Loss of Sterol Biosynthesis in Economically Important Plant Pests and Pathogens: A Review of a Potential Target for Pest Control
Abstract
:1. Introduction
2. Sterol Biosynthesis
3. Agricultural Pests and Pathogens with Impaired Sterol Biosynthesis
Loss of Sterol Biosynthesis
4. Exploiting the Loss of Sterol Biosynthesis in Plant Pests and Pathogens
4.1. Insects
4.2. Nematodes
4.3. Oomycetes
5. Pathogen Life Style and Gene Loss
6. Role of Plant-Pathogen Interactions in Sterol Acquisition
7. Practical Implications of a Potential Target for Pest Control
7.1. Chemical Compounds as Suppressors of Sterol Biosynthesis
7.2. Biocontrol Agents as Suppressors of the Sterol Biosynthesis
7.3. Feeding with Altered or Rationally Designed “Plant” Sterols
7.4. Blocking Sterol Uptake
7.5. RNA Interference Targeting Genes Involved in Sterol Metabolism and Uptake
8. Perspective and Future Directions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Woodward, R.B.; Bloch, K. The cyclization of squalene in cholesterol synthesis. J. Am. Chem. Soc. 1953, 75, 2023–2024. [Google Scholar] [CrossRef]
- Summons, R.E.; Bradley, A.S.; Jahnke, L.L.; Waldbauer, J.R. Steroids, triterpenoids and molecular oxygen. Philos. Trans. R. Soc. B Biol. Sci. 2006, 361, 951–968. [Google Scholar] [CrossRef] [PubMed]
- Nes, W.D. Biosynthesis of cholesterol and other sterols. Chem. Rev. 2011, 111, 6423–6451. [Google Scholar] [CrossRef] [PubMed]
- Kraus, J.L. Cholesterol and Sitosterol, two members of the steroid family that differ in structure by a single ethyl group yet maintain the right balance between plant and animal kingdoms. Russ. J. Bioorg. Chem. 2020, 46, 869–872. [Google Scholar] [CrossRef]
- Behmer, S.T.; Nes, W.D. Insect sterol nutrition and physiology: A global overview. Adv. Insect. Physiol. 2003, 31, 1–72. [Google Scholar] [CrossRef]
- Hannich, J.T.; Umebayashi, K.; Riezman, H. Distribution and functions of sterols and sphingolipids. Cold Spring Harb. Perspect. Biol. 2011, 3, a004762. [Google Scholar] [CrossRef]
- Griebel, T.; Zeier, J. A role for β-sitosterol to stigmasterol conversion in plant–pathogen interactions. Plant J. 2010, 63, 254–268. [Google Scholar] [CrossRef]
- Rogowska, A.; Szakiel, A. The role of sterols in plant response to abiotic stress. Phytochem. Rev. 2020, 19, 1525–1538. [Google Scholar] [CrossRef]
- Cabianca, A.; Müller, L.; Pawlowski, K.; Dahlin, P. Changes in the plant β-sitosterol/stigmasterol ratio caused by the plant parasitic nematode Meloidogyne incognita. Plants 2021, 10, 292. [Google Scholar] [CrossRef]
- Desmond, E.; Gribaldo, S. Phylogenomics of sterol synthesis: Insights into the origin, evolution, and diversity of a key eukaryotic feature. Genome Biol. Evol. 2009, 1, 364–381. [Google Scholar] [CrossRef]
- Piironen, V.; Lindsay, D.G.; Miettinen, T.A.; Toivo, J.; Lampi, A.M. Plant sterols: Biosynthesis, biological function and their importance to human nutrition. J. Sci. Food Agric. 2000, 80, 939–966. [Google Scholar] [CrossRef]
- UK, G.P.M.; Ireland, K.F.T. IUPAC-IUBMB joint commission on biochemical nomenclature (JCBN) and nomenclature committee of IUBMB (NC-IUBMB) Newsletter 1996. Eur. J. Biochem. 1992, 204, 1–3. [Google Scholar] [CrossRef]
- Liebisch, G.; Fahy, E.; Aoki, J.; Dennis, E.A.; Durand, T.; Ejsing, C.S.; Fedorova, M.; Feussner, I.; Griffiths, W.J.; Köfeler, H.; et al. Update on LIPID MAPS classification, nomenclature, and shorthand notation for MS-derived lipid structures. J. Lipid Res. 2020, 61, 1539–1555. [Google Scholar] [CrossRef] [PubMed]
