Activins and Inhibins in Cardiovascular Pathophysiology
Abstract
:1. Introduction
2. Structure and Synthesis of Activins and Inhibins
3. Signaling Pathways of Activins and Inhibins
3.1. Activins and Inhibins Exert Biological Effects Through the Classical SMAD Pathway
3.2. Activins and Inhibins Exert Biological Effects Through Non-Classical Pathways
4. Pathophysiological Roles of Activins, Inhibins, and Their Signaling Pathways in the Cardiovascular System
4.1. Pathophysiological Roles of Activins and Inhibins in the Cardiovascular System
4.1.1. Cardiac Development
4.1.2. Angiogenesis
4.1.3. Hypertension
4.1.4. Atherosclerosis
4.1.5. Cardiac Fibrosis
4.1.6. Myocardial Infarction
4.1.7. Cardiac Aging
4.1.8. Heart Failure
4.2. Pathophysiological Roles of Activin- and Inhibin-Related Receptors and Signaling Pathways in the Cardiovascular System
4.2.1. Pathophysiological Roles of Activin- and Inhibin-Related Receptors in the Cardiovascular System
4.2.2. Pathophysiological Roles of Activin- and Inhibin-Related Signaling Pathways in the Cardiovascular System
5. Conclusions and Discussion
Author Contributions
Funding
Conflicts of Interest
References
- World Heart Report. 2023. Available online: https://heartreport23.world-heart-federation.org/ (accessed on 8 February 2024).
- Wu, J.; Jackson-Weaver, O.; Xu, J. The TGFβ Superfamily in Cardiac Dysfunction. Acta Biochim. Biophys. Sin. 2018, 50, 323–335. [Google Scholar] [CrossRef] [PubMed]
- Huminiecki, L.; Goldovsky, L.; Freilich, S.; Moustakas, A.; Ouzounis, C.; Heldin, C.-H. Emergence, Development and Diversification of the TGF-β Signalling Pathway within the Animal Kingdom. BMC Evol. Biol. 2009, 9, 28. [Google Scholar] [CrossRef] [PubMed]
- Frangogiannis, N.G. Transforming Growth Factor-β in Myocardial Disease. Nat. Rev. Cardiol. 2022, 19, 435–455. [Google Scholar] [CrossRef] [PubMed]
- Goumans, M.-J.; Ten Dijke, P. TGF-β Signaling in Control of Cardiovascular Function. Cold Spring Harb. Perspect. Biol. 2018, 10, a022210. [Google Scholar] [CrossRef]
- Dobaczewski, M.; Chen, W.; Frangogiannis, N.G. Transforming Growth Factor (TGF)-β Signaling in Cardiac Remodeling. J. Mol. Cell. Cardiol. 2011, 51, 600–606. [Google Scholar] [CrossRef]
- Shi, N.; Wang, Z.; Zhu, H.; Liu, W.; Zhao, M.; Jiang, X.; Zhao, J.; Ren, C.; Zhang, Y.; Luo, L. Research Progress on Drugs Targeting the TGF-β Signaling Pathway in Fibrotic Diseases. Immunol. Res. 2022, 70, 276–288. [Google Scholar] [CrossRef]
- Akhurst, R.J. Targeting TGF-β Signaling for Therapeutic Gain. Cold Spring Harb. Perspect. Biol. 2017, 9, a022301. [Google Scholar] [CrossRef] [PubMed]
- Evans, E.T.; Horst, B.; Arend, R.C.; Mythreye, K. Evolving Roles of Activins and Inhibins in Ovarian Cancer Pathophysiology. Am. J. Physiol. Cell Physiol. 2023, 324, C428–C437. [Google Scholar] [CrossRef]
- Moore, C.S.; Mjaatvedt, C.H.; Gearhart, J.D. Expression and Function of Activin Beta A during Mouse Cardiac Cushion Tissue Formation. Dev. Dyn. 1998, 212, 548–562. [Google Scholar] [CrossRef]
- Appiah Adu-Gyamfi, E.; Tanam Djankpa, F.; Nelson, W.; Czika, A.; Kumar Sah, S.; Lamptey, J.; Ding, Y.-B.; Wang, Y.-X. Activin and Inhibin Signaling: From Regulation of Physiology to Involvement in the Pathology of the Female Reproductive System. Cytokine 2020, 133, 155105. [Google Scholar] [CrossRef]
- Makanji, Y.; Zhu, J.; Mishra, R.; Holmquist, C.; Wong, W.P.S.; Schwartz, N.B.; Mayo, K.E.; Woodruff, T.K. Inhibin at 90: From Discovery to Clinical Application, a Historical Review. Endocr. Rev. 2014, 35, 747–794. [Google Scholar] [CrossRef] [PubMed]
- Kattman, S.J.; Witty, A.D.; Gagliardi, M.; Dubois, N.C.; Niapour, M.; Hotta, A.; Ellis, J.; Keller, G. Stage-Specific Optimization of Activin/Nodal and BMP Signaling Promotes Cardiac Differentiation of Mouse and Human Pluripotent Stem Cell Lines. Cell Stem Cell 2011, 8, 228–240. [Google Scholar] [CrossRef] [PubMed]
- Kim, M.-S.; Horst, A.; Blinka, S.; Stamm, K.; Mahnke, D.; Schuman, J.; Gundry, R.; Tomita-Mitchell, A.; Lough, J. Activin-A and Bmp4 Levels Modulate Cell Type Specification during CHIR-Induced Cardiomyogenesis. PLoS ONE 2015, 10, e0118670. [Google Scholar] [CrossRef]
- Singh, P.; Jenkins, L.M.; Horst, B.; Alers, V.; Pradhan, S.; Kaur, P.; Srivastava, T.; Hempel, N.; Győrffy, B.; Broude, E.V.; et al. Inhibin Is a Novel Paracrine Factor for Tumor Angiogenesis and Metastasis. Cancer Res. 2018, 78, 2978–2989. [Google Scholar] [CrossRef] [PubMed]
- Ervolino De Oliveira, C.; Dourado, M.R.; Sawazaki-Calone, Í.; Costa De Medeiros, M.; Rossa Júnior, C.; De Karla Cervigne, N.; Esquiche León, J.; Lambert, D.; Salo, T.; Graner, E.; et al. Activin A Triggers Angiogenesis via Regulation of VEGFA and Its Overexpression Is Associated with Poor Prognosis of Oral Squamous Cell Carcinoma. Int. J. Oncol. 2020, 57, 364–376. [Google Scholar] [CrossRef] [PubMed]
- Kaneda, H.; Arao, T.; Matsumoto, K.; De Velasco, M.A.; Tamura, D.; Aomatsu, K.; Kudo, K.; Sakai, K.; Nagai, T.; Fujita, Y.; et al. Activin A Inhibits Vascular Endothelial Cell Growth and Suppresses Tumour Angiogenesis in Gastric Cancer. Br. J. Cancer 2011, 105, 1210–1217. [Google Scholar] [CrossRef]
- Frustaci, A.; Lanfranchi, G.; Bellin, M.; Chimenti, C. Coronary Telangiectasia Associated with Hypertrophic Cardiomyopathy. Eur. J. Heart Fail. 2012, 14, 1332–1337. [Google Scholar] [CrossRef]
- Shovlin, C.L.; Simeoni, I.; Downes, K.; Frazer, Z.C.; Megy, K.; Bernabeu-Herrero, M.E.; Shurr, A.; Brimley, J.; Patel, D.; Kell, L.; et al. Mutational and Phenotypic Characterization of Hereditary Hemorrhagic Telangiectasia. Blood 2020, 136, 1907–1918. [Google Scholar] [CrossRef]
- Akbari, P.; Sosina, O.A.; Bovijn, J.; Landheer, K.; Nielsen, J.B.; Kim, M.; Aykul, S.; De, T.; Haas, M.E.; Hindy, G.; et al. Multiancestry Exome Sequencing Reveals INHBE Mutations Associated with Favorable Fat Distribution and Protection from Diabetes. Nat. Commun. 2022, 13, 4844. [Google Scholar] [CrossRef]
- Muttukrishna, S.; Knight, P.G.; Groome, N.P.; Redman, C.W.; Ledger, W.L. Activin A and Inhibin A as Possible Endocrine Markers for Pre-Eclampsia. Lancet 1997, 349, 1285–1288. [Google Scholar] [CrossRef]
- Lin, J.-F.; Hsu, S.-Y.; Teng, M.-S.; Wu, S.; Hsieh, C.-A.; Jang, S.-J.; Liu, C.-J.; Huang, H.-L.; Ko, Y.-L. Activin A Predicts Left Ventricular Remodeling and Mortality in Patients with ST-Elevation Myocardial Infarction. Acta Cardiol. Sin. 2016, 32, 420–427. [Google Scholar] [CrossRef] [PubMed]
- Roh, J.D.; Hobson, R.; Chaudhari, V.; Quintero, P.; Yeri, A.; Benson, M.; Xiao, C.; Zlotoff, D.; Bezzerides, V.; Houstis, N.; et al. Activin Type II Receptor Signaling in Cardiac Aging and Heart Failure. Sci. Transl. Med. 2019, 11, eaau8680. [Google Scholar] [CrossRef] [PubMed]
- Yndestad, A.; Ueland, T.; Øie, E.; Florholmen, G.; Halvorsen, B.; Attramadal, H.; Simonsen, S.; Frøland, S.S.; Gullestad, L.; Christensen, G.; et al. Elevated Levels of Activin A in Heart Failure. Circulation 2004, 109, 1379–1385. [Google Scholar] [CrossRef] [PubMed]
- Morine, K.J.; Qiao, X.; Paruchuri, V.; Aronovitz, M.J.; Mackey, E.E.; Buiten, L.; Levine, J.; Ughreja, K.; Nepali, P.; Blanton, R.M.; et al. Reduced Activin Receptor Like-Kinase 1 Activity Promotes Cardiac Fibrosis in Heart Failure. Cardiovasc. Pathol. 2017, 31, 26–33. [Google Scholar] [CrossRef] [PubMed]
- Chen, M.; Sun, Y.; Wang, Q.; Li, Y. Reduction of Activin Receptor-Like Kinase 4 Expression Ameliorates Myocardial Ischemia/Reperfusion Injury through Inhibiting TGFβ Signaling Pathway. Anal. Cell. Pathol. 2022, 2022, 5242323. [Google Scholar] [CrossRef]
- Li, J.; Fredericks, M.; Tang, M.; Cannell, M.; Joshi, S.; Kumar, R.; Andre, P.; Suragani, R.N.V.S. The Activin Receptor Ligand Trap ActRIIB:ALK4-Fc Ameliorates Cardiomyopathy Induced by Neuromuscular Disease and Diabetes. FEBS Lett. 2022, 596, 3145–3158. [Google Scholar] [CrossRef]
