Serum Leucine-Rich Alpha-2 Glycoprotein 1 Levels in Patients with Lipodystrophy Syndromes
Abstract
:1. Introduction
2. Materials and Methods
2.1. Patients
2.2. Laboratory Assays
2.3. Mouse Experiments
2.4. RNA Isolation and Gene Expression Analysis
2.5. Statistical Analysis
3. Results
3.1. Descriptive Statistics
3.2. Lrg1 mRNA Expression in Several Tissues of an LD Mouse Model
3.3. Correlation Analysis
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Camilli, C.; Hoeh, A.E.; de Rossi, G.; Moss, S.E.; Greenwood, J. LRG1: An emerging player in disease pathogenesis. J. Biomed. Sci. 2022, 29, 6. [Google Scholar] [CrossRef] [PubMed]
- He, S.; Ryu, J.; Liu, J.; Luo, H.; Lv, Y.; Langlais, P.R.; Wen, J.; Dong, F.; Sun, Z.; Xia, W.; et al. LRG1 is an adipokine that mediates obesity-induced hepatosteatosis and insulin resistance. J. Clin. Investig. 2021, 131, e148545. [Google Scholar] [CrossRef] [PubMed]
- Alhammad, R.; Abu-Farha, M.; Hammad, M.M.; Thanaraj, T.A.; Channanath, A.; Alam-Eldin, N.; Al-Sabah, R.; Shaban, L.; Alduraywish, A.; Al-Mulla, F.; et al. Increased LRG1 Levels in Overweight and Obese Adolescents and Its Association with Obesity Markers, Including Leptin, Chemerin, and High Sensitivity C-Reactive Protein. Int. J. Mol. Sci. 2022, 23, 8564. [Google Scholar] [CrossRef] [PubMed]
- Lim, K.; Haider, A.; Adams, C.; Sleigh, A.; Savage, D.B. Lipodistrophy: A paradigm for understanding the consequences of “overloading” adipose tissue. Physiol. Rev. 2021, 101, 907–993. [Google Scholar] [CrossRef] [PubMed]
- Haque, W.A.; Shimomura, I.; Matsuzawa, Y.; Garg, A. Serum adiponectin and leptin levels in patients with lipodystrophies. J. Clin. Endocrinol. Metab. 2002, 87, 2395. [Google Scholar] [CrossRef]
- Fasshauer, M.; Blüher, M. Adipokines in health and disease. Trends Pharmacol. Sci. 2015, 36, 461–470. [Google Scholar] [CrossRef]
- Oral, E.A.; Simha, V.; Ruiz, E.; Andewelt, A.; Premkumar, A.; Snell, P.; Wagner, A.J.; DePaoli, A.M.; Reitman, M.L.; Taylor, S.I.; et al. Leptin-replacement therapy for lipodystrophy. N. Engl. J. Med. 2002, 346, 570–578. [Google Scholar] [CrossRef]
- Diker-Cohen, T.; Cochran, E.; Gorden, P.; Brown, R.J. Partial and generalized lipodystrophy: Comparison of baseline characteristics and response to metreleptin. J. Clin. Endocrinol. Metab. 2015, 100, 1802–1810. [Google Scholar] [CrossRef]
- Mosbah, H.; Vantyghem, M.-C.; Nobécourt, E.; Andreelli, F.; Archambeaud, F.; Bismuth, E.; Briet, C.; Cartigny, M.; Chevalier, B.; Donadille, B.; et al. Therapeutic indications and metabolic effects of metreleptin in patients with lipodystrophy syndromes: Real-life experience from a national reference network. Diabetes Obes. Metab. 2022, 24, 1565–1577. [Google Scholar] [CrossRef]
- Kralisch, S.; Hoffmann, A.; Estrada-Kunz, J.; Stumvoll, M.; Fasshauer, M.; Tönjes, A.; Miehle, K. Increased Growth Differentiation Factor 15 in Patients with Hypoleptinemia-Associated Lipodystrophy. Int. J. Mol. Sci. 2020, 21, 7214. [Google Scholar] [CrossRef]
- Brown, R.J.; Araujo-Vilar, D.; Cheung, P.T.; Dunger, D.; Garg, A.; Jack, M.; Mungai, L.; Oral, E.A.; Patni, N.; Rother, K.I.; et al. The Diagnosis and Management of Lipodystrophy Syndromes: A Multi-Society Practice Guideline. J. Clin. Endocrinol. Metab. 2016, 101, 4500–4511. [Google Scholar] [CrossRef] [PubMed]