- Moreau, R.A.; Nyström, L.; Whitaker, B.D.; Winkler-Moser, J.K.; Baer, D.J.; Gebauer, S.K.; Hicks, K.B. Phytosterols and their derivatives: Structural diversity, distribution, metabolism, analysis, and health-promoting uses. Prog. Lipid Res. 2018, 70, 35–61. [Google Scholar] [CrossRef] [PubMed]
- Galea, A.M.; Brown, A.J. Special relationship between sterols and oxygen: Were sterols an adaptation to aerobic life? Free Radic. Biol. Med. 2009, 47, 880–889. [Google Scholar] [CrossRef]
- Sonawane, P.D.; Pollier, J.; Panda, S.; Szymanski, J.; Massalha, H.; Yona, M.; Unger, T.; Malitsky, S.; Arendt, P.; Pauwels, L.; et al. Plant cholesterol biosynthetic pathway overlaps with phytosterol metabolism. Nat. Plants 2016, 3, 1–13. [Google Scholar] [CrossRef]
- Hobson, R.P. On a fat-soluble growth factor required by blow-fly larvae: Distribution and properties. Biochem. J. 1935, 29, 1292–1296. [Google Scholar] [CrossRef]
- Gaulin, E.; Bottin, A.; Dumas, B. Sterol biosynthesis in oomycete pathogens. Plant Signal. Behav. 2010, 5, 258–260. [Google Scholar] [CrossRef]
- Dahlin, P.; Srivastava, V.; Ekengren, S.; McKee, L.S.; Bulone, V. Comparative analysis of sterol acquisition in the oomycetes Saprolegnia parasitica and Phytophthora infestans. PLoS ONE 2017, 12, e0170873. [Google Scholar] [CrossRef]
- Wang, W.; Liu, X.; Govers, F. The mysterious route of sterols in oomycetes. PLoS Pathog. 2021, 17, e1009591. [Google Scholar] [CrossRef]
- Chitwood, D.J. Biochemistry and function of nematode steroids. Crit. Rev. Biochem. Mol. Biol. 1999, 34, 273–284. [Google Scholar] [CrossRef] [PubMed]
- Shamsuzzama; Lebedev, R.; Trabelcy, B.; Goncalves, I.L.; Gerchman, Y.; Sapir, A. Metabolic reconfiguration in C. elegans suggests a pathway for widespread sterol auxotrophy in the animal kingdom. Curr. Biol. 2020, 30, 3031–3038. [Google Scholar] [CrossRef] [PubMed]
- Clayton, R.B. The utilization of sterols by insects. J. Lipid Res. 1964, 5, 3–19. [Google Scholar] [CrossRef] [PubMed]
- Kamoun, S.; Furzer, O.; Jones, J.D.G.; Judelson, H.S.; Ali, G.S.; Dalio, R.J.D.; Roy, S.G.; Schena, L.; Zambounis, A.; Panabières, F.; et al. The Top 10 oomycete pathogens in molecular plant pathology. Mol. Plant Pathol. 2015, 16, 413–434. [Google Scholar] [CrossRef]
- Fones, H.N.; Bebber, D.P.; Chaloner, T.M.; Kay, W.T.; Steinberg, G.; Gurr, S.J. Threats to global food security from emerging fungal and oomycete crop pathogens. Nat. Food 2020, 1, 332–342. [Google Scholar] [CrossRef] [PubMed]
- Jones, J.T.; Haegeman, A.; Danchin, E.G.J.; Gaur, H.S.; Helder, J.; Jones, M.G.K.; Kikuchi, T.; Manzanilla-López, R.; Palomares-Rius, J.E.; Wesemael, W.M.L.; et al. Top 10 plant-parasitic nematodes in molecular plant pathology. Mol. Plant Pathol. 2013, 14, 946–961. [Google Scholar] [CrossRef]
- Kantor, M.; Handoo, Z.; Kantor, C.; Carta, L. Top ten most important US-regulated and emerging plant-parasitic nematodes. Horticulturae 2022, 8, 208. [Google Scholar] [CrossRef]
- Dively, G.P.; Patton, T.; Barranco, L.; Kulhanek, K. Comparative efficacy of common active ingredients in organic insecticides against difficult to control insect pests. Insects 2020, 11, 614. [Google Scholar] [CrossRef]
- Kaplanis, J.N.; Robbins, W.E.; Vroman, H.E.; Bryce, B.M. The absence of cholesterol biosynthesis in a primitive insect—The firebrat, Thermobia domestica (Packard). Steroids 1963, 2, 547–553. [Google Scholar] [CrossRef]
- Rothstein, M. Nematode biochemistry. IX. Lack of sterol biosynthesis in free-living nematodes. Comp. Biochem. Physiol. 1968, 27, 309–317. [Google Scholar] [CrossRef]
- Lu, N.C.; Newton, C.; Stokstad, E.L.R. The requirement of sterol and various sterol precursors in free-living nematodes. Nematologica 1977, 23, 57–61. [Google Scholar]