- López-Novoa, J.M.; Bernabeu, C. The Physiological Role of Endoglin in the Cardiovascular System. Am. J. Physiol. Heart Circ. Physiol. 2010, 299, H959–H974. [Google Scholar] [CrossRef]
- Hu, J.; Wang, X.; Wei, S.-M.; Tang, Y.-H.; Zhou, Q.; Huang, C.-X. Activin A Stimulates the Proliferation and Differentiation of Cardiac Fibroblasts via the ERK1/2 and P38-MAPK Pathways. Eur. J. Pharmacol. 2016, 789, 319–327. [Google Scholar] [CrossRef]
- Castillero, E.; Akashi, H.; Najjar, M.; Ji, R.; Brandstetter, L.M.; Wang, C.; Liao, X.; Zhang, X.; Sperry, A.; Gailes, M.; et al. Activin Type II Receptor Ligand Signaling Inhibition after Experimental Ischemic Heart Failure Attenuates Cardiac Remodeling and Prevents Fibrosis. Am. J. Physiol.-Heart Circ. Physiol. 2020, 318, H378–H390. [Google Scholar] [CrossRef]
- Oshima, Y.; Ouchi, N.; Shimano, M.; Pimentel, D.R.; Papanicolaou, K.N.; Panse, K.D.; Tsuchida, K.; Lara-Pezzi, E.; Lee, S.-J.; Walsh, K. Activin A and Follistatin-like 3 Determine the Susceptibility of Heart to Ischemic Injury. Circulation 2009, 120, 1606–1615. [Google Scholar] [CrossRef]
- Chen, Y.; Rothnie, C.; Spring, D.; Verrier, E.; Venardos, K.; Kaye, D.; Phillips, D.J.; Hedger, M.P.; Smith, J.A. Regulation and Actions of Activin A and Follistatin in Myocardial Ischaemia-Reperfusion Injury. Cytokine 2014, 69, 255–262. [Google Scholar] [CrossRef] [PubMed]
- Rose, B.A.; Force, T.; Wang, Y. Mitogen-Activated Protein Kinase Signaling in the Heart: Angels Versus Demons in a Heart-Breaking Tale. Physiol. Rev. 2010, 90, 1507–1546. [Google Scholar] [CrossRef] [PubMed]
- Foulquier, S.; Daskalopoulos, E.P.; Lluri, G.; Hermans, K.C.M.; Deb, A.; Blankesteijn, W.M. WNT Signaling in Cardiac and Vascular Disease. Pharmacol. Rev. 2018, 70, 68–141. [Google Scholar] [CrossRef] [PubMed]
- Namwanje, M.; Brown, C.W. Activins and Inhibins: Roles in Development, Physiology, and Disease. Cold Spring Harb. Perspect. Biol. 2016, 8, a021881. [Google Scholar] [CrossRef]
- Lau, A.L.; Kumar, T.R.; Nishimori, K.; Bonadio, J.; Matzuk, M.M. Activin βC and βE Genes Are Not Essential for Mouse Liver Growth, Differentiation, and Regeneration. Mol. Cell. Biol. 2000, 20, 6127–6137. [Google Scholar] [CrossRef]
- Wijayarathna, R.; de Kretser, D.M. Activins in Reproductive Biology and Beyond. Hum. Reprod. Update 2016, 22, 342–357. [Google Scholar] [CrossRef]
- Bloise, E.; Ciarmela, P.; Dela Cruz, C.; Luisi, S.; Petraglia, F.; Reis, F.M. Activin A in Mammalian Physiology. Physiol. Rev. 2019, 99, 739–780. [Google Scholar] [CrossRef]
- Morikawa, M.; Derynck, R.; Miyazono, K. TGF-β and the TGF-β Family: Context-Dependent Roles in Cell and Tissue Physiology. Cold Spring Harb. Perspect. Biol. 2016, 8, a021873. [Google Scholar] [CrossRef] [PubMed]
- Mason, A.J.; Farnworth, P.G.; Sullivan, J. Characterization and Determination of the Biological Activities of Noncleavable High Molecular Weight Forms of Inhibin A and Activin A. Mol. Endocrinol. 1996, 10, 1055–1065. [Google Scholar] [CrossRef]
- Laird, M.; Glister, C.; Cheewasopit, W.; Satchell, L.S.; Bicknell, A.B.; Knight, P.G. ‘Free’ Inhibin α Subunit Is Expressed by Bovine Ovarian Theca Cells and Its Knockdown Suppresses Androgen Production. Sci. Rep. 2019, 9, 19793. [Google Scholar] [CrossRef]
- Walton, K.L.; Makanji, Y.; Wilce, M.C.; Chan, K.L.; Robertson, D.M.; Harrison, C.A. A Common Biosynthetic Pathway Governs the Dimerization and Secretion of Inhibin and Related Transforming Growth Factor β (TGFβ) Ligands. J. Biol. Chem. 2009, 284, 9311–9320. [Google Scholar] [CrossRef] [PubMed]
- Debieve, F.; Pampfer, S.; Thomas, K. Inhibin and Activin Production and Subunit Expression in Human Placental Cells Cultured In Vitro. Mol. Hum. Reprod. 2000, 6, 743–749. [Google Scholar] [CrossRef] [PubMed]
- Horst, B.; Pradhan, S.; Chaudhary, R.; Listik, E.; Quintero-Macias, L.; Choi, A.S.; Southard, M.; Liu, Y.; Whitaker, R.; Hempel, N.; et al. Hypoxia-Induced Inhibin Promotes Tumor Growth and Vascular Permeability in Ovarian Cancers. Commun. Biol. 2022, 5, 536. [Google Scholar] [CrossRef]
- Zhu, J.; Lin, S.J.; Zou, C.; Makanji, Y.; Jardetzky, T.S.; Woodruff, T.K. Inhibin α-Subunit N Terminus Interacts with Activin Type IB Receptor to Disrupt Activin Signaling. J. Biol. Chem. 2012, 287, 8060–8070. [Google Scholar] [CrossRef]
- Antenos, M.; Stemler, M.; Boime, I.; Woodruff, T.K. N-Linked Oligosaccharides Direct the Differential Assembly and Secretion of Inhibin Alpha- and betaA-Subunit Dimers. Mol. Endocrinol. 2007, 21, 1670–1684. [Google Scholar] [CrossRef] [PubMed]
- Ko, H.; Ahn, H.J.; Kim, Y.I. Methylation and Mutation of the Inhibin-α Gene in Human Melanoma Cells and Regulation of PTEN Expression and AKT/PI3K Signaling by a Demethylating Agent. Oncol. Rep. 2022, 47, 37. [Google Scholar] [CrossRef]
- Balanathan, P.; Ball, E.M.A.; Wang, H.; Harris, S.E.; Shelling, A.N.; Risbridger, G.P. Epigenetic Regulation of Inhibin Alpha-Subunit Gene in Prostate Cancer Cell Lines. J. Mol. Endocrinol. 2004, 32, 55–67. [Google Scholar] [CrossRef]
- Tzavlaki, K.; Moustakas, A. TGF-β Signaling. Biomolecules 2020, 10, 487. [Google Scholar] [CrossRef]
- Hata, A.; Chen, Y.-G. TGF-β Signaling from Receptors to Smads. Cold Spring Harb. Perspect. Biol. 2016, 8, a022061. [Google Scholar] [CrossRef]
- Massagué, J. TGFβ Signalling in Context. Nat. Rev. Mol. Cell Biol. 2012, 13, 616–630. [Google Scholar] [CrossRef]
- Aykul, S.; Corpina, R.A.; Goebel, E.J.; Cunanan, C.J.; Dimitriou, A.; Kim, H.J.; Zhang, Q.; Rafique, A.; Leidich, R.; Wang, X.; et al. Activin A Forms a Non-Signaling Complex with ACVR1 and Type II Activin/BMP Receptors via Its Finger 2 Tip Loop. eLife 2020, 9, e54582. [Google Scholar] [CrossRef] [PubMed]
- Olsen, O.E.; Hella, H.; Elsaadi, S.; Jacobi, C.; Martinez-Hackert, E.; Holien, T. Activins as Dual Specificity TGF-β Family Molecules: SMAD-Activation via Activin- and BMP-Type 1 Receptors. Biomolecules 2020, 10, 519. [Google Scholar] [CrossRef] [PubMed]
- Thompson, T.B.; Woodruff, T.K.; Jardetzky, T.S. Structures of an ActRIIB:Activin A Complex Reveal a Novel Binding Mode for TGF-β Ligand:Receptor Interactions. EMBO J. 2003, 22, 1555–1566. [Google Scholar] [CrossRef]
- Kreidl, E.; Oztürk, D.; Metzner, T.; Berger, W.; Grusch, M. Activins and Follistatins: Emerging Roles in Liver Physiology and Cancer. World J. Hepatol. 2009, 1, 17–27. [Google Scholar] [CrossRef]
- Chapman, S.C.; Bernard, D.J.; Jelen, J.; Woodruff, T.K. Properties of Inhibin Binding to Betaglycan, InhBP/P120 and the Activin Type II Receptors. Mol. Cell. Endocrinol. 2002, 196, 79–93. [Google Scholar] [CrossRef]
- Choi, S.-C.; Han, J.-K. Chapter Five—Negative Regulation of Activin Signal Transduction. In Vitamins & Hormones; Litwack, G., Ed.; Activins and Inhibins; Academic Press: Cambridge, MA, USA, 2011; Volume 85, pp. 79–104. [Google Scholar]
- Nickel, J.; Ten Dijke, P.; Mueller, T.D. TGF-β Family Co-Receptor Function and Signaling. Acta Biochim. Biophys. Sin. 2018, 50, 12–36. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.K.; Henen, M.A.; Hinck, A.P. Structural Biology of Betaglycan and Endoglin, Membrane-Bound Co-Receptors of the TGF-Beta Family. Exp. Biol. Med. 2019, 244, 1547–1558. [Google Scholar] [CrossRef]
- Villarreal, M.M.; Kim, S.K.; Barron, L.; Kodali, R.; Baardsnes, J.; Hinck, C.S.; Krzysiak, T.C.; Henen, M.A.; Pakhomova, O.; Mendoza, V.; et al. Binding Properties of the Transforming Growth Factor-β Coreceptor Betaglycan: Proposed Mechanism for Potentiation of Receptor Complex Assembly and Signaling. Biochemistry 2016, 55, 6880–6896. [Google Scholar] [CrossRef]
- Lee, N.Y.; Ray, B.; How, T.; Blobe, G.C. Endoglin Promotes Transforming Growth Factor β-Mediated Smad 1/5/8 Signaling and Inhibits Endothelial Cell Migration through Its Association with GIPC. J. Biol. Chem. 2008, 283, 32527–32533. [Google Scholar] [CrossRef]