- Caussy, C.; Alquiraish, M.H.; Nguyen, P.; Hernandez, C.; Cepin, S.; Fortney, L.E.; Ajmera, V.; Bettencourt, R.; Collier, S.; Hooker, J.; et al. Optimal threshold of controlled attenuation parameter with MRI-PDFF as the gold standard for the detection of hepatic steatosis. Hepatology 2018, 67, 1348–1359. [Google Scholar] [CrossRef] [PubMed]
- Matthews, D.R.; Hosker, J.P.; Rudenski, A.S.; Naylor, B.A.; Treacher, D.F.; Turner, R.C. Homeostasis model assessment: Insulin resistance and beta-cell function from fasting plasma glucose and insulin concentrations in man. Diabetologia 1985, 28, 412–419. [Google Scholar] [CrossRef] [PubMed]
- Levey, A.S.; Stevens, L.A.; Schmid, C.H.; Zhang, Y.L.; Castro, A.F.; Feldman, H.I.; Kusek, J.W.; Eggers, P.; van Lente, F.; Greene, T.; et al. A new equation to estimate glomerular filtration rate. Ann. Intern. Med. 2009, 150, 604–612. [Google Scholar] [CrossRef]
- Shimomura, I.; Hammer, R.E.; Richardson, J.A.; Ikemoto, S.; Bashmakov, Y.; Goldstein, J.L.; Brown, M.S. Insulin resistance and diabetes mellitus in transgenic mice expressing nuclear SREBP-1c in adipose tissue: Model for congenital generalized lipodystrophy. Genes Dev. 1998, 12, 3182–3194. [Google Scholar] [CrossRef]
- Zou, Y.; Xu, Y.; Chen, X.; Wu, Y.; Fu, L.; Lv, Y. Research Progress on Leucine-Rich Alpha-2 Glycoprotein 1: A Review. Front. Pharmacol. 2021, 12, 809225. [Google Scholar] [CrossRef]
- Liu, J.-J.; Pek, S.L.T.; Liu, S.; Wang, J.; Lee, J.; Ang, K.; Shao, Y.M.; Gurung, R.L.; Tavintharan, S.; Tang, W.E.; et al. Association of Plasma Leucine-Rich Alpha-2 Glycoprotein 1 (LRG1) with All-Cause and Cause-Specific Mortality in Individuals with Type 2 Diabetes. Clin. Chem. 2021, 67, 1640–1649. [Google Scholar] [CrossRef]
- Hegele, R.A.; Kraw, M.E.; Ban, M.R.; Miskie, B.A.; Huff, M.W.; Cao, H. Elevated serum C-reactive protein and free fatty acids among nondiabetic carriers of missense mutations in the gene encoding lamin A/C (LMNA) with partial lipodystrophy. Arterioscler. Thromb. Vasc. Biol. 2003, 23, 111–116. [Google Scholar] [CrossRef]
- Miehle, K.; Ebert, T.; Kralisch, S.; Hoffmann, A.; Kratzsch, J.; Schlögl, H.; Stumvoll, M.; Fasshauer, M. Circulating serum chemerin levels are elevated in lipodystrophy. Clin. Endocrinol. 2016, 84, 932–938. [Google Scholar] [CrossRef]
- Miehle, K.; Ebert, T.; Kralisch, S.; Hoffmann, A.; Kratzsch, J.; Schlögl, H.; Stumvoll, M.; Fasshauer, M. Progranulin is increased in human and murine lipodystrophy. Diabetes Res. Clin. Pract. 2016, 120, 1–7. [Google Scholar] [CrossRef]
- Wong, S.P.Y.; Huda, M.; English, P.; Bargiota, A.; Wilding, J.P.H.; Johnson, A.; Corrall, R.; Pinkney, J.H. Adipokines and the insulin resistance syndrome in familial partial lipodystrophy caused by a mutation in lamin A/C. Diabetologia 2005, 48, 2641–2649. [Google Scholar] [CrossRef] [PubMed]
- Foss-Freitas, M.C.; Ferraz, R.C.; Monteiro, L.Z.; Gomes, P.M.; Iwakura, R.; de Freitas, L.C.C.; Foss, M.C. Endoplasmic reticulum stress activation in adipose tissue induces metabolic syndrome in individuals with familial partial lipodystrophy of the Dunnigan type. Diabetol. Metab. Syndr. 2018, 10, 6. [Google Scholar] [CrossRef] [PubMed]
