Structural Insights into Mechanisms Underlying Mitochondrial and Bacterial Cytochrome c Synthases
Abstract
:1. Introduction
2. Materials and Methods
2.1. In Vitro and In Vivo Measurements for HCCS Activities and Heme Attachment
2.2. Structural Modeling
2.3. TM-Score for Assessing Truncation Point
2.4. Video of HCCS in Its Activity Cycle
2.5. Alignments of Primary Sequences of HCCS and KCCS
3. Results
3.1. Structures of Human HCCS, With and Without Heme
3.2. Cytochrome c1 (cyt c1) as a Substrate for the Human HCCS, and the Role of cyt c/c1 Residues in Binding
3.3. Structures of HCCS with Heme and cyt c Substrates: Functions of Conserved Residues and Domains Based on In Vivo Activities and Biochemical Analyses of Purified HCCS Complexes
3.4. Release of Holocyt c from HCCS and CcsBA cyt c Synthases: Structural and Biochemical Considerations
3.5. Molecular Evolution of the Current Mitochondrial HCCS from the Mitochondrial Endosymbiont and the Kinetoplastid cyt c Synthase (KCCS)
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Kranz, R.; Lill, R.; Goldman, B.; Bonnard, G.; Merchant, S. Molecular mechanisms of cytochrome c biogenesis: Three distinct systems. Mol. Microbiol. 1998, 29, 383–396. [Google Scholar] [CrossRef] [PubMed]
- Kranz, R.G.; Richard-Fogal, C.; Taylor, J.-S.; Frawley, E.R. Cytochrome c biogenesis: Mechanisms for covalent modifications and trafficking of heme and for heme-iron redox control. Microbiol. Mol. Biol. Rev. 2009, 73, 510–528. [Google Scholar] [CrossRef] [PubMed]
- Babbitt, S.E.; Sutherland, M.C.; Francisco, B.S.; Mendez, D.L.; Kranz, R.G. Mitochondrial cytochrome c biogenesis: No longer an enigma. Trends Biochem. Sci. 2015, 40, 446–455. [Google Scholar] [CrossRef] [PubMed]
- Stevens, J.M.; Mavridou, D.A.I.; Hamer, R.; Kritsiligkou, P.; Goddard, A.D.; Ferguson, S.J. Cytochrome c biogenesis System I. FEBS J. 2011, 278, 4170–4178. [Google Scholar] [CrossRef]
- Allen, J.W.A. Cytochrome c biogenesis in mitochondria–Systems III and V. FEBS J. 2011, 278, 4198–4216. [Google Scholar] [CrossRef]
- Hamel, P.; Corvest, V.; Giegé, P.; Bonnard, G. Biochemical requirements for the maturation of mitochondrial c-type cytochromes. Biochim. Biophys. Acta 2009, 1793, 125–138. [Google Scholar] [CrossRef]
- Dumont, M.E.; Ernst, J.F.; Hampsey, D.M.; Sherman, F. Identification and sequence of the gene encoding cytochrome c heme lyase in the yeast Saccharomyces cerevisiae. EMBO J. 1987, 6, 235–241. [Google Scholar] [CrossRef]
- Zollner, A.; Rodel, G.; Haid, A. Molecular cloning and characterization of the Saccharomyces cerevisiae CYT2 gene encoding cytochrome-c1–heme lyase. Eur. J. Biochem. 1992, 207, 1093–1100. [Google Scholar] [CrossRef]
- Bernard, D.G.; Gabilly, S.T.; Dujardin, G.; Merchant, S.; Hamel, P.P. Overlapping Specificities of the Mitochondrial Cytochrome c and c1 Heme Lyases. J. Biol. Chem. 2003, 278, 49732–49742. [Google Scholar] [CrossRef]
- Schaefer, L.; Ballabio, A.; Zoghbi, H.Y. Cloning and Characterization of a Putative Human Holocytochromec-Type Synthetase Gene (HCCS) Isolated from the Critical Region for Microphthalmia with Linear Skin Defects (MLS). Genomics 1996, 34, 166–172. [Google Scholar] [CrossRef]