- Hieb, W.F.; Rothstein, M. Sterol requirement for reproduction of a free-living nematode. Science 1968, 160, 778–780. [Google Scholar] [CrossRef] [PubMed]
- Seegmiller, A.C.; Dobrosotskaya, I.; Goldstein, J.L.; Ho, Y.K.; Brown, M.S.; Rawson, R.B. The SREBP pathway in Drosophila: Regulation by palmitate, not sterols. Dev. Cell 2002, 2, 229–238. [Google Scholar] [CrossRef] [PubMed]
- Vinci, G.; Xia, X.; Veitia, R.A. Preservation of genes involved in sterol metabolism in cholesterol auxotrophs: Facts and hypotheses. PLoS ONE 2008, 3, e2883. [Google Scholar] [CrossRef] [PubMed]
- Zhang, T.; Yuan, D.; Xie, J.; Lei, Y.; Li, J.; Fang, G.; Tian, L.; Liu, J.; Cui, Y.; Zhang, M.; et al. Evolution of the cholesterol biosynthesis pathway in animals. Mol. Biol. Evol. 2019, 36, 2548–2556. [Google Scholar] [CrossRef]
- Fabris, M.; Matthijs, M.; Carbonelle, S.; Moses, T.; Pollier, J.; Dasseville, R.; Baart, H.J.E.; Vyverman, W.; Goossens, A. Tracking the sterol biosynthesis pathway of the diatom Phaeodactylum tricornutum. New Phytol. 2014, 204, 521–535. [Google Scholar] [CrossRef]
- Carvalho, M.; Schwudke, D.; Sampaio, J.L.; Palm, W.; Riezman, I.; Dey, G.; Gupta, G.D.; Mayor, S.; Riezman, H.; Shevchenko, A.; et al. Survival strategies of a sterol auxotroph. Development 2010, 137, 3675–3685. [Google Scholar] [CrossRef]
- Matyash, V.; Entchev, E.V.; Mende, F.; Wilsch-Brauninger, M.; Thiele, C.; Schmidt, A.W.; Knolker, H.J.; Ward, S.; Kurzchalia, T.V. Sterol-derived hormone(s) controls entry into diapause in Caenorhabditis elegans by consecutive activation of DAF-12 and DAF-16. PLoS Biol. 2004, 2, e280. [Google Scholar] [CrossRef]
- Kurzchalia, T.V.; Ward, S. Why do worms need cholesterol? Nat. Cell Biol. 2003, 5, 684–688. [Google Scholar] [CrossRef]
- Jing, X.; Behmer, S.T. Insect sterol nutrition: Physiological mechanisms, ecology, and applications. Annu. Rev. Entomol. 2020, 65, 251–271. [Google Scholar] [CrossRef]
- Grieneisen, M.L. Recent advances in our knowledge of ecdysteroid biosynthesis in insects and crustaceans. Insect Biochem. Mol. Biol. 1994, 24, 115–132. [Google Scholar] [CrossRef]
- Campbell, B.C.; Nes, W.D. A reappraisal of sterol biosynthesis and metabolism in aphids. J. Insect Physiol. 1983, 29, 149–156. [Google Scholar] [CrossRef]
- Ciufo, L.; Murray, P.; Thompson, A.; Rigden, D.; Rees, H. Characterisation of a desmosterol reductase involved in phytosterol dealkylation in the silkworm, Bombyx mori. PLoS ONE 2011, 6, e21316. [Google Scholar] [CrossRef] [PubMed]
- Jing, X.; Vogel, H.; Grebenok, R.J.; Zhu-Salzman, K.; Behmer, S.T. Dietary sterols/steroids and the generalist caterpillar Helicoverpa zea: Physiology, biochemistry and midgut gene expression. Insect Biochem. Mol. Biol. 2012, 42, 835–845. [Google Scholar] [CrossRef]
- Svoboda, J.A.; Lusby, W.R.; Aldrich, J.R. Neutral sterols of representatives of two groups of Hemiptera and their correlation to ecdysteroid content. Arch. Insect Biochem. Physiol. 1983, 1, 139–145. [Google Scholar] [CrossRef]
- Feldlaufer, M.F.; Svoboda, J.A. Makisterone A: A 28-carbon insect ecdysteroid. Ecdysone 1986, 45–48. [Google Scholar] [CrossRef]
- Behmer, S.T.; Elias, D.O. The nutritional significance of sterol metabolic constraints in the generalist grasshopper Schistocerca americana. J. Insect Physiol. 1999, 45, 339–348. [Google Scholar] [CrossRef]
- Behmer, S.; Grebenok, R. Impact of dietary sterols on life-history traits of a caterpillar. Physiol. Entomol. 1998, 23, 165–175. [Google Scholar] [CrossRef]