- Druhan, L.J.; Lance, A.; Li, S.; Price, A.E.; Emerson, J.T.; Baxter, S.A.; Gerber, J.M.; Avalos, B.R. Leucine Rich α-2 Glycoprotein: A Novel Neutrophil Granule Protein and Modulator of Myelopoiesis. PLoS ONE 2017, 12, e0170261. [Google Scholar] [CrossRef] [PubMed]
- Choi, C.H.J.; Barr, W.; Zaman, S.; Model, C.; Park, A.; Koenen, M.; Lin, Z.; Szwed, S.K.; Marchildon, F.; Crane, A.; et al. LRG1 is an adipokine that promotes insulin sensitivity and suppresses inflammation. Elife 2022, 11, e81559. [Google Scholar] [CrossRef]
- Abe, I.; Shiga, H.; Chiba, H.; Miyazawa, T.; Oomori, S.; Shimoyama, Y.; Moroi, R.; Kuroha, M.; Kakuta, Y.; Kinouchi, Y.; et al. Serum leucine-rich alpha-2 glycoprotein as a predictive factor of endoscopic remission in Crohn’s disease. J. Gastroenterol. Hepatol. 2022, 37, 1741–1748. [Google Scholar] [CrossRef]
- Shinzaki, S.; Matsuoka, K.; Tanaka, H.; Takeshima, F.; Kato, S.; Torisu, T.; Ohta, Y.; Watanabe, K.; Nakamura, S.; Yoshimura, N.; et al. Leucine-rich alpha-2 glycoprotein is a potential biomarker to monitor disease activity in inflammatory bowel disease receiving adalimumab: PLANET study. J. Gastroenterol. 2021, 56, 560–569. [Google Scholar] [CrossRef]
- Aaron, N.; Kraakman, M.J.; Zhou, Q.; Liu, Q.; Costa, S.; Yang, J.; Liu, L.; Yu, L.; Wang, L.; He, Y.; et al. Adipsin promotes bone marrow adiposity by priming mesenchymal stem cells. Elife 2021, 10, e69209. [Google Scholar] [CrossRef]
- Liu, J.-J.; Pek, S.L.T.; Ang, K.; Tavintharan, S.; Lim, S.C. Plasma Leucine-Rich α-2-Glycoprotein 1 Predicts Rapid eGFR Decline and Albuminuria Progression in Type 2 Diabetes Mellitus. J. Clin. Endocrinol. Metab. 2017, 102, 3683–3691. [Google Scholar] [CrossRef]
- Hong, Q.; Zhang, L.; Fu, J.; Verghese, D.A.; Chauhan, K.; Nadkarni, G.N.; Li, Z.; Ju, W.; Kretzler, M.; Cai, G.-Y.; et al. LRG1 Promotes Diabetic Kidney Disease Progression by Enhancing TGF-β-Induced Angiogenesis. J. Am. Soc. Nephrol. 2019, 30, 546–562. [Google Scholar] [CrossRef]
- Ceccarini, G.; Magno, S.; Gilio, D.; Pelosini, C.; Santini, F. Autoimmunity in lipodystrophy syndromes. Presse Med. 2021, 50, 104073. [Google Scholar] [CrossRef]
- Zammouri, J.; Vatier, C.; Capel, E.; Auclair, M.; Storey-London, C.; Bismuth, E.; Mosbah, H.; Donadille, B.; Janmaat, S.; Fève, B.; et al. Molecular and Cellular Bases of Lipodystrophy Syndromes. Front. Endocrinol. 2021, 12, 803189. [Google Scholar] [CrossRef] [PubMed]
- Jéru, I. Genetics of lipodystrophy syndromes. Presse Med. 2021, 50, 104074. [Google Scholar] [CrossRef] [PubMed]
- Araújo-Vilar, D.; Fernández-Pombo, A.; Cobelo-Gómez, S.; Castro, A.I.; Sánchez-Iglesias, S. Lipodystrophy-associated progeroid syndromes. Hormones 2022, 21, 555–571. [Google Scholar] [CrossRef] [PubMed]
- de Oliveira, T.F.T.; Natal, M.R.C.; Teixeira, A.A.; Machado, B.B. Unusual magnetic resonance imaging findings of cystic bone lesions in congenital generalized lipodystrophy. J. Postgrad. Med. 2022, 68, 236–238. [Google Scholar] [CrossRef]
Normal Range | Controls | LD | p | |
---|---|---|---|---|
n | 60 | 60 | ||
LRG1 (ng/L) | 18.2 (8.3) | 17.6 (10.8) | 0.799 | |