- Prakash, S.K. Loss of holocytochrome c-type synthetase causes the male lethality of X-linked dominant micro-phthalmia with linear skin defects (MLS) syndrome. Hum. Mol. Genet. 2002, 11, 3237–3248. [Google Scholar] [CrossRef] [PubMed]
- Indrieri, A.; Conte, I.; Chesi, G.; Romano, A.; Quartararo, J.; Tatè, R.; Ghezzi, D.; Zeviani, M.; Goffrini, P.; Ferrero, I.; et al. The impairment of HCCS leads to MLS syndrome by activating a non-canonical cell death pathway in the brain and eyes. EMBO Mol. Med. 2013, 5, 280–293. [Google Scholar] [CrossRef] [PubMed]
- Van Rahden, V.A.; Rau, I.; Fuchs, S.; Kosyna, F.K.; de Almeida, H.; Fryssira, H.; Isidor, B.; Jauch, A.; Joubert, M.; Lachmeijer, A.M.A.; et al. Clinical spectrum of females with HCCS mutation: From no clinical signs to a neonatal lethal form of the microphthalmia with linear skin defects (MLS) syndrome. Orphanet J. Rare Dis. 2014, 9, 53. [Google Scholar] [CrossRef] [PubMed]
- Wimplinger, I.; Shaw, G.M.; Kutsche, K. HCCS loss-of-function missense mutation in a female with bilateral microphthalmia and sclerocornea: A novel gene for severe ocular malformations? Mol. Vis. 2007, 13, 1475–1482. [Google Scholar]
- Wimplinger, I.; Morleo, M.; Rosenberger, G.; Iaconis, D.; Orth, U.; Meinecke, P.; Lerer, I.; Ballabio, A.; Gal, A.; Franco, B.; et al. Mutations of the Mitochondrial Holocytochrome c–Type Synthase in X-Linked Dominant Microphthalmia with Linear Skin Defects Syndrome. Am. J. Hum. Genet. 2006, 79, 878–889. [Google Scholar] [CrossRef]
- San Francisco, B.; Bretsnyder, E.C.; Kranz, R.G. Human mitochondrial holocytochrome c synthase’s heme binding, maturation determinants, and complex formation with cytochrome c. Proc. Natl. Acad. Sci. USA 2013, 110, E788–E797. [Google Scholar] [CrossRef]
- Babbitt, S.E.; San Francisco, B.; Mendez, D.L.; Lukat-Rodgers, G.S.; Rodgers, K.R.; Bretsnyder, E.C.; Kranz, R.G. Mechanisms of Mitochondrial Holocytochrome c Synthase and the Key Roles Played by Cysteines and Histidine of the Heme Attachment Site, Cys-XX-Cys-His. J. Biol. Chem. 2014, 289, 28795–28807. [Google Scholar] [CrossRef]
- Babbitt, S.E.; San Francisco, B.; Bretsnyder, E.C.; Kranz, R.G. Conserved Residues of the Human Mitochondrial Holocytochrome c Synthase Mediate Interactions with Heme. Biochemistry 2014, 53, 5261–5271. [Google Scholar] [CrossRef]
- Babbitt, S.E.; Hsu, J.; Mendez, D.L.; Kranz, R.G. Biosynthesis of Single Thioether c-Type Cytochromes Provides Insight into Mechanisms Intrinsic to Holocytochrome c Synthase (HCCS). Biochemistry 2017, 56, 3337–3346. [Google Scholar] [CrossRef]
- Babbitt, S.E.; Hsu, J.; Kranz, R.G. Molecular Basis Behind Inability of Mitochondrial Holocytochrome c Synthase to Mature Bacterial Cytochromes: Defining a Critical Role for Cytochrome c α HELIX-1. J. Biol. Chem. 2016, 291, 17523–17534. [Google Scholar] [CrossRef]
- Sutherland, M.C.; Mendez, D.L.; Babbitt, S.E.; Tillman, D.E.; Melnikov, O.; Tran, N.L.; Prizant, N.T.; Collier, A.L.; Kranz, R.G. In vitro reconstitution reveals major differences between human and bacterial cytochrome c synthases. Elife 2021, 10, e64891. [Google Scholar] [CrossRef] [PubMed]