- Ray, B.N.; Lee, N.Y.; How, T.; Blobe, G.C. ALK5 Phosphorylation of the Endoglin Cytoplasmic Domain Regulates Smad1/5/8 Signaling and Endothelial Cell Migration. Carcinogenesis 2010, 31, 435–441. [Google Scholar] [CrossRef]
- Lebrin, F.; Goumans, M.-J.; Jonker, L.; Carvalho, R.L.; Valdimarsdottir, G.; Thorikay, M.; Mummery, C.; Arthur, H.M.; Dijke, P. Ten Endoglin Promotes Endothelial Cell Proliferation and TGF-β/ALK1 Signal Transduction. EMBO J. 2004, 23, 4018–4028. [Google Scholar] [CrossRef] [PubMed]
- Chaudhary, R.; Henis, Y. Inhibin Alters the Interactions of Endoglin and TβRIII with ALK1 and ALK4 to Modulate TGF-β Signaling; Tel Aviv University: Tel Aviv, Israel, 2020. [Google Scholar]
- Hertan, R.; Farnworth, P.G.; Fitzsimmons, K.L.; Robertson, D.M. Identification of High Affinity Binding Sites for Inhibin on Ovine Pituitary Cells in Culture. Endocrinology 1999, 140, 6–12. [Google Scholar] [CrossRef] [PubMed]
- Massagué, J. TGF-Beta Signal Transduction. Annu. Rev. Biochem. 1998, 67, 753–791. [Google Scholar] [CrossRef] [PubMed]
- Cocolakis, E.; Lemay, S.; Ali, S.; Lebrun, J.J. The P38 MAPK Pathway Is Required for Cell Growth Inhibition of Human Breast Cancer Cells in Response to Activin. J. Biol. Chem. 2001, 276, 18430–18436. [Google Scholar] [CrossRef]
- Ogihara, T.; Watada, H.; Kanno, R.; Ikeda, F.; Nomiyama, T.; Tanaka, Y.; Nakao, A.; German, M.S.; Kojima, I.; Kawamori, R. P38 MAPK Is Involved in Activin A- and Hepatocyte Growth Factor-Mediated Expression of pro-Endocrine Gene Neurogenin 3 in AR42J-B13 Cells. J. Biol. Chem. 2003, 278, 21693–21700. [Google Scholar] [CrossRef]
- Zhang, L.; Deng, M.; Parthasarathy, R.; Wang, L.; Mongan, M.; Molkentin, J.D.; Zheng, Y.; Xia, Y. MEKK1 Transduces Activin Signals in Keratinocytes To Induce Actin Stress Fiber Formation and Migration. Mol. Cell. Biol. 2005, 25, 60–65. [Google Scholar] [CrossRef]
- de Guise, C.; Lacerte, A.; Rafiei, S.; Reynaud, R.; Roy, M.; Brue, T.; Lebrun, J.J. Activin Inhibits the Human Pit-1 Gene Promoter through the P38 Kinase Pathway in a Smad-Independent Manner. Endocrinology 2006, 147, 4351–4362. [Google Scholar] [CrossRef]
- Huang, H.-M.; Chiou, H.-Y.; Chang, J.-L. Activin A Induces Erythroid Gene Expressions and Inhibits Mitogenic Cytokine-Mediated K562 Colony Formation by Activating P38 MAPK. J. Cell. Biochem. 2006, 98, 789–797. [Google Scholar] [CrossRef]
- Do, T.-V.; Kubba, L.A.; Antenos, M.; Rademaker, A.W.; Sturgis, C.D.; Woodruff, T.K. The Role of Activin A and Akt/GSK Signaling in Ovarian Tumor Biology. Endocrinology 2008, 149, 3809–3816. [Google Scholar] [CrossRef]
- Kwon, H.-J.E.; Jia, S.; Lan, Y.; Liu, H.; Jiang, R. Activin and Bmp4 Signaling Converge on Wnt Activation during Odontogenesis. J. Dent. Res. 2017, 96, 1145–1152. [Google Scholar] [CrossRef]
- Xueqin, T.; Jinhong, M.; Yuping, H. Inhibin Subunit Beta A Promotes Cell Proliferation and Metastasis of Breast Cancer through Wnt/β-Catenin Signaling Pathway. Bioengineered 2021, 12, 11567–11575. [Google Scholar] [CrossRef] [PubMed]
- Fowler, T.W.; Kamalakar, A.; Akel, N.S.; Kurten, R.C.; Suva, L.J.; Gaddy, D. Activin A Inhibits RANKL-Mediated Osteoclast Formation, Movement and Function in Murine Bone Marrow Macrophage Cultures. J. Cell Sci. 2015, 128, 683–694. [Google Scholar] [CrossRef] [PubMed]
- Roberts, V.J.; Barth, S.L. Expression of Messenger Ribonucleic Acids Encoding the Inhibin/Activin System during Mid- and Late-Gestation Rat Embryogenesis. Endocrinology 1994, 134, 914–923. [Google Scholar] [CrossRef]
- Feijen, A.; Goumans, M.J.; van den Eijnden-van Raaij, A.J. Expression of Activin Subunits, Activin Receptors and Follistatin in Postimplantation Mouse Embryos Suggests Specific Developmental Functions for Different Activins. Development 1994, 120, 3621–3637. [Google Scholar] [CrossRef]
- Sa, S.; McCloskey, K. Activin A and BMP4 Signaling for Efficient Cardiac Differentiation of H7 and H9 Human Embryonic Stem Cells. J. Stem Cells Regen. Med. 2012, 8, 198–202. [Google Scholar]
- Lian, X.; Hsiao, C.; Wilson, G.; Zhu, K.; Hazeltine, L.B.; Azarin, S.M.; Raval, K.K.; Zhang, J.; Kamp, T.J.; Palecek, S.P. Robust Cardiomyocyte Differentiation from Human Pluripotent Stem Cells via Temporal Modulation of Canonical Wnt Signaling. Proc. Natl. Acad. Sci. USA 2012, 109, E1848–E1857. [Google Scholar] [CrossRef]
- Maeshima, K.; Maeshima, A.; Hayashi, Y.; Kishi, S.; Kojima, I. Crucial Role of Activin a in Tubulogenesis of Endothelial Cells Induced by Vascular Endothelial Growth Factor. Endocrinology 2004, 145, 3739–3745. [Google Scholar] [CrossRef] [PubMed]
- Bashir, M.; Damineni, S.; Mukherjee, G.; Kondaiah, P. Activin-A Signaling Promotes Epithelial-Mesenchymal Transition, Invasion, and Metastatic Growth of Breast Cancer. NPJ Breast Cancer 2015, 1, 15007. [Google Scholar] [CrossRef] [PubMed]
- Wagner, K.; Peters, M.; Scholz, A.; Benckert, C.; Ruderisch, H.S.; Wiedenmann, B.; Rosewicz, S. Activin A Stimulates Vascular Endothelial Growth Factor Gene Transcription in Human Hepatocellular Carcinoma Cells. Gastroenterology 2004, 126, 1828–1843. [Google Scholar] [CrossRef]
- Panopoulou, E.; Murphy, C.; Rasmussen, H.; Bagli, E.; Rofstad, E.K.; Fotsis, T. Activin A Suppresses Neuroblastoma Xenograft Tumor Growth via Antimitotic and Antiangiogenic Mechanisms. Cancer Res. 2005, 65, 1877–1886. [Google Scholar] [CrossRef]
- Muttukrishna, S.; North, R.A.; Morris, J.; Schellenberg, J.-C.; Taylor, R.S.; Asselin, J.; Ledger, W.; Groome, N.; Redman, C.W.G. Serum Inhibin A and Activin A Are Elevated Prior to the Onset of Pre-Eclampsia. Hum. Reprod. 2000, 15, 1640–1645. [Google Scholar] [CrossRef] [PubMed]
- Reddy, A.; Suri, S.; Sargent, I.L.; Redman, C.W.G.; Muttukrishna, S. Maternal Circulating Levels of Activin A, Inhibin A, sFlt-1 and Endoglin at Parturition in Normal Pregnancy and Pre-Eclampsia. PLoS ONE 2009, 4, e4453. [Google Scholar] [CrossRef]
- Shahul, S.; Ramadan, H.; Nizamuddin, J.; Mueller, A.; Patel, V.; Dreixler, J.; Tung, A.; Lang, R.M.; Weinert, L.; Nasim, R.; et al. Activin A and Late Postpartum Cardiac Dysfunction Among Women With Hypertensive Disorders of Pregnancy. Hypertension 2018, 72, 188–193. [Google Scholar] [CrossRef] [PubMed]
- Guignabert, C.; Savale, L.; Boucly, A.; Thuillet, R.; Tu, L.; Ottaviani, M.; Rhodes, C.J.; De Groote, P.; Prévot, G.; Bergot, E.; et al. Serum and Pulmonary Expression Profiles of the Activin Signaling System in Pulmonary Arterial Hypertension. Circulation 2023, 147, 1809–1822. [Google Scholar] [CrossRef] [PubMed]
- Engelse, M.A.; Neele, J.M.; van Achterberg, T.A.; van Aken, B.E.; van Schaik, R.H.; Pannekoek, H.; de Vries, C.J. Human Activin-A Is Expressed in the Atherosclerotic Lesion and Promotes the Contractile Phenotype of Smooth Muscle Cells. Circ. Res. 1999, 85, 931–939. [Google Scholar] [CrossRef]
- Liu, H.; Hastings, M.; Kitchen, R.; Xiao, C.; Guerra, J.; Kuznetsov, A.; Rosenzweig, A. Beneficial Effects of Moderate Hepatic Activin A Expression on Metabolic Pathways, Inflammation, and Atherosclerosis. Arterioscler. Thromb. Vasc. Biol. 2022, 43, 330–349. [Google Scholar] [CrossRef]
- Venteclef, N.; Guglielmi, V.; Balse, E.; Gaborit, B.; Cotillard, A.; Atassi, F.; Amour, J.; Leprince, P.; Dutour, A.; Clément, K.; et al. Human Epicardial Adipose Tissue Induces Fibrosis of the Atrial Myocardium through the Secretion of Adipo-Fibrokines. Eur. Heart J. 2015, 36, 795–805a. [Google Scholar] [CrossRef]
- Wei, Q.; Liu, H.; Liu, M.; Yang, C.; Yang, J.; Liu, Z.; Yang, P. Ramipril Attenuates Left Ventricular Remodeling by Regulating the Expression of Activin A-Follistatin in a Rat Model of Heart Failure. Sci. Rep. 2016, 6, 33677. [Google Scholar] [CrossRef]