Age (years) | 39 (22) | 42 (24) | 0.591 | |
Gender (male/female) | 12/48 | 12/48 | - | |
BMI (kg/m2) | 18.5–24.9 | 24.6 (4.9) | 25.2 (4.6) | 0.193 |
WHR | F: <0.85; M: <0.90 | 0.81 (0.11) | 0.97 (0.11) | <0.001 * |
SBP (mmHg) | <140 | 122 (22) | 131 (19) | <0.001 * |
DBP (mmHg) | <90 | 78 (15) | 81 (14) | 0.183 |
HbA1c (%) | <6.5% | 5.2 (0.6) | 6.0 (2.1) | <0.001 * |
HbA1c (mmol/mol) | <48 | 33.3 (6.3) | 42.4 (23.0) | <0.001 * |
FG (mmol/L) | 3.9–5.6 | 5.2 (0.8) | 5.6 (3.8) | 0.020 * |
FI (pmol/L) | 20–144 | 51.8 (45.8) | 114.9 (113.6) | <0.001 * |
HOMA-IR | <2.0 | 1.7 (1.7) | 4.9 (5.8) | <0.001 * |
Cholesterol (mmol/L) | <5.20 | 5.36 (1.35) | 5.29 (2.05) | 0.258 |
HDL cholesterol (mmol/L) | >1.03 | 1.54 (0.59) | 0.85 (0.52) | <0.001 * |
LDL cholesterol (mmol/L) | 3.56 (1.39) | 2.74 (1.76) | <0.001 * | |
TGs (mmol/L) | <1.70 | 0.98 (0.60) | 2.92 (5.82) | <0.001 * |
FFAs (mmol/L) | 0.10–0.45 | 0.44 (0.21) | 0.61 (0.28) | 0.002 * |
Creatinine (µmol/L) | 45–84 | 76 (20) | 67 (21) | 0.011 * |
eGFR (ml/min/1.73m2) | >90 | 94.0 (19.0) | 100.2 (31.7) | 0.043 * |
CRP (mg/L) | <5 | 0.7 (1.5) | 1.7 (2.5) | 0.016 * |
Adiponectin (mg/L) | 9.3 (7.7) | 2.7 (3.7) | <0.001 * | |
Leptin (µg/L) | 12.0 (13.9) | 4.3 (4.7) | <0.001 * | |
ALAT (µkat/L) | 0.17–0.58 | 0.34 (0.20) | 0.49 (0.42) | <0.001 * |
ASAT (µkat/L) | 0.17–0.6 | 0.33 (0.08) | 0.48 (0.28) | <0.001 * |
GGT (µkat/L) | 0.1–0.7 | 0.26 (0.17) | 0.65 (0.60) | <0.001 * |
Univariate Correlations | |
---|---|
r/p | |
Age (years) | 0.147/0.109 |
Group (LD vs. Non-LD) | - |
Gender | - |
BMI (kg/m2) | −0.015/0.868 |
WHR | 0.059/0.527 |
SBP (mmHg) | 0.074/0.423 |
DBP (mmHg) | −0.008/0.933 |
HbA1c (%) | 0.053/0.575 |
HbA1c (mmol/mol) | 0.051/0.589 |
FG (mmol/L) | −0.068/0.462 |
FI (pmol/L) | 0.027//0.771 |
HOMA-IR | −0.001/0.994 |
Cholesterol (mmol/L) | −0.071/0.438 |
HDL cholesterol (mmol/L) | −0.050/0.589 |
LDL cholesterol (mmol/L) | 0.060/0.518 |
TGs (mmol/L) | −0.018/0.848 |
FFAs (mmol/L) | −0.140/0.135 |
Creatinine (µmol/L) | −0.041/0.657 |
eGFR (ml/min/1.73 m2) | −0.049/0.593 |
CRP (mg/L) | 0.455/<0.001 * |
Adiponectin (mg/L) | −0.035/0.707 |
Leptin (µg/L) | 0.052/0.575 |
ALAT (µkat/L) | 0.071/0.462 |
ASAT (µkat/L) | 0.104/0.281 |
GGT (µkat/L) | −0.010/0.916 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Krienke, M.; Kralisch, S.; Wagner, L.; Tönjes, A.; Miehle, K. Serum Leucine-Rich Alpha-2 Glycoprotein 1 Levels in Patients with Lipodystrophy Syndromes. Biomolecules 2024, 14, 1474. https://doi.org/10.3390/biom14111474
Krienke M, Kralisch S, Wagner L, Tönjes A, Miehle K. Serum Leucine-Rich Alpha-2 Glycoprotein 1 Levels in Patients with Lipodystrophy Syndromes. Biomolecules. 2024; 14(11):1474. https://doi.org/10.3390/biom14111474
Chicago/Turabian StyleKrienke, Michelle, Susan Kralisch, Leonie Wagner, Anke Tönjes, and Konstanze Miehle. 2024. "Serum Leucine-Rich Alpha-2 Glycoprotein 1 Levels in Patients with Lipodystrophy Syndromes" Biomolecules 14, no. 11: 1474. https://doi.org/10.3390/biom14111474
APA StyleKrienke, M., Kralisch, S., Wagner, L., Tönjes, A., & Miehle, K. (2024). Serum Leucine-Rich Alpha-2 Glycoprotein 1 Levels in Patients with Lipodystrophy Syndromes. Biomolecules, 14(11), 1474. https://doi.org/10.3390/biom14111474