- Pollock, W.B.R.; Rosell, F.I.; Twitchett, M.B.; Dumont, M.E.; Mauk, A.G. Bacterial Expression of a Mitochondrial Cytochrome c. Trimethylation of Lys72 in Yeast iso-1-Cytochrome c and the Alkaline Conformational Transition. Biochemistry 1998, 37, 6124–6131. [Google Scholar] [CrossRef] [PubMed]
- Kleingardner, J.G.; Bren, K.L. Comparing substrate specificity between cytochrome c maturation and cytochrome c heme lyase systems for cytochrome c biogenesis. Metallomics 2011, 3, 396. [Google Scholar] [CrossRef] [PubMed]
- Asher, W.B.; Bren, K.L. Cytochrome c heme lyase can mature a fusion peptide composed of the amino-terminal residues of horse cytochrome c. Chem. Commun. 2012, 48, 8344. [Google Scholar] [CrossRef] [PubMed]
- Stevens, J.M.; Zhang, Y.; Muthuvel, G.; Sam, K.A.; Allen, J.W.A.; Ferguson, S.J. The mitochondrial cytochrome c N-terminal region is critical for maturation by holocytochrome c synthase. FEBS Lett. 2011, 585, 1891–1896. [Google Scholar] [CrossRef]
- Zhang, Y.; Stevens, J.M.; Ferguson, S.J. Substrate recognition of holocytochrome c synthase: N-terminal region and CXXCH motif of mitochondrial cytochrome c. FEBS Lett. 2014, 588, 3367–3374. [Google Scholar] [CrossRef]
- Brausemann, A.; Zhang, L.; Ilcu, L.; Einsle, O. Architecture of the membrane-bound cytochrome c heme lyase CcmF. Nat. Chem. Biol. 2021, 17, 800–805. [Google Scholar] [CrossRef]
- Mendez, D.L.; Lowder, E.P.; Tillman, D.E.; Sutherland, M.C.; Collier, A.L.; Rau, M.J.; Fitzpatrick, J.A.J.; Kranz, R.G. Cryo-EM of CcsBA reveals the basis for cytochrome c biogenesis and heme transport. Nat. Chem. Biol. 2022, 18, 101–108. [Google Scholar] [CrossRef]
- Li, J.; Zheng, W.; Gu, M.; Han, L.; Luo, Y.; Yu, K.; Sun, M.; Zong, Y.; Ma, X.; Liu, B.; et al. Structures of the CcmABCD heme release complex at multiple states. Nat. Commun. 2022, 13, 6422. [Google Scholar] [CrossRef]
- Arnesano, F.; Banci, L.; Barker, P.D.; Bertini, I.; Rosato, A.; Su, X.C.; Viezzoli, M.S. Solution structure and characterization of the heme chaperone CcmE. Biochemistry 2002, 41, 13587–13594. [Google Scholar] [CrossRef]
- Ilcu, L.; Denkhaus, L.; Brausemann, A.; Zhang, L.; Einsle, O. Architecture of the Heme-translocating CcmABCD/E complex required for Cytochrome c maturation. Nat. Commun. 2023, 14, 5190. [Google Scholar] [CrossRef] [PubMed]
- Huynh, J.Q.; Lowder, E.P.; Kranz, R.G. Structural basis of membrane machines that traffick and attach heme to cytochromes. J. Biol. Chem. 2023, 299, 105332. [Google Scholar] [CrossRef] [PubMed]
- Mendez, D.L.; Babbitt, S.E.; King, J.D.; D’Alessandro, J.; Watson, M.B.; Blankenship, R.E.; Mirica, L.M.; Kranz, R.G. Engineered holocytochrome c synthases that biosynthesize new cytochromes c. Proc. Natl. Acad. Sci. USA 2017, 114, 2235–2240. [Google Scholar] [CrossRef] [PubMed]
- Jumper, J.; Evans, R.; Pritzel, A.; Green, T.; Figurnov, M.; Ronneberger, O.; Tunyasuvunakool, K.; Bates, R.; Žídek, A.; Potapenko, A.; et al. Highly accurate protein structure prediction with AlphaFold. Nature 2021, 596, 583–589. [Google Scholar] [CrossRef]
- Abramson, J.; Adler, J.; Dunger, J.; Evans, R.; Green, T.; Pritzel, A.; Ronneberger, O.; Willmore, L.; Ballard, A.J.; Bambrick, J.; et al. Accurate structure prediction of biomolecular interactions with AlphaFold 3. Nature 2024, 630, 493–500. [Google Scholar] [CrossRef]