- Lang, M.; Murat, S.; Clark, A.G.; Gouppil, G.; Blais, C.; Matzkin, L.M.; Guittard, E.; Yoshiyama-Yanagawa, T.; Kataoka, H.; Niwa, R.; et al. Mutations in the neverland gene turned Drosophila pachea in to an obligate specialist species. Science 2012, 337, 1658–1661. [Google Scholar] [CrossRef]
- Behmer, S.T.; Elias, D.O.; Bernays, E.A. Post-ingestive feedbacks and associative learning regulate the intake of unsuitable sterols in a generalist grasshopper. J. Exp. Biol. 1999, 202, 739–748. [Google Scholar] [CrossRef]
- Behmer, S.T. Overturning dogma: Tolerance of insects to mixed-sterol diets is not universal. Curr. Opin. Insect Sci. 2017, 23, 89–95. [Google Scholar] [CrossRef] [PubMed]
- Behmer, S.T.; Grebenok, R.J.; Douglas, A.E. Plant sterols and host plant suitability for a phloem-feeding insect. Funct. Ecol. 2011, 25, 484–491. [Google Scholar] [CrossRef]
- Jing, X.; Grebenok, R.J.; Behmer, S.T. Plant sterols and host plant suitability for generalist and specialist caterpillars. J. Insect Physiol. 2012, 58, 235–244. [Google Scholar] [CrossRef] [PubMed]
- Chen, I.W.; Grebenok, R.J.; Zhao, C.; He, L.; Lei, J.; Ji, R.; Hernandez, N.; Yuan, J.S.; Koiwa, H.; Behmer, S.T.; et al. RNAi-mediated plant sterol modification to control insect herbivore pests: Insights from Arabidopsis and the diamondback moth. J. Pest. Sci. 2024, 97, 725–737. [Google Scholar] [CrossRef]
- Chitwood, D.J.; Lusby, W.R. Metabolism of plant sterols by nematodes. Lipids 1991, 26, 619–627. [Google Scholar] [CrossRef]
- Cole, R.J.; Krusberg, L.R. Sterol composition of the nematodes Ditylenchus triformis and Ditylenchus dipsaci. Exp. Parasitol. 1967, 21, 232–239. [Google Scholar] [CrossRef]
- Svoboda, J.A.; Rebois, R.V. Sterol composition of Rotylenchulus reniformis. J. Nematol. 1977, 9, 286. [Google Scholar]
- Orcutt, D.M.; Fox, J.A.; Jake, C.A. The sterol, fatty acid, and hydrocarbon composition of Globodera solanacearum. J. Nematol. 1978, 10, 264. [Google Scholar]
- Hannich, J.T.; Entchev, E.V.; Mende, F.; Boytchev, H.; Martin, R.; Zagoriy, V.; Theumer, G.; Riezman, I.; Riezman, H.; Knölker, H.-J.; et al. Methylation of the sterol nucleus by STRM-1 regulates dauer larva formation in Caenorhabditis elegans. Dev. Cell 2009, 16, 833–843. [Google Scholar] [CrossRef]
- Gan, Q.; Cui, X.; Zhang, L.; Zhou, W.; Lu, Y. Control Phytophagous Nematodes By Engineering Phytosterol Dealkylation Caenorhabditis elegans as a Model. Mol. Biotechnol. 2023, 66, 2769–2777. [Google Scholar] [CrossRef]
- Asojo, O.A.; Darwiche, R.; Gebremedhin, S.; Smant, G.; Lozano-Torres, J.L.; Drurey, C.; Pollet, J.; Maizels, R.M.; Schneider, R.; Wilbers, R.H.P. Heligmosomoides polygyrus Venom Allergen-like Protein-4 (HpVAL-4) is a sterol binding protein. Int. J. Parasitol. 2018, 48, 359–369. [Google Scholar] [CrossRef] [PubMed]
- Wilbers, R.H.; Schneiter, R.; Holterman, M.H.M.; Drurey, C.; Smant, G.; Asojo, O.A.; Maizels, R.M.; Lozano-Torres, J.L. Secreted venom allergen-like proteins of helminths: Conserved modulators of host responses in animals and plants. PLoS Pathog. 2018, 14, e1007300. [Google Scholar] [CrossRef] [PubMed]
- Madoui, M.A.; Bertrand-Michel, J.; Gaulin, E.; Dumas, B. Sterol metabolism in the oomycete Aphanomyces euteiches, a legume root pathogen. New Phytol. 2009, 183, 291–300. [Google Scholar] [CrossRef] [PubMed]
- Warrilow, A.G.; Hull, C.M.; Rolley, N.J.; Parker, J.E.; Nes, W.D.; Smith, S.N.; Kelly, D.E.; Kelly, S.L. Clotrimazole as a potent agent for treating the oomycete fish pathogen Saprolegnia parasitica through inhibition of sterol 14α-demethylase (CYP51). Appl. Environ. Microbiol. 2014, 80, 6154–6166. [Google Scholar] [CrossRef] [PubMed]