- Dogra, D.; Ahuja, S.; Kim, H.-T.; Rasouli, S.J.; Stainier, D.Y.R.; Reischauer, S. Opposite Effects of Activin Type 2 Receptor Ligands on Cardiomyocyte Proliferation during Development and Repair. Nat. Commun. 2017, 8, 1902. [Google Scholar] [CrossRef]
- Magga, J.; Vainio, L.; Kilpiö, T.; Hulmi, J.J.; Taponen, S.; Lin, R.; Räsänen, M.; Szabó, Z.; Gao, E.; Rahtu-Korpela, L.; et al. Systemic Blockade of ACVR2B Ligands Protects Myocardium from Acute Ischemia-Reperfusion Injury. Mol. Ther. 2019, 27, 600–610. [Google Scholar] [CrossRef]
- MacDonnell, S.; Megna, J.; Ruan, Q.; Zhu, O.; Halasz, G.; Jasewicz, D.; Powers, K.; E, H.; del Pilar Molina-Portela, M.; Jin, X.; et al. Activin A Directly Impairs Human Cardiomyocyte Contractile Function Indicating a Potential Role in Heart Failure Development. Front. Cardiovasc. Med. 2022, 9, 1038114. [Google Scholar] [CrossRef] [PubMed]
- La Mendola, D.; Trincavelli, M.L.; Martini, C. Angiogenesis in Disease. Int. J. Mol. Sci. 2022, 23, 10962. [Google Scholar] [CrossRef] [PubMed]
- Franco, C.; Sciatti, E.; Favero, G.; Bonomini, F.; Vizzardi, E.; Rezzani, R. Essential Hypertension and Oxidative Stress: Novel Future Perspectives. Int. J. Mol. Sci. 2022, 23, 14489. [Google Scholar] [CrossRef]
- Lackovic, M.; Nikolic, D.; Jankovic, M.; Rovcanin, M.; Mihajlovic, S. Stroke vs. Preeclampsia: Dangerous Liaisons of Hypertension and Pregnancy. Medicina 2023, 59, 1707. [Google Scholar] [CrossRef]
- Barrero, J.A.; Villamil-Camargo, L.M.; Imaz, J.N.; Arciniegas-Villa, K.; Rubio-Romero, J.A. Maternal Serum Activin A, Inhibin A and Follistatin-Related Proteins across Preeclampsia: Insights into Their Role in Pathogenesis and Prediction. J. Mother Child 2023, 27, 119–133. [Google Scholar] [CrossRef] [PubMed]
- Ryanto, G.R.T.; Musthafa, A.; Hara, T.; Emoto, N. Inactivating the Uninhibited: The Tale of Activins and Inhibins in Pulmonary Arterial Hypertension. Int. J. Mol. Sci. 2023, 24, 3332. [Google Scholar] [CrossRef]
- Fan, J.; Watanabe, T. Atherosclerosis: Known and Unknown. Pathol. Int. 2022, 72, 151–160. [Google Scholar] [CrossRef]
- Kozaki, K.; Ouchi, Y. Activin/Follistatin and Atherosclerosis—A Review. J. Atheroscler. Thromb. 1998, 5, 36–40. [Google Scholar] [CrossRef]
- Engelse, M.A.; Lardenoye, J.H.P.; Neele, J.M.; Grimbergen, J.M.; De Vries, M.R.; Lamfers, M.L.M.; Pannekoek, H.; Quax, P.H.A.; De Vries, C.J.M. Adenoviral Activin a Expression Prevents Intimal Hyperplasia in Human and Murine Blood Vessels by Maintaining the Contractile Smooth Muscle Cell Phenotype. Circ. Res. 2002, 90, 1128–1134. [Google Scholar] [CrossRef]
- Czubryt, M.P.; Hale, T.M. Cardiac Fibrosis: Pathobiology and Therapeutic Targets. Cell. Signal. 2021, 85, 110066. [Google Scholar] [CrossRef]
- Xian, S.; Chen, A.; Wu, X.; Lu, C.; Wu, Y.; Huang, F.; Zeng, Z. Activation of Activin/Smad2 and 3 Signaling Pathway and The Potential Involvement of Endothelial-mesenchymal Transition in the Valvular Damage Due to Rheumatic Heart Disease. Mol. Med. Rep. 2021, 23, 10. [Google Scholar] [CrossRef] [PubMed]
- Wu, M.; Yang, F.; Huang, D.; Ye, C. Tanshinone I Attenuates Fibrosis in Fibrotic Kidneys through Down-Regulation of Inhibin Beta-A. BMC Complement. Med. Ther. 2022, 22, 110. [Google Scholar] [CrossRef] [PubMed]
- Frost, K.; Seir, K.; Lackner, A.; Grusch, M.; Grasl-Kraupp, B.; Schulte-Hermann, R.; Rodgarkia-Dara, C. Inhibin/Activin Expression in Human and Rodent Liver: Subunits α and βB as New Players in Human Hepatocellular Carcinoma? Br. J. Cancer 2011, 104, 1303–1312. [Google Scholar] [CrossRef] [PubMed]
- Sallustio, F.; Curci, C.; Aloisi, A.; Toma, C.C.; Marulli, E.; Serino, G.; Cox, S.N.; De Palma, G.; Stasi, A.; Divella, C.; et al. Inhibin-A and Decorin Secreted by Human Adult Renal Stem/Progenitor Cells Through the TLR2 Engagement Induce Renal Tubular Cell Regeneration. Sci. Rep. 2017, 7, 8225. [Google Scholar] [CrossRef]
- Krepinsky, J.C.; Activin, B. A New Player in Kidney Fibrosis? J. Pathol. 2022, 256, 363–365. [Google Scholar] [CrossRef]
- Chung, J.Y.-F.; Chan, M.K.-K.; Li, J.S.-F.; Chan, A.S.-W.; Tang, P.C.-T.; Leung, K.-T.; To, K.-F.; Lan, H.-Y.; Tang, P.M.-K. TGF-β Signaling: From Tissue Fibrosis to Tumor Microenvironment. Int. J. Mol. Sci. 2021, 22, 7575. [Google Scholar] [CrossRef]
- Walton, K.L.; Johnson, K.E.; Harrison, C.A. Targeting TGF-β Mediated SMAD Signaling for the Prevention of Fibrosis. Front. Pharmacol. 2017, 8, 461. [Google Scholar] [CrossRef]
- Wnuk, D.; Paw, M.; Ryczek, K.; Bochenek, G.; Sładek, K.; Madeja, Z.; Michalik, M. Enhanced Asthma-Related Fibroblast to Myofibroblast Transition Is the Result of Profibrotic TGF-β/Smad2/3 Pathway Intensification and Antifibrotic TGF-β/Smad1/5/(8)9 Pathway Impairment. Sci. Rep. 2020, 10, 16492. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Wang, M.; Yu, Y.; Li, C.; Zhang, C. Advances in the Study of Exosomes Derived from Mesenchymal Stem Cells and Cardiac Cells for the Treatment of Myocardial Infarction. Cell Commun. Signal. 2023, 21, 202. [Google Scholar] [CrossRef]
- Bui, A.L.; Horwich, T.B.; Fonarow, G.C. Epidemiology and Risk Profile of Heart Failure. Nat. Rev. Cardiol. 2011, 8, 30–41. [Google Scholar] [CrossRef]
- Lee, S.-J.; Lehar, A.; Meir, J.U.; Koch, C.; Morgan, A.; Warren, L.E.; Rydzik, R.; Youngstrom, D.W.; Chandok, H.; George, J.; et al. Targeting Myostatin/Activin A Protects against Skeletal Muscle and Bone Loss during Spaceflight. Proc. Natl. Acad. Sci. USA 2020, 117, 23942–23951. [Google Scholar] [CrossRef] [PubMed]
- Lee, S.-J.; Lehar, A.; Liu, Y.; Ly, C.H.; Pham, Q.-M.; Michaud, M.; Rydzik, R.; Youngstrom, D.W.; Shen, M.M.; Kaartinen, V.; et al. Functional Redundancy of Type I and Type II Receptors in the Regulation of Skeletal Muscle Growth by Myostatin and Activin A. Proc. Natl. Acad. Sci. USA 2020, 117, 30907–30917. [Google Scholar] [CrossRef] [PubMed]
- Paddock, S.J.; O’Meara, C.C. Steps toward Therapeutically Targeting the Activin Type II Receptor for Treating Heart Failure. Am. J. Physiol.-Heart Circ. Physiol. 2020, 318, H326–H328. [Google Scholar] [CrossRef] [PubMed]
- Blumensatt, M.; Greulich, S.; Herzfeld de Wiza, D.; Mueller, H.; Maxhera, B.; Rabelink, M.J.; Hoeben, R.C.; Akhyari, P.; Al-Hasani, H.; Ruige, J.B.; et al. Activin A Impairs Insulin Action in Cardiomyocytes via Up-Regulation of miR-143. Cardiovasc. Res. 2013, 100, 201–210. [Google Scholar] [CrossRef]
- Ten Dijke, P.; Baker, D. Fine-Tuning ALK1 Linear Polyubiquitination to Control Angiogenesis. Trends Cell Biol. 2021, 31, 705–707. [Google Scholar] [CrossRef]
- Lee, S.; Schleer, H.; Park, H.; Jang, E.; Boyer, M.; Tao, B.; Gamez-Mendez, A.; Singh, A.; Folta-Stogniew, E.; Zhang, X.; et al. Genetic or Therapeutic Neutralization of ALK1 Reduces LDL Transcytosis and Atherosclerosis in Mice. Nat. Cardiovasc. Res. 2023, 2, 438–448. [Google Scholar] [CrossRef]
- Chen, Y.-H.; Wang, Q.; Li, C.-Y.; Hou, J.-W.; Chen, X.-M.; Zhou, Q.; Chen, J.; Wang, Y.-P.; Li, Y.-G. Haplodeficiency of Activin Receptor-like Kinase 4 Alleviates Myocardial Infarction-Induced Cardiac Fibrosis and Preserves Cardiac Function. J. Mol. Cell. Cardiol. 2017, 105, 1–11. [Google Scholar] [CrossRef]
- Wang, Q.; Chen, Y.; Zhang, D.; Li, C.; Chen, X.; Hou, J.; Fei, Y.; Wang, Y.; Li, Y. Activin Receptor-Like Kinase 4 Haplodeficiency Mitigates Arrhythmogenic Atrial Remodeling and Vulnerability to Atrial Fibrillation in Cardiac Pathological Hypertrophy. J. Am. Heart Assoc. 2018, 7, e008842. [Google Scholar] [CrossRef]
- Liu, L.; Zhou, X.; Zhang, Q.; Li, L.; Shang, Y.; Wang, Z.; Zhong, M.; Chen, Y.; Zhang, W.; Tang, M. Activin Receptor-like Kinase 7 Silencing Alleviates Cardiomyocyte Apoptosis, Cardiac Fibrosis, and Dysfunction in Diabetic Rats. Exp. Biol. Med. 2022, 247, 1397–1409. [Google Scholar] [CrossRef]