- Humphreys, I.R.; Pei, J.; Baek, M.; Krishnakumar, A.; Anishchenko, I.; Ovchinnikov, S.; Zhang, J.; Ness, T.J.; Banjade, S.; Bagde, S.R.; et al. Computed structures of core eukaryotic protein complexes. Science 2021, 374, eabm4805. [Google Scholar] [CrossRef]
- Sutherland, M.C.; Jarodsky, J.M.; Ovchinnikov, S.; Baker, D.; Kranz, R.G. Structurally Mapping Endogenous Heme in the CcmCDE Membrane Complex for Cytochrome c Biogenesis. J. Mol. Biol. 2018, 430, 1065–1080. [Google Scholar] [CrossRef]
- Zhang, Y.; Skolnick, J. Scoring function for automated assessment of protein structure template quality. Proteins Struct. Funct. Bioinform. 2004, 57, 702–710. [Google Scholar] [CrossRef]
- Thompson, J.D.; Gibson, T.J.; Higgins, D.G. Multiple sequence alignment using ClustalW and ClustalX. Curr. Protoc. Bioinform. 2002. [Google Scholar] [CrossRef]
- Madeira, F.; Madhusoodanan, N.; Lee, J.; Eusebi, A.; Niewielska, A.; Tivey, A.R.N.; Lopez, R.; Butcher, S. The EMBL-EBI Job Dispatcher sequence analysis tools framework in 2024. Nucleic Acids Res. 2024, 52, W521–W525. [Google Scholar] [CrossRef]
- Waterhouse, A.M.; Procter, J.B.; Martin, D.M.A.; Clamp, M.; Barton, G.J. Jalview Version 2—A multiple sequence alignment editor and analysis workbench. Bioinformatics 2009, 25, 1189–1191. [Google Scholar] [CrossRef] [PubMed]
- Lill, R.; Stuart, R.A.; Drygas, M.E.; Nargang, F.E.; Neupert, W. Import of cytochrome c heme lyase into mitochondria: A novel pathway into the intermembrane space. EMBO J. 1992, 11, 449–456. [Google Scholar] [CrossRef] [PubMed]
- Diekert, K.; Kispal, G.; Guiard, B.; Lill, R. An internal targeting signal directing proteins into the mitochondrial intermembrane space. Proc. Natl. Acad. Sci. USA 1999, 96, 11752–11757. [Google Scholar] [CrossRef] [PubMed]
- Steiner, H.; Zollner, A.; Haid, A.; Neupert, W.; Lill, R. Biogenesis of Mitochondrial Heme Lyases in Yeast: Import and Folding in the Intermembrane Space. J. Biol. Chem. 1995, 270, 22842–22849. [Google Scholar] [CrossRef]
- Trott, O.; Olson, A.J. AutoDock Vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J. Comput. Chem. 2010, 31, 455–461. [Google Scholar] [CrossRef]
- García-Guerrero, A.E.; Marvin, R.G.; Blackwell, A.M.; Sigala, P.A. Biogenesis of cytochromes c and c (1) in the electron transport chain of malaria parasites. bioRxiv 2024. [Google Scholar] [CrossRef]
- Dickerson, R.E.; Takano, T.; Eisenberg, D.; Kallai, O.B.; Samson, L.; Cooper, A.; Margoliash, E. Ferricytochrome c. I. General features of the horse and bonito proteins at 2.8 A resolution. J. Biol. Chem. 1971, 246, 1511–1535. [Google Scholar] [CrossRef]
- Bushnell, G.W.; Louie, G.V.; Brayer, G.D. High-resolution three-dimensional structure of horse heart cytochrome c. J. Mol. Biol. 1990, 214, 585–595. [Google Scholar] [CrossRef]
- Allen, J.W.A.; Barker, P.D.; Daltrop, O.; Stevens, J.M.; Tomlinson, E.J.; Sinha, N.; Sambongi, Y.; Ferguson, S.J. Why isn’t “standard” heme good enough for c-type and d1-type cytochromes? Dalton Trans. 2005, 21, 3410–3418. [Google Scholar] [CrossRef]
- Beckman, D.L.; Trawick, D.R.; Kranz, R.G. Bacterial cytochromes c biogenesis. Genes Dev. 1992, 6, 268–283. [Google Scholar] [CrossRef]