- Wang, W.; Zhang, F.; Zhang, S.; Xue, Z.; Xie, L.; Govers, F.; Liu, X. Phytophthora capsici sterol reductase PcDHCR7 has a role in mycelium development and pathogenicity. Open Biol. 2022, 12, 210282. [Google Scholar] [CrossRef]
- Knights, B.A.; Elliott, C.G. Metabolism of Δ7- and Δ 5,7-sterols by Phytophthora cactorum. Biochim. Biophys. Acta (BBA)–Lipids Lipid Metab. 1976, 441, 341–346. [Google Scholar] [CrossRef]
- Wang, W.; Cui, T.; Zhang, F.; Xue, Z.; Zhang, B.; Liu, X. Functional analysis of the C-5 sterol desaturase PcErg3 in the sterol auxotrophic oomycete pathogen Phytophthora capsici. Front. Microbiol. 2022, 13, 811132. [Google Scholar] [CrossRef]
- Kamoun, S.; Lindqvist, H.; Govers, F. A novel class of elicitin-like genes from Phytophthora infestans. Mol. Plant-Microbe Interact. 1997, 10, 1028–1030. [Google Scholar] [CrossRef]
- Mikes, V.; Milat, M.L.; Ponchet, M.; Ricci, P.; Blein, J.P. The fungal elicitor cryptogein is a sterol carrier protein. FEBS Lett. 1997, 416, 190–192. [Google Scholar] [CrossRef]
- Jiang, R.H.Y.; Tyler, B.M.; Whisson, S.C.; Hardham, A.R.; Govers, F. Ancient origin of elicitin gene clusters in Phytophthora genomes. Mol. Biol. Evol. 2006, 23, 338–351. [Google Scholar] [CrossRef]
- Martinez-Prada, I.; Kortekamp, A. Effect of sterol biosynthesis inhibitors and azole-type inducers on growth and development of Plasmopara viticola on grapevine. VITIS-J. Grapevine Res. 2015, 54, 91–96. [Google Scholar]
- Marshall, J.A.; Dennis, A.L.; Kumazawa, T.; Haynes, A.M.; Nes, W.D. Soybean sterol composition and utilization by Phytophthora sojae. Phytochemistry 2001, 58, 423–428. [Google Scholar] [CrossRef] [PubMed]
- Amborabé, B.E.; Rossard, S.; Pérault, J.M.; Roblin, G. Specific perception of ergosterol by plant cells. Comptes Rendus Biol. 2003, 326, 363–370. [Google Scholar] [CrossRef] [PubMed]
- Rossard, S.; Roblin, G.; Atanassova, R. Ergosterol triggers characteristic elicitation steps in Beta vulgaris leaf tissues. J. Exp. Bot. 2010, 61, 1807–1816. [Google Scholar] [CrossRef] [PubMed]
- Der, C.; Courty, P.E.; Recorbet, G.; Wipf, D.; Simon-Plas, F.; Gerbeau-Pissot, P. Sterols, pleiotropic players in plant–microbe interactions. Trends Plant Sci. 2024, 29, 524–534. [Google Scholar] [CrossRef]
- Morris, J.J.; Lenski, R.E.; Zinser, E.R. The black queen hypothesis: Evolution of dependencies through adaptive gene loss. mBio 2012, 3, e00036-12. [Google Scholar] [CrossRef]
- Dahlin, P.; Ruthes, A.C.; Cabianca, A.; Pawlowski, K. Sterol biosynthesis in plant parasitic nematodes. In Proceedings of the 49. Jahrestagung des DPG-Arbeitskreises Nematologie, Online, 10 March 2021; p. 14. [Google Scholar]
- Behmer, S.T.; Olszewski, N.; Sebastiani, J.; Palka, S.; Sparacino, G.; Sciarrno, E.; Grebenok, R.J. Plant phloem sterol content: Forms, putative functions, and implications for phloem-feeding insects. Front. Plant Sci. 2013, 4, 370. [Google Scholar] [CrossRef]
- Furse, S.; Martel, C.; Yusuf, A.; Shearman, G.C.; Koch, H.; Stevenson, P.C. Sterol composition in plants is specific to pollen, leaf, pollination and pollinator. Phytochemistry 2023, 214, 113800. [Google Scholar] [CrossRef]
- Cabianca, A.; Ruthes, A.C.; Pawlowski, K.; Dahlin, P. Tomato sterol 22-desaturase gene CYP710A11: Its roles in Meloidogyne incognita infection and plant stigmasterol alteration. Int. J. Mol. Sci. 2022, 23, 15111. [Google Scholar] [CrossRef]
- Aboobucker, S.I.; Suza, W.P. Why do plants convert sitosterol to stigmasterol? Front. Plant Sci. 2019, 10, 354. [Google Scholar] [CrossRef]
- Stenzel, K.; Vors, J.P. Sterol biosynthesis inhibitors. In Modern Crop Protection Compounds, 3rd ed.; Jeschke, P., Witschel, M., Krämer, W., Schirmer, U., Eds.; Wiley-VCH: Weinheim, Germany, 2019; Volume 2, pp. 797–844. [Google Scholar] [CrossRef]
