac | cFb, MSCs | PDGF | Reduced PDGF signaling; repair | [130,131,132] |
MI (with IL-10 infusion) | M2 Mac | cFb | IL10 | Fb proliferation; reduced collagen I/III ratio | [133] |
MI | M2 Mac | cFb | HIF1α, VSIG4, IL10, TGFβ | Fb proliferation, collagen expression, MyoFb formation; repair | [134] |
ΜΙ | M2 Mac | cFb | Trib; IL4, OPN, IL10 | MyoFb formation; repair | [135] |
MI, IL4 | M2 Mac | cFb | CircUbe3a | Fb proliferation, collagen expression; fibrosis; HF | [136] |
Ischemia (H2O2) | M2 Mac | cFb | - | Fb apoptosis | [137] |
Ischemia (H2O2) | M1 Mac | cFb | - | Fb protection | [137] |
MI | CD206+ Mac | cFb | Neuregulin, ERK/Akt | Fb protection from apoptosis and senescence; fibrosis | [138] |
AngII | M1 Ly6hi Mac | cFb | WWP2, CCL5 | MyoFb formation; fibrosis | [139] |
MI | Mac | cFb | TRIM21, Pi3K/Akt | Inhibition of Fb migration; adverse remodeling | [140] |
MI | cFb | Mo | GM-CSF, IL6, IL1β, MMP-9 | Mo and PMN recruitment; cardiac rupture | [141] |
ΕAΜ, MI | Sca1+ cFb | Mo | IL17A | Ly6hi Mo recruitment; cardiac rupture; HF | [142,143] |
EAM | cFb | Mo | IL17A, | Inhibition of efferocytosis; inhibition of reparatory Mac formation; inflammation | [144] |
TGFβ/IFNγ stimulation | cFb | Mo | CCL2, CCL7, CX3CL1 | Ly6hi Mo recruitment; inflammation | [145,146,147] |
MI | cFb | Mac | YAP | Inflammatory Mac infiltration | [148] |
MI | MyoFb | Mac | Hippo | Regulation of IFNIC Mac infiltration; repair | [149] |
AngII, viral myocarditis | MyoFb | Mac | leptin | Mac M2 polarization; resolution of inflammation | [150] |
AngII | aFb | Mac | TRIF | Atrial fibrosis and fibrillation | [151] |
TAC | MyoFb | Mac | Smad7, MMP2 | Detainment of Mac expansion, cardiac fibrosis, and HF | [152] |
I/R, zymosan | CCR2+ Mac | cFb | Lysyl oxidase | Formation of MyoFb; repair | [153] |
I/R, zymosan | CXC3R1+ Mac | cFb | CTGF | Activation of Fb; repair | [153] |
MI | Mac | Fb | IFNβ, GATA4, STAT1 | Inhibition of Fb to cardiomyocyte trans-differentiation; repair failure | [154] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Psarras, S. The Macrophage–Fibroblast Dipole in the Context of Cardiac Repair and Fibrosis. Biomolecules 2024, 14, 1403. https://doi.org/10.3390/biom14111403
Psarras S. The Macrophage–Fibroblast Dipole in the Context of Cardiac Repair and Fibrosis. Biomolecules. 2024; 14(11):1403. https://doi.org/10.3390/biom14111403
Chicago/Turabian StylePsarras, Stelios. 2024. "The Macrophage–Fibroblast Dipole in the Context of Cardiac Repair and Fibrosis" Biomolecules 14, no. 11: 1403. https://doi.org/10.3390/biom14111403
APA StylePsarras, S. (2024). The Macrophage–Fibroblast Dipole in the Context of Cardiac Repair and Fibrosis. Biomolecules, 14(11), 1403. https://doi.org/10.3390/biom14111403