- Huang, H.; Tang, Y.; Wu, G.; Mei, Y.; Liu, W.; Liu, X.; Wan, N.; Liu, Y.; Huang, C. ALK7 Protects against Pathological Cardiac Hypertrophy in Mice. Cardiovasc. Res. 2015, 108, 50–61. [Google Scholar] [CrossRef]
- Ying, S.; Cao, H.; Hu, H.; Wang, X.; Tang, Y.; Huang, C. Alk7 Depleted Mice Exhibit Prolonged Cardiac Repolarization and Are Predisposed to Ventricular Arrhythmia. PLoS ONE 2016, 11, e0149205. [Google Scholar] [CrossRef] [PubMed]
- Gong, F.-H.; Cheng, W.-L.; Zhang, Q.; Chen, X.-L.; Cao, J.-L.; Yang, T.; Song, W.-H.; Zhao, F. ALK7 Promotes Vascular Smooth Muscle Cells Phenotypic Modulation by Negative Regulating PPARγ Expression. J. Cardiovasc. Pharmacol. 2020, 76, 237. [Google Scholar] [CrossRef]
- Kingwell, K. ActRII Takes Centre Stage in Heart Failure. Nat. Rev. Drug Discov. 2019, 18, 335. [Google Scholar] [CrossRef]
- Joshi, S.R.; Atabay, E.K.; Liu, J.; Ding, Y.; Briscoe, S.D.; Alexander, M.J.; Andre, P.; Kumar, R.; Li, G. Sotatercept Analog Improves Cardiopulmonary Remodeling and Pulmonary Hypertension in Experimental Left Heart Failure. Front. Cardiovasc. Med. 2023, 10, 1064290. [Google Scholar] [CrossRef] [PubMed]
- Arthur, H.M.; Ure, J.; Smith, A.J.; Renforth, G.; Wilson, D.I.; Torsney, E.; Charlton, R.; Parums, D.V.; Jowett, T.; Marchuk, D.A.; et al. Endoglin, an Ancillary TGFbeta Receptor, Is Required for Extraembryonic Angiogenesis and Plays a Key Role in Heart Development. Dev. Biol. 2000, 217, 42–53. [Google Scholar] [CrossRef]
- Mercado-Pimentel, M.E.; Hubbard, A.D.; Runyan, R.B. Endoglin and Alk5 Regulate Epithelial-Mesenchymal Transformation during Cardiac Valve Formation. Dev. Biol. 2007, 304, 420–432. [Google Scholar] [CrossRef] [PubMed]
- Garzon-Martinez, M.; Perretta-Tejedor, N.; Garcia-Ortiz, L.; Gomez-Marcos, M.A.; Gonzalez-Sarmiento, R.; Lopez-Hernandez, F.J.; Martinez-Salgado, C. Association of Alk1 and Endoglin Polymorphisms with Cardiovascular Damage. Sci. Rep. 2020, 10, 9383. [Google Scholar] [CrossRef]
- Chen, H.; Wang, Y.; Sun, B.; Bao, X.; Tang, Y.; Huang, F.; Zhu, S.; Xu, J. Negative Correlation between Endoglin Levels and Coronary Atherosclerosis. Lipids Health Dis. 2021, 20, 127. [Google Scholar] [CrossRef]
- Shyu, K.-G. The Role of Endoglin in Myocardial Fibrosis. Acta Cardiol. Sin. 2017, 33, 461–467. [Google Scholar] [CrossRef]
- Tual-Chalot, S.; Garcia-Collado, M.; Redgrave, R.E.; Singh, E.; Davison, B.; Park, C.; Lin, H.; Luli, S.; Jin, Y.; Wang, Y.; et al. Loss of Endothelial Endoglin Promotes High-Output Heart Failure Through Peripheral Arteriovenous Shunting Driven by VEGF Signaling. Circ. Res. 2020, 126, 243–257. [Google Scholar] [CrossRef]
- Lelièvre, E.; Bureau, C.; Bordat, Y.; Frétaud, M.; Langevin, C.; Jopling, C.; Kissa, K. Deficiency in Hereditary Hemorrhagic Telangiectasia-Associated Endoglin Elicits Hypoxia-Driven Heart Failure in Zebrafish. Dis. Model. Mech. 2023, 16, dmm049488. [Google Scholar] [CrossRef] [PubMed]
- Stenvers, K.L.; Tursky, M.L.; Harder, K.W.; Kountouri, N.; Amatayakul-Chantler, S.; Grail, D.; Small, C.; Weinberg, R.A.; Sizeland, A.M.; Zhu, H.-J. Heart and Liver Defects and Reduced Transforming Growth Factor Beta2 Sensitivity in Transforming Growth Factor Beta Type III Receptor-Deficient Embryos. Mol. Cell. Biol. 2003, 23, 4371–4385. [Google Scholar] [CrossRef] [PubMed]
- Chen, C.-Y.; Choong, O.K.; Liu, L.-W.; Cheng, Y.-C.; Li, S.-C.; Yen, C.Y.T.; Wu, M.-R.; Chiang, M.-H.; Tsang, T.-J.; Wu, Y.-W.; et al. MicroRNA Let-7-TGFBR3 Signalling Regulates Cardiomyocyte Apoptosis after Infarction. EBioMedicine 2019, 46, 236–247. [Google Scholar] [CrossRef] [PubMed]
- Chu, W.; Li, X.; Li, C.; Wan, L.; Shi, H.; Song, X.; Liu, X.; Chen, X.; Zhang, C.; Shan, H.; et al. TGFBR3, a Potential Negative Regulator of TGF-β Signaling, Protects Cardiac Fibroblasts from Hypoxia-Induced Apoptosis. J. Cell. Physiol. 2011, 226, 2586–2594. [Google Scholar] [CrossRef]
- Yang, Z.; Xiao, Z.; Guo, H.; Fang, X.; Liang, J.; Zhu, J.; Yang, J.; Li, H.; Pan, R.; Yuan, S.; et al. Novel Role of the Clustered miR-23b-3p and miR-27b-3p in Enhanced Expression of Fibrosis-Associated Genes by Targeting TGFBR3 in Atrial Fibroblasts. J. Cell. Mol. Med. 2019, 23, 3246–3256. [Google Scholar] [CrossRef] [PubMed]
- Euler-Taimor, G.; Heger, J. The complex pattern of SMAD signaling in the cardiovascular system. Cardiovasc. Res. 2006, 69, 15–25. [Google Scholar] [CrossRef]
- Cheng, S.-M.; Ho, T.-J.; Yang, A.-L.; Chen, I.-J.; Kao, C.-L.; Wu, F.-N.; Lin, J.A.; Kuo, C.-H.; Ou, H.-C.; Huang, C.-Y.; et al. Exercise Training Enhances Cardiac IGFI-R/PI3K/Akt and Bcl-2 Family Associated pro-Survival Pathways in Streptozotocin-Induced Diabetic Rats. Int. J. Cardiol. 2013, 167, 478–485. [Google Scholar] [CrossRef]
- Jia, P.; Wu, N.; Yang, H.; Guo, Y.; Guo, X.; Sun, Y. Different Roles of BAG3 in Cardiac Physiological Hypertrophy and Pathological Remodeling. Transl. Res. 2021, 233, 47–61. [Google Scholar] [CrossRef]
- Ghafouri-Fard, S.; Khanbabapour Sasi, A.; Hussen, B.M.; Shoorei, H.; Siddiq, A.; Taheri, M.; Ayatollahi, S.A. Interplay between PI3K/AKT Pathway and Heart Disorders. Mol. Biol. Rep. 2022, 49, 9767–9781. [Google Scholar] [CrossRef]
- Abeyrathna, P.; Su, Y. The Critical Role of Akt in Cardiovascular Function. Vasc. Pharmacol. 2015, 74, 38–48. [Google Scholar] [CrossRef]
- Zhang, Q.; Wang, L.; Wang, S.; Cheng, H.; Xu, L.; Pei, G.; Wang, Y.; Fu, C.; Jiang, Y.; He, C.; et al. Signaling Pathways and Targeted Therapy for Myocardial Infarction. Signal Transduct. Target. Ther. 2022, 7, 78. [Google Scholar] [CrossRef]
- Gordon, J.W.; Shaw, J.A.; Kirshenbaum, L.A. Multiple Facets of NF-κB in the Heart. Circ. Res. 2011, 108, 1122–1132. [Google Scholar] [CrossRef]
- Fiordelisi, A.; Iaccarino, G.; Morisco, C.; Coscioni, E.; Sorriento, D. NFkappaB Is a Key Player in the Crosstalk between Inflammation and Cardiovascular Diseases. Int. J. Mol. Sci. 2019, 20, 1599. [Google Scholar] [CrossRef] [PubMed]
- Baccarelli, A.; Morpurgo, P.S.; Corsi, A.; Vaghi, I.; Fanelli, M.; Cremonesi, G.; Vaninetti, S.; Beck-Peccoz, P.; Spada, A. Activin A Serum Levels and Aging of the Pituitary-Gonadal Axis: A Cross-Sectional Study in Middle-Aged and Elderly Healthy Subjects. Exp. Gerontol. 2001, 36, 1403–1412. [Google Scholar] [CrossRef]
- Hurwitz, J.M.; Santoro, N. Inhibins, Activins, and Follistatin in the Aging Female and Male. Semin. Reprod. Med. 2004, 22, 209–217. [Google Scholar] [CrossRef] [PubMed]
- Debieve, F.; Beerlandt, S.; Hubinont, C.; Thomas, K. Gonadotropins, Prolactin, Inhibin A, Inhibin B, and Activin A in Human Fetal Serum from Midpregnancy and Term Pregnancy. J. Clin. Endocrinol. Metab. 2000, 85, 270–274. [Google Scholar] [CrossRef] [PubMed]
- Elsholz, D.D.; Padmanabhan, V.; Rosenfield, R.L.; Olton, P.R.; Phillips, D.J.; Foster, C.M. GnRH Agonist Stimulation of the Pituitary-Gonadal Axis in Children: Age and Sex Differences in Circulating Inhibin-B and Activin-A. Hum. Reprod. 2004, 19, 2748–2758. [Google Scholar] [CrossRef] [PubMed]
- Arosio, B.; Corbi, G.; Davinelli, S.; Giordano, V.; Liccardo, D.; Rapacciuolo, A.; Cannavo, A. Sex Differences in Cardiovascular Diseases: A Matter of Estrogens, Ceramides, and Sphingosine 1-Phosphate. Int. J. Mol. Sci. 2022, 23, 4009. [Google Scholar] [CrossRef]
- Yue, C.-Y.; Zhang, C.-Y.; Ni, Y.-H.; Ying, C.-M. Are Serum Levels of Inhibin A in Second Trimester Predictors of Adverse Pregnancy Outcome? PLoS ONE 2020, 15, e0232634. [Google Scholar] [CrossRef]
- Petraglia, F.; Hartmann, B.; Luisi, S.; Florio, P.; Kirchengast, S.; Santuz, M.; Genazzani, A.D.; Genazzani, A.R. Low Levels of Serum Inhibin A and Inhibin B in Women with Hypergonadotropic Amenorrhea and Evidence of High Levels of Activin A in Women with Hypothalamic Amenorrhea. Fertil. Steril. 1998, 70, 907–912. [Google Scholar] [CrossRef]