- Ziogas, B.N.; Malandrakis, A.A. Sterol biosynthesis inhibitors: C14 demethylation (DMIs). In Fungicide Resistance in Plant Pathogens: Principles and a Guide to Practical Management; Ishii, H., Hollomon, D., Eds.; Springer: Tokyo, Japan, 2015; pp. 199–216. [Google Scholar] [CrossRef]
- Fisher, D.J.; Hayes, A.L. Mode of action of the fungicides furalaxyl, metalaxyl and ofurace. Pestic. Sci. 1982, 13, 330–339. [Google Scholar] [CrossRef]
- Gisi, U.; Sierotzki, H. Oomycete fungicides: Phenylamides, quinone outside inhibitors, and carboxylic acid amides. In Fungicide Resistance in Plant Pathogens: Principles and a Guide to Practical Management; Ishii, H., Hollomon, D., Eds.; Springer: Tokyo, Japan, 2015; pp. 145–174. [Google Scholar] [CrossRef]
- Peeples, E.S.; Mirnics, K.; Korade, Z. Chemical Inhibition of Sterol Biosynthesis. Biomolecules 2024, 14, 410. [Google Scholar] [CrossRef] [PubMed]
- Huang, D.; Wang, S.; Song, D.; Cao, X.; Huang, W.; Ke, S. Discovery of γ-lactam alkaloid derivatives as potential fungicidal agents targeting steroid biosynthesis. J. Agric. Food Chem. 2020, 68, 14438–14451. [Google Scholar] [CrossRef] [PubMed]
- Goettel, M.S.; Hajek, A.E. Evaluation of Non-target Effects of Pathogens Used for Management of Arthropods. In Evaluating Indirect Ecological Effects of Biological Control; Wajnber, E., Scott, J.K., Quimby, P.C., Eds.; Springer: Boston, MA, USA, 2001; pp. 81–97. [Google Scholar] [CrossRef]
- Ortiz-Urquiza, A.; Keyhani, N.O. Action on the surface: Entomopathogenic fungi versus the insect cuticle. Insects 2013, 4, 357–374. [Google Scholar] [CrossRef] [PubMed]
- Kaya, H.K.; Gaugler, R. Entomopathogenic nematodes. Annu. Rev. Entomol. 1993, 38, 181–206. [Google Scholar] [CrossRef]
- Lewis, E.E.; Campbell, J.; Griffin, C.; Kaya, H.; Peters, A. Behavioral ecology of entomopathogenic nematodes. Biol. Control 2006, 38, 66–79. [Google Scholar] [CrossRef]
- Kerry, B.R. Rhizosphere interactions and the exploitation of microbial agents for the biological control of plant-parasitic nematodes. Annu. Rev. Phytopathol. 2000, 38, 423–441. [Google Scholar] [CrossRef]
- Lopez-Llorca, L.V.; Maciá-Vicente, J.G.; Jansson, H.B. Mode of Action and Interactions of Nematophagous Fungi. In Integrated Management and Biocontrol of Vegetable and Grain Crops Nematodes. Integrated Management of Plant Pests and Diseases; Ciancio, A., Mukerji, K.G., Eds.; Springer: Dordrecht, The Netherlands, 2008; Volume 2, pp. 51–76. [Google Scholar] [CrossRef]
- Chen, Z.X.; Dickson, D.W. Review of Pasteuria penetrans: Biology, ecology, and biological control potential. J. Nematol. 1998, 30, 313–340. [Google Scholar]
- Siddiqui, Z.A.; Mahmood, I. Role of bacteria in the management of plant parasitic nematodes: A review. Bioresour. Technol. 1999, 69, 167–179. [Google Scholar] [CrossRef]
- Haas, D.; Défago, G. Biological control of soil-borne pathogens by fluorescent pseudomonads. Nat. Rev. Microbiol. 2005, 3, 307–319. [Google Scholar] [CrossRef]
- Ongena, M.; Jacques, P. Bacillus lipopeptides: Versatile weapons for plant disease biocontrol. Trends Microbiol. 2008, 16, 115–125. [Google Scholar] [CrossRef] [PubMed]
- Harman, G.E.; Howell, C.R.; Viterbo, A.; Chet, I.; Lorito, M. Trichoderma species—Opportunistic, avirulent plant symbionts. Nat. Rev. Microbiol. 2004, 2, 43–56. [Google Scholar] [CrossRef] [PubMed]
- Woo, S.L.; Scala, F.; Ruocco, M.; Lorito, M. The molecular biology of the interactions between Trichoderma spp., phytopathogenic fungi, and plants. Phytopathology 2006, 96, 181–185. [Google Scholar] [CrossRef] [PubMed]