- Foster, C.M.; Phillips, D.J.; Wyman, T.; Evans, L.W.; Groome, N.P.; Padmanabhan, V. Changes in Serum Inhibin, Activin and Follistatin Concentrations during Puberty in Girls. Hum. Reprod. 2000, 15, 1052–1057. [Google Scholar] [CrossRef] [PubMed]
Cardiovascular Pathophysiological Changes | Refs. | Experimental Approach | Observed Phenotypic Changes | Main Findings |
---|---|---|---|---|
Cardiac development | Roberts et al. (1994) [76] | mRNA expression in postimplantation rat embryos (8–20 days) | βA mRNA signal was observed in heart during embryogenesis | |
Feijen et al. (1994) [77] | mRNA expression in mouse embryos | βA mRNA was abundant in heart in 10.5- and 12.5-day embryos. βA and βB expression was observed in blood vessels | ||
Moore et al. (1998) [10] | mRNA expression in mouse embryos | βA during the initial phase of ECT, βB at later stages | βA promotes the formation of mesenchymal cells in the endothelial cushions | |
WT or βA mouse cardiomyocyte CM induced ECT in mouse endothelial cells | βA: cardiac ECM ↓ | |||
Kattman et al. (2011) [13] | Activin A and BMP4 induced mouse and human ESC and iPSC differentiation | Certain concentrations of activin and BMP4: Flk-1/KDR/PDGFR-α ↑, cardiac mesoderm and cardiomyocyte generation ↑ | Optimization of activin/nodal and BMP signaling is required for efficient cardiac differentiation | |
Sa et al. (2012) [78] | Activin A and BMP4 induced H7 and H9 ESC lines’ differentiation | 6 ng/mL activin A + 30 ng/mL BMP4: KDR/PDGFR-α H7 ↑ on day 5; 10 ng/mL activin A + 60 ng/mL BMP4: KDR/PDGFR-α H9 ↑ on day 6 | Certain protocols of activin A and BMP4 induce efficient cardiac differentiation in the H7 and H9 ESC lines | |
Lian et al. (2012) [79] | Ebs, activin A, and BMP4 or Gsk3 inhibitor induced β-catenin± or ALK± human PSC differentiation | β-catenin in the initial stage of PSC differentiation: cardiomyocyte specification ↓; β-catenin or Wnt after Gsk3 inhibition: cardiomyocyte specification ↑ ALK5 or ALK2: cardiomyocyte specification ↓; Gsk3 inhibition or activin A and BMP4: SMAD1/5 and SMAD2 activated at comparable levels | Activin/nodal and BMP signaling are necessary for cardiogenesis induced via modulating regulatory elements of the Wnt pathway | |
Kim et al. (2015) [14] | CHIR with or without activin A and BMP4 induced human ESC H1 and H9 cardiomyogenesis | CHIR + low level activin A during day 0–1: cardiomyogenic efficiency ↑; CHIR + high activin A: DE differentiation ↑, cardiomyogenesis ↓; CHIR + low BMP4: cardiomyogenesis↓ | Activin/nodal and BMP signaling are necessary during the earliest stage of CHIR-induced cardiomyogenic differentiation. Activin A and BMP levels modulate cell type specification | |
Angiogenesis | Singh et al. (2018) [15] | Tissue microarray of OVCA tumor cores | More inhibin A expression led to more microvessels per mm2 in ovarian cancer | Inhibin induces endothelial cell response through SMAD1/5 activation mediated by ALK1 and endoglin and angiogenesis in vitro and in vivo in tumor metastasis and vascularization |
In vitro culture of shControl or shINHA ovarian epithelial carcinoma cell lines; HMEC-1, MEECs, and HUVECs ± inhibin A protein with or without anti-inhibin α | shINHA: endothelial cell tube formation ↓, endothelial cell SMAD1/5 activation ↓; Inhibin A: endothelial cell tube formation ↑, with anti-inhibin α endothelial tube formation ↓, SMAD1/5 activated and SMAD2/3 not activated, epithelial cancer cells SMAD1/5 not activated; Inhibin A with endoglin or ALK1 inhibition: tube formation and SMAD1/5 activation ↓ | |||
shControl or shINHA SKOV3 cells or inhibin A injected into mice | shINHA: blood vessel formation ↓, tumor angiogenesis ↓, metastatic ↓; Inhibin A: blood vessel formation ↑, tumor angiogenesis ↑, metastatic ↑ | |||
Horst et al. (2022) [44] | In vitro culture of normoxia or hypoxia ovarian epithelial carcinoma cell lines, HMEC-1s, COS7, WT, and endoglin −/− mouse embryonic endothelial cells with or without inhibin or anti-inhibin | Inhibin A: angiogenesis ↑, endothelial cell migration and permeability ↑, endothelial cell contractility ↑, VE–cadherin internalization↑, ALK1–endoglin cell surface complexes ↑, ALK4–endoglin complexes ↓ Anti-inhibin α: angiogenesis↓, endothelial cell migration and permeability ↓; Inhibin A with anti-ALK1 or anti-endoglin: endothelial cell permeability ↓; Inhibin A with endoglin−/−: VE–cadherin internalization not changed | Inhibin promotes hypoxia-induced angiogenesis and stimulates endothelial cell migration and vascular permeability through ALK1/endoglin/SMAD1/5 in ovarian cancer | |
Hypoxia-induced shControl shINHA Hey cells or Hey CM without inhibin or anti-inhibin injected into mice | Inhibin A: angiogenesis ↑, endothelial cell migration and permeability ↑, tumor growth ↑; Anti-inhibin α: angiogenesis↓, endothelial cell migration and permeability ↓, tumor growth ↓; shINHA: angiogenesis ↓, tumor growth ↓, vascular leakiness ↓, vessel size ↑, numbers ↓, promotes normalized vasculature | |||
Maeshima et al. (2004) [80] | Activin A with or without VEGF treatment of bovine aortic endothelial cells with or without activin A antagonist | Activin A: induced tubulogenesis and capillary formation, enhanced VEGF-induced tubulogenesis and capillary formation, VEGF and VEGF receptor expression ↑; Activin A antagonist: inhibit VEGF-induced tubulogenesis and capillary formation, VEGF and VEGFR expression ↓; ACVR Ⅱ mutation: inhibit activin A or VEGF-induced capillary formation | Activin A enhances VEGF-induced tubulogenesis and induces capillary formation in bovine aortic endothelial cells | |
Ervolino et al. (2020) [16] | A cohort of 95 patients with OSCC | Activin A expression in blood vessels is associated with poor prognosis of OSCC | Activin A is a predictor of the prognosis of patients with OSCC and contributes to angiogenesis in an autocrine and paracrine manner | |
Activin A, activin A antagonist, or shRNA ± INHBA OSCC cell line CM treatment of HUVECs, shRNA ± INHBA HUVECs | Activin A: tube formation ↑ and proliferation ↑ in HUVECs, induced SMAD2/3 phosphorylation and VEGFA expression; Activin A antagonist: tube formation↓ and proliferation ↓ in HUVECs; shRNA-INHBA: tube formation ↓, proliferation ↓ and migration ↑ in HUVECs | |||
Bashir et al. (2015) [81] | Activin A treatment or overexpression in MCF-7 cells and HEK-293T | VEGF expression ↑; activity of VEGF promoter ↑ | Activin A induces VEGF expression in breast cancer | |
Wagner et al. (2004) [82] | Activin A treatment of human hepatoma cell lines | VEGF expression ↑, activity of VEGF promoter ↑, triggers SMAD2 nuclear accumulation and SMAD2/Sp1 complex formation; SMAD2 overexpression: VEGF promoter activity↑, VEGF expression ↑; SMAD2 mutation: SMAD2 nuclear accumulation ↓, VEGF promoter activity ↓, VEGF expression ↓ | Activin A stimulates VEGF gene transcription through Sp1/SMAD2 interaction in human hepatocellular carcinoma cells | |
Kaneda et al. (2011) [17] | Activin A treatment of HUVECs and gastric cancer cell line | Proliferation ↓, tube formation of HUVECs ↓, induced SMAD2 and p21 phosphorylation, increased the binding of SMAD2/3 and SMAD4 to the p21 promoter, growth with sh-p21 ↓ | Activin A suppresses tumor growth and angiogenesis in gastric cancer | |
TK3/INHBA cells inoculated into mice | Tumor growth and angiogenesis↓ | |||
Panopoulou et al. (2005) [83] | ±Activin A WAC2, activin A treatment of BBCE | Proliferation ↓, formed smaller xenograft tumors with reduced vascularity, angiogenesis ↓; With SMAD2 or SMAD3 expression, BBCE proliferation ↓; with SMAD3 or SMAD4 inhibition, BBCE proliferation ↑ | Activin A suppresses neuroblastoma xenograft tumor angiogenesis partly via the SMAD pathway | |
Hypertension | Muttukrishna et al. (1997) [21] | Blood samples from 20 women in hospital with established pre-eclampsia and from 20 control pregnant women attending antenatal clinics, who were matched for duration of gestation, parity, and maternal age | Serum inhibin A, pro alpha C, and total activin A ↑ in pre-eclampsia compared to control pregnancies; inhibin B not increased | |
Muttukrishna et al. (2000) [84] | Blood samples from 1651 healthy nulliparous women recruited in the community in a prospective, longitudinal study | Serum inhibin A and activin A increased prior to pre-eclampsia and before 20 weeks in early-onset pre-eclampsia. Predictive sensitivities were better for early-onset pre-eclampsia | ||
Reddy et al. (2009) [85] | Plasma samples from 10 normal pregnant and 10 pre-eclamptic women pre-labor; plasma samples from 10 normal pregnant and 10 pre-eclamptic women undergoing elective Caesarean section | Activin A and inhibin A in women with pre-eclampsia before labor induction were higher than in normal women before labor induction. Activin A and inhibin A levels declined rapidly with placental delivery. Activin A rose during labor in pre-eclampsia compared to pre-labor, but inhibin did not increase | ||
Shahul et al. (2018) [86] | Prospective study of 85 women’s antepartum activin A levels with cardiac dysfunction at 1 year postpartum | Postpartum activin A levels correlated with abnormal global longitudinal strain ↑, left ventricular mass index ↑, mean arterial pressures ↑, and E’ values ↓ | Activin A may be a tool for identification and monitoring of hypertensive pregnant patients at risk of late postpartum cardiac dysfunction | |
Guignabert et al. (2023) [87] | Serum samples from controls and patients with newly diagnosed PAH (n = 80) at baseline and 3 to 4 months after treatment initiation | Adjusted hazard ratios for transplant-free survival for baseline activin A were 0.14 (95% CI, 0.03–0.61; p = 0.009), and those for follow-up measures were 0.23 (95% CI, 0.07–0.78; p = 0.019). Prognostic values of activin A were confirmed in an independent external validation cohort. | Activin A is a prognostic biomarker for PAH | |
Atherosclerosis | Engelse et al. (1999) [88] | Human vascular tissue specimens at various stages of atherogenesis | Activin expression ↑ in neointimal SMCs from the early onset of atherogenesis | Activin induces redifferentiation of neointimal SMCs, induces the contractile, nonproliferative phenotype in vitro |
Activin A treatment of human iliac artery or aorta SMCs | SM α-actin expression ↑ in aortic SMCs, SM α-actin expression ↑ and SM22α expression↑ in iliac artery SMCs | |||
Liu et al. (2022) [89] | LDLR−/− mice on a Western diet with hepatic activin A or GFP expression | Activin A expression ↓; Activin A overexpression: plasma total and LDL cholesterol ↓, inflammatory cells in aortae↓, proliferating hematopoietic stem cells in bone marrow ↓, reduced atherosclerotic lesion and necrotic core area in aortae ↓, liver steatosis ↓ | Hepatic activin A expression reduces inflammation, hematopoietic stem cell expansion, liver steatosis, circulating cholesterol, and fat accumulation, which may contribute to the observed protection against atherosclerosis | |
Cardiac fibrosis | Hu et al. (2016) [29] | Activin A with or without AngⅡ treatment of adult rat left ventricular CFs with or without activin A, ERK1/2, or p38MAPK inhibition | Activin A: CF proliferation ↑, differentiation ↑, collagen I expression ↑, ERK1/2 and p38-MAPK pathway activation ↑; activin A inhibition, ALK4 inhibition and p38-MAPK inhibition: CF proliferation ↓, differentiation ↓, collagen I expression ↓, ERK1/2 and p38-MAPK pathway activation ↓; ERK1/2 inhibition: CF proliferation ↓, collagen I expression ↓ | Activin A promotes CF proliferation and differentiation via ALK4, partly through the ERK1/2 and p38-MAPK pathways |
Castillero et al. (2020) [30] | Sham and MI mice with or without ACTRII ligand inhibiting treatment | ACTRII/TGFBR inhibition: cardiac fibrosis ↓, CTGF ↓, type I collagen ↓, fibronectin ↓, α-smooth muscle actin ↓, and MMP-12 ↓ | ACTRII/TGFBR signaling inhibition prevents fibrosis after experimental MI | |
Post-MI serum with ACTRII/TGFBRI-inhibiting treatments in normal human ventricular CFs | Connective tissue growth factor (CTGF) ↓, type I collagen ↓, fibronectin ↓, α-smooth muscle actin ↓ | |||
Venteclef et al. (2015) [90] | Samples of EAT and SAT from 39 patients undergoing coronary bypass surgery induced rat atria in organoculture conditions with activin A or activin A neutralizing antibody treatment | The EAT secretome induced global fibrosis and highly expressed activin A in EAT. Activin A: atrial fibrosis ↑; Activin A blocked: atrial fibrosis ↑ | Activin A from EAT promotes myocardial fibrosis | |
Wei et al. (2016) [91] | Sham and post-MI HF rat model with or without Ramipril group | MI with Ramipril: collagen I and III deposition ↓, activin A and ActRII in the non-infarcted area of the left ventricle ↓ follistatin ↑ | Ramipril benefits left ventricular remodeling by reducing fibrosis in the left ventricles of rats with downregulation of activin A expression | |
MI | Lin et al. (2016) [22] | 278 patients with STEMI followed for a maximum of 3 years | High activin A level was associated with triglyceride level ↑, LVEF ↓, and left ventricular end diastolic ventricular volume index ↓ 6 months later: activin A > 129 pg/mL was associated with LVEF ↓ and left ventricular end diastolic ventricular volume index ↑ 3 years later: activin A > 129 pg/mL was a predictor of all-cause death (p = 0.022) but not of HF (p = 0.767) | Activin A level > 129 pg/mL predicts worse left ventricular remodeling and all-cause death in STEMI |
Castillero et al. (2020) [30] | Sham and MI mice with or without ACTRII ligand-inhibiting treatment | ACTRII/TGFBR inhibition in MI: preserved cardiac function, BNP ↓, phosphorylation of Akt ↑, p38-MAPK ↓, SERCA2a ↑, unfolded protein response markers ↓, cardiac fibrosis ↓ and fibrosis markers ↓ | ACTRII/TGFBR signaling promotes fibrosis and inflammation in patients and animals with HF post-MI, inducing cardiac remodeling | |
Dogra et al. (2017) [92] | Cryoinjury-affected zebrafish with or without INHBAA or MSTNB mutation | INHBAA overexpression: activation of ACVR2A, SMAD3 activation ↑, SMAD2 ↓, cardiac recovery and scar clearance ↑; INHBAA LOF: unresolved scarring after cardiac injury | Activin β subunit can benefit myocardial redevelopment and repair | |
Oshima et al. (2009) [31] | Activin A overexpression or activin A treatment of hypoxia/reoxygenation-induced NRVMs | Activin A: apoptosis ↓, Bcl-2 ↑; Activin A or ALK inhibitor: abolished cell-protective effect of activin A | Activin A protects myocytes from apoptosis | |
Systemic overexpression of activin A in IR injury mice | Bcl-2 ↑, SMAD2 ↑, infarct size ↓ | |||
Roh et al. (2019) [23] | Sham or TAC with or without activin A overexpression or systemic ActRII inhibition in aged C57BL/6 mice and MHCF764L mice and CM-specific ActRIIB−/− mice | Activin A overexpression: p-SMAD3 ↑, SERCA2a protein ↓, cardiomyocyte function ↓, Ca2+ cycling impairments ↓; ActRII inhibition: survival ↑, SERCA2a protein ↑ | Activin A induces cardiac atrophy and reduces SERCA2a protein, reducing myocardial energy demand and protecting ischemic myocardium | |
Activin A-induced NRVMs with or without ActRII inhibition | Activin A: SERCA2a mRNA and protein↓; ActRII inhibition: SERCA2a protein↑ | |||
Chen et al. (2014) [32] | Sham or IR in WT and TLR4−/− mice | Myocardial activin A ↑ following 30 min of ischemia and 2 h of reperfusion in wild-type mice TLR4(−/−) mice: myocardial activin A not increased Activin A antagonist: MI ↓ | Activin A damages cardiac cells in myocardial IR | |