- Koerniati, S.; Simanjuntak, G. CRISPR/Cas9 system for disruption of biochemical pathway for sterol synthesis in Artemisia annua L. IOP Conf. Ser. Earth Environ. Sci. 2020, 48, 012028. [Google Scholar] [CrossRef]
- Burciaga-Monge, A.; López-Tubau, J.M.; Laibach, N.; Deng, C.; Ferrer, A.; Altabella, T. Effects of impaired steryl ester biosynthesis on tomato growth and developmental processes. Front. Plant Sci. 2022, 13, 984100. [Google Scholar] [CrossRef]
- Li, J.; Scarano, A.; Gonzalez, N.M.; D’Orso, F.; Yue, Y.; Nemeth, K.; Saalbach, G.; Hill, L.; Martins, C.O.; Moran, R.; et al. Biofortified tomatoes provide a new route to vitamin D sufficiency. Nat. Plants 2022, 8, 611–616. [Google Scholar] [CrossRef]
- Beste, L.; Nahar, N.; Dalman, K.; Fujioka, S.; Jonsson, L.; Dutta, P.C.; Sitbon, F. Synthesis of hydroxylated sterols in transgenic Arabidopsis plants alters growth and steroid metabolism. Plant Physiol. 2011, 157, 426–440. [Google Scholar] [CrossRef]
- Chen, M.; Chen, J.; Luo, N.; Qu, R.; Guo, Z.; Lu, S. Cholesterol accumulation by suppression of SMT1 leads to dwarfism and improved drought tolerance in herbaceous plants. Plant Cell Environ. 2018, 41, 1417–1426. [Google Scholar] [CrossRef]
- Lascombe, M.B.; Ponchet, M.; Venard, P.; Milat, M.L.; Blein, J.P.; Prangé, T. The 1.45 Å resolution structure of the cryptogein–cholesterol complex: A close-up view of a sterol carrier protein (SCP) active site. Acta Crystallogr. D Biol. Crystallogr. 2002, 58, 1442–1447. [Google Scholar] [CrossRef]
- Vyazunova, I.; Lan, Q. Insect sterol carrier protein-2 gene family: Structures and functions. In Recent Advances in Insect Physiology, Toxicology and Molecular Biology; Research Signpost: Kochi, India, 2008; pp. 173–198. [Google Scholar]
- Chaudhary, A.; Gupta, K.K. Potentials of plant-derived sterol carrier protein inhibitors in insect management. Acta Ecol. Sin. 2022, 43, 925–932. [Google Scholar] [CrossRef]
- Stong, R.A.; Kolodny, E.; Kelsey, R.G.; González-Hernández, M.P.; Vivanco, J.M.; Manter, D.K. Effect of plant sterols and tannins on Phytophthora ramorum growth and sporulation. J. Chem. Ecol. 2013, 39, 733–743. [Google Scholar] [CrossRef] [PubMed]
- Bilir, Ö.; Telli, O.; Norman, C.; Budak, H.; Hong, Y.; Tör, M. Small RNA inhibits infection by downy mildew pathogen Hyaloperonospora arabidopsidis. Mol. Plant Pathol. 2019, 20, 1523–1534. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Li, Y.; Zhang, B.; Gao, X.; Shi, M.; Zhang, S.; Zhong, S.; Zheng, Y.; Liu, X. Functionalized Carbon Dot-Delivered RNA Nano Fungicides as Superior Tools to Control Phytophthora Pathogens through Plant RdRP1 Mediated Spray-Induced Gene Silencing. Adv. Funct. Mater. 2023, 33, 2213143. [Google Scholar] [CrossRef]
- Jiang, S.; Wu, H.; Liu, H.; Zheng, J.; Lin, Y.; Chen, H. The overexpression of insect endogenous small RNAs in transgenic rice inhibits growth and delays pupation of striped stem borer (Chilo suppressalis). Pest. Manag. Sci. 2017, 73, 1453–1461. [Google Scholar] [CrossRef]
- Yang, L.; Tian, Y.; Peng, Y.Y.; Niu, J.; Wang, J.J. Expression dynamics of core RNAi machinery genes in pea aphids upon exposure to artificially synthesized dsRNA and miRNAs. Insects 2020, 11, 70. [Google Scholar] [CrossRef]
- Hada, A.; Patil, B.L.; Bajpai, A.; Kesiraju, K.; Dinesh-Kumar, S.; Paraselli, B.; Sreevathsa, R.; Rao, U. Micro RNA-induced gene silencing strategy for the delivery of siRNAs targeting Meloidogyne incognita in a model plant Nicotiana benthamiana. Pest. Manag. Sci. 2021, 77, 3396–3405. [Google Scholar] [CrossRef]