Normoxic or hypoxia A NVCM with activin A treatment or activin A antagonist | Activin A: cellular injury ↑ after 3 h of hypoxia and 2 h of re-oxygenation, cardiomyocyte mitochondrial membrane potential↓, no effect on reactive oxygen species production Activin A antagonist: cellular injury ↓ | |||
Magga et al. (2019) [93] | Systemic ACVR2B blockade in hypoxia/reoxygenation-induced mice | ACVR2B blockade: infarcted area ↓, p-SMAD2↓, apoptosis ↓, autophagy ↓, preserved LV systolic function ↑, induced physiological hypertrophy, optimized cardiac metabolism | Systemic blockade of ACVR2B ligands is protective against cardiac IR injury | |
Activin A induced or ACVR2B blockade in hypoxia adult rat ventricular cardiomyocytes and neonatal cardiomyocytes transfected with SMAD2/3 reporter or SMAD1/5/8 reporter | Activin A: cell death ↑, SMAD2/3 ↑, SMAD1/5/8 not activated ACVR2B blockade: cell death ↓, SMAD2/3 ↓ | |||
Cardiac aging | Roh et al. (2019) [23] | Proteomics dataset from Framingham Heart Study | Activins increase in human aging and HF | Age-increased activin/ActRII signaling triggers HF progress |
Sham or TAC with or without activin A overexpression or systemic ActRII inhibition in aged C57BL/6 mice and MHCF764L mice and CM-specific ActRIIB−/− mice | Circulating activin A and cardiac ActRII signaling increase in murine aging Activin A overexpression: cardiac function ↓, p-SMAD3 ↑, SERCA2a protein ↓, cardiomyocyte function ↓, Ca2+ cycling impairments ↓; ActRII inhibition: systolic function in murine age-related HF models ↑, SERCA2a protein ↑ | |||
Activin A-induced NRVMs with or without ActRII inhibition | Activin A: SERCA2a mRNA and protein ↓; ActRII inhibition: SERCA2a protein ↑ | |||
HF | Wei et al. (2016) [91] | Sham and post-MI HF rat model with or without Ramipril group | MI with Ramipril: collagen I and III deposition ↓, activin A and ActRII in the non-infarcted area of the left ventricle ↓ follistatin ↑ | Ramipril benefits left ventricular remodeling by reducing fibrosis in the left ventricles of rats with downregulation of activin A expression |
Roh et al. (2019) [23] | Proteomics dataset from Framingham Heart Study | Activins increase in HF | Long-term activin/ActRII signaling activation impairs cardiac function and may lead to HF | |
Sham or TAC with or without activin A overexpression or systemic ActRII inhibition in aged C57BL/6 mice and MHCF764L mice and CM-specific ActRIIB−/− mice | Circulating activin A and cardiac ActRII signaling increase in LV pressure overload Activin A overexpression: cardiac function ↓, p-SMAD3 ↑, SERCA2a protein ↓, cardiomyocyte function ↓, Ca2+ cycling impairments ↓; ActRII inhibition: preserves and restores systolic function, pathologic gene expression profiles ↓, survival ↑, SERCA2a protein ↑; CM-specific ActRIIB−/−: cardiac dysfunction ↓ | |||
Activin A-induced NRVMs with or without ActRII inhibition | Activin A: SERCA2a mRNA and protein ↓; ActRII inhibition: SERCA2a protein ↑ | |||
Yndestad et al. (2004) [24] | During 1999 to 2000, white patients with stable HF for >4 months NYHA II through IV with no changes in medication during the last 3 months, compared with healthy control subjects | Serum levels of activin A ↑, INHBA in T cells ↑ in HF patients according to disease severity | Activin A is involved in the pathogenesis of HF | |
Rat model of MI-induced HF | INHBA and Activin receptors ↑ after MI, localized activin A solely to cardiomyocytes | |||
Activin A-activated NRVMs | SMAD2 ↑, infarction healing and myocardial remodeling mediators of gene expression ↑ | |||
MacDonnell et al. (2022) [94] | Activin A overexpression mice | Produced cardiac dysfunction, cardiac atrophy, cardiac stress markers ↑ | Inflammatory cytokine-induced upregulation of activin A by CFs directly impairs cardiomyocyte contractility, which may contribute to cardiac dysfunction | |
Activin A treatment of human iPSC–cardiomyocytes with or without anti-activin A antibody | Activin A: SMAD2/3 phosphorylation ↑, contractility ↓, prolonged relaxation kinetics, induced spontaneous beating, maladaptive diastolic calcium handling; Anti-Activin A: abrogated maladaptive calcium handling and CM contractile dysfunction | |||
Inflammatory cytokine-induced primary human CFs | Strong upregulation of activin A |
Receptor | Cardiovascular Phenotypic Changes | Function |
---|---|---|
ALK1 | Vasculogenesis and angiogenesis | Regulate blood pressure and vascular homeostasis; ALK1 deficiency or abnormality leads to abnormal angiogenesis and impaired differentiation. |
Atherosclerosis | Contribute to atherosclerotic cardiovascular disease progression; polymorphisms in ALK1 increase cardiovascular risk factors. | |
Cardiac fibrosis | Reduced ALK1 promotes cardiac fibrosis. | |
ALK4 | Cardiac fibrosis | Promote cardiac fibrosis; reduced ALK4 expression suppresses cardiac fibrosis; regulates epithelial–mesenchymal transition. |
MI | Knockdown of ALK4 improves ischemia–reperfusion injury. | |
Myocardial remodeling | Induces cardiomyopathy, inhibits endothelial cell proliferation and vascular remodeling; ALK4 deficiency attenuates pathological cardiac hypertrophy. | |
ALK7 | Diabetic cardiomyopathies | Induces cardiomyocyte apoptosis; silencing ALK7 alleviates cardiomyocyte apoptosis, cardiac fibrosis, and cardiac dysfunction. |
Cardiac hypertrophy | Prevents pathological cardiac hypertrophy. | |
Cardiac electrophysiology | Prevents ventricular arrhythmias. | |
Promotes vascular smooth muscle cell phenotype modulation. | ||
ACTRII | Cardiac aging and HF | Impairs cardiac function, promotes HF; inhibiting ACTRII attenuates cardiac remodeling and prevents fibrosis post-ischemic HF. |
Myocardial remodeling | Inhibiting ACTRII attenuates cardiac remodeling, prevents fibrosis, and improves cardiomyopathy. | |
Endoglin | Vasculogenesis and angiogenesis | Contributes to vascular structure formation and angiogenesis, regulates blood pressure and vascular homeostasis; endoglin mutations contribute to hereditary hemorrhagic telangiectasia type 1. |
Cardiac development | Regulates cardiac valvular formation. | |
Atherosclerosis | Modulates endothelial cell activity, participates in plaque formation; endoglin interference affects atherosclerosis; polymorphisms in endoglin increase cardiovascular risk factors. | |
Cardiac fibrosis | Promotes cardiac fibrosis and regulates ECM synthesis; inhibiting endothelial attenuates type I collagen expression and cardiac fibrosis. | |
HF | Endoglin deficiency promotes HF development; regulates the expression of transient receptor potential channels in HF. | |
Betaglycan | Cardiac development | Mediates epithelial–mesenchymal transition and coronary artery vessel development; betaglycan mutations lead to fatal defects during heart development. |
MI | Promotes cardiomyocyte apoptosis and enlarges infarct size; protects post-infarction cardiac fibroblasts from apoptosis and engages in fibrosis. | |
Cardiac fibrosis and myocardial remodeling | Inhibits collagen production and attenuates cardiac fibrosis. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tang, W.; Gu, Z.; Guo, J.; Lin, M.; Tao, H.; Jia, D.; Jia, P. Activins and Inhibins in Cardiovascular Pathophysiology. Biomolecules 2024, 14, 1462. https://doi.org/10.3390/biom14111462
Tang W, Gu Z, Guo J, Lin M, Tao H, Jia D, Jia P. Activins and Inhibins in Cardiovascular Pathophysiology. Biomolecules. 2024; 14(11):1462. https://doi.org/10.3390/biom14111462
Chicago/Turabian StyleTang, Wenyi, Zhilin Gu, Jiuqi Guo, Mingzhi Lin, Hongqian Tao, Dalin Jia, and Pengyu Jia. 2024. "Activins and Inhibins in Cardiovascular Pathophysiology" Biomolecules 14, no. 11: 1462. https://doi.org/10.3390/biom14111462
APA StyleTang, W., Gu, Z., Guo, J., Lin, M., Tao, H., Jia, D., & Jia, P. (2024). Activins and Inhibins in Cardiovascular Pathophysiology. Biomolecules, 14(11), 1462. https://doi.org/10.3390/biom14111462