- Mendes, R.A.G.; Basso, M.F.; Amora, D.X.; Silva, A.P.; Paes-de-Melo, B.; Togawa, R.C.; Albuquerque, E.V.S.; Lisei-de-Sa, M.E.; Macedo, L.L.P.; Lourenço-Tessutti, I.T.; et al. In planta RNAi approach targeting three M. incognita effector genes disturbed the process of infection and reduced plant susceptibility. Exp. Parasitol. 2022, 238, 108246. [Google Scholar] [CrossRef]
- Moreira, V.J.V.; Pinheiro, D.H.; Lourenço-Tessutti, I.T.; Basso, M.F.; Lisei-de-Sa, M.E.; Silva, M.C.M.; Danchin, E.G.J.; Guimarães, P.M.; Grynberg, P.; Brasileiro, A.C.M.; et al. In planta RNAi targeting Meloidogyne incognita Minc16803 gene perturbs nematode parasitism and reduces plant susceptibility. J. Pest. Sci. 2024, 97, 411–427. [Google Scholar] [CrossRef]
- Shivakumara, T.N.; Somvanshi, V.S.; Phani, V.; Chaudhary, S.; Hada, A.; Budhwar, R.; Shukla, R.N.; Rao, U. Meloidogyne incognita (Nematoda: Meloidogynidae) sterol-binding protein Mi-SBP-1 as a target for its management. Int. J. Parasitol. 2019, 49, 1061–1073. [Google Scholar] [CrossRef]
- Heftmann, E. Functions of sterols in plants. Lipids 1971, 6, 128–133. [Google Scholar] [CrossRef]
V | F | P | Steps/Function | Enzyme Name | EC-Number | |
---|---|---|---|---|---|---|
0 | SQLE | ERG1 | SQE2 | Squalene monooxygenation | Squalene monooxygenase | 1.14.99.7 |
1 | LSS (7B) | ERG7 (7B) | CAS (7B) | Oxidosqualene cyclization | Lanosterol/Cycloartenol synthase | 5.4.99.7/8 |
2 | CYP51A1 | ERG11 | CYP51G1 | C32-Elimination/C14 Demethylation | Sterol 14α-methyl demethylase (CYP51) | 1.14.14.154/1.14.13.70 |
3 | DHCR14 | ERG24 | FK (TM7SF2) | C14-Reduction | Sterol Δ14-reductase | 1.3.1.70 |
4 | SC4MOL | ERG25 | SMO1-1/2/3 SMO2-1/2 | C4-Methyl oxidation | Sterol C4-methyloxidase | 1.14.13.72/1.14.18.9 |
5 | NSDHL | ERG26 | AT3βHSD/D1/2 | C3 Dehydrogenation/C4 Decarboxylation | 3β- hydroxysteroid- 4α- carboxylate 3- dehydrogenase (decarboxylating) (3β-HSD) | 1.1.1.170 |
6 | HSD17B7 | ERG27 | ! (ZM) | C3-Ketoreduction | 3β-Keto-reductase (Cycloeucalenone reductase) | 1.1.1.270 |
7 | EBP | ERG2X | HYD1 | Δ8-Δ7 Isomerization | Sterol C8 isomerase (EBP) | 5.3.3.5 |
8 | XDWF7 | ERG3 | SC5D | Δ5-Desaturation | Sterol C5-desaturase | 1.14.19.20/1.14.21.6 |
9 | DHCR7 | NA | DWF5 | Δ7-Reduction | Sterol Δ7 reductase (DHCR7) | 1.3.1.21 |
10 | DHCR24 | ERG4 | DWF1 | Δ24-Reduction | Sterol Δ24 reductase | 1.3.1.71/72 |
11 | NA | NA | CPI1 | 9β, 19β-cyclopropane ring opening | Cycloeucalenol cycloisomerase | 5.5.1.9 |
12 | NA | ERG5 | CYP710A | C22-Desaturation | Sterol C22 desaturation | 1.14.19.41 |
13 | NA | ERG6 | SMT1/2/3 | C24/28-Methylation | Sterol C24-methyltransferase/24-sterol methyltransferase | 2.1.1.41/143 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dahlin, P.; Ruthes, A.C. Loss of Sterol Biosynthesis in Economically Important Plant Pests and Pathogens: A Review of a Potential Target for Pest Control. Biomolecules 2024, 14, 1435. https://doi.org/10.3390/biom14111435
Dahlin P, Ruthes AC. Loss of Sterol Biosynthesis in Economically Important Plant Pests and Pathogens: A Review of a Potential Target for Pest Control. Biomolecules. 2024; 14(11):1435. https://doi.org/10.3390/biom14111435
Chicago/Turabian StyleDahlin, Paul, and Andrea Caroline Ruthes. 2024. "Loss of Sterol Biosynthesis in Economically Important Plant Pests and Pathogens: A Review of a Potential Target for Pest Control" Biomolecules 14, no. 11: 1435. https://doi.org/10.3390/biom14111435
APA StyleDahlin, P., & Ruthes, A. C. (2024). Loss of Sterol Biosynthesis in Economically Important Plant Pests and Pathogens: A Review of a Potential Target for Pest Control. Biomolecules, 14(11), 1435. https://doi.org/10.3390/biom14111435