- Frawley, E.R.; Kranz, R.G. CcsBA is a cytochrome c synthetase that also functions in heme transport. Proc. Natl. Acad. Sci. USA 2009, 106, 10201–10206. [Google Scholar] [CrossRef] [PubMed]
- Sutherland, M.C.; Tran, N.L.; Tillman, D.E.; Jarodsky, J.M.; Yuan, J.; Kranz, R.G. Structure-Function Analysis of the Bifunctional CcsBA Heme Exporter and Cytochrome c Synthetase. mBio 2018, 9, e02134-18. [Google Scholar] [CrossRef] [PubMed]
- Allen, J.W.A.; Jackson, A.P.; Rigden, D.J.; Willis, A.C.; Ferguson, S.J.; Ginger, M.L. Order within a mosaic distribution of mitochondrial c-type cytochrome biogenesis systems? Evolution of mitochondrial cytochrome c maturation. FEBS J. 2008, 275, 2385–2402. [Google Scholar] [CrossRef] [PubMed]
- Belbelazi, A.; Neish, R.; Carr, M.; Mottram, J.C.; Ginger, M.L. Divergent Cytochrome c Maturation System in Kinetoplastid Protists. mBio 2021, 12, e00166-21. [Google Scholar] [CrossRef] [PubMed]
- Babul, J.; Stellwagen, E. Participation of the protein ligands in the folding of cytochrome c. Biochemistry 1972, 11, 1195–1200. [Google Scholar] [CrossRef]
- Pletneva, E.V.; Gray, H.B.; Winkler, J.R. Snapshots of cytochrome c folding. Proc. Natl. Acad. Sci. USA 2005, 102, 18397–18402. [Google Scholar] [CrossRef]
- Yamada, S.; Bouley Ford, N.D.; Keller, G.E.; Ford, W.C.; Gray, H.B.; Winkler, J.R. Snapshots of a protein folding intermediate. Proc. Natl. Acad. Sci. USA 2013, 110, 1606–1610. [Google Scholar] [CrossRef]
- Medlock, A.E.; Dailey, T.A.; Ross, T.A.; Dailey, H.A.; Lanzilotta, W.N. A pi-helix switch selective for porphyrin deprotonation and product release in human ferrochelatase. J. Mol. Biol. 2007, 373, 1006–1016. [Google Scholar] [CrossRef]
- Medlock, A.E.; Najahi-Missaoui, W.; Shiferaw, M.T.; Albetel, A.N.; Lanzilotta, W.N.; Dailey, H.A. Insight into the function of active site residues in the catalytic mechanism of human ferrochelatase. Biochem. J. 2021, 478, 3239–3252. [Google Scholar] [CrossRef]
- Sigfridsson, E.; Ryde, U. The importance of porphyrin distortions for the ferrochelatase reaction. J. Biol. Inorg. Chem. 2003, 8, 273–282. [Google Scholar] [CrossRef]
- Medlock, A.E.; Carter, M.; Dailey, T.A.; Dailey, H.A.; Lanzilotta, W.N. Product release rather than chelation determines metal specificity for ferrochelatase. J. Mol. Biol. 2009, 393, 308–319. [Google Scholar] [CrossRef] [PubMed]
- Gillam, M.E.; Hunter, G.A.; Ferreira, G.C. Ferrochelatase π-helix: Implications from examining the role of the conserved π-helix glutamates in porphyrin metalation and product release. Arch. Biochem. Biophys. 2018, 644, 37–46. [Google Scholar] [CrossRef] [PubMed]
- Franco, R.; Al-Karadaghi, S.; Ferreira, G.C. Resonance Raman Spectroscopic Examination of Ferrochelatase-induced Porphyrin Distortion. J. Porphyr. Phthalocyanines 2011, 15, 357–363. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Childs, P.L.; Lowder, E.P.; Mendez, D.L.; Babbitt, S.E.; Martinie, A.; Huynh, J.Q.; Kranz, R.G. Structural Insights into Mechanisms Underlying Mitochondrial and Bacterial Cytochrome c Synthases. Biomolecules 2024, 14, 1483. https://doi.org/10.3390/biom14121483
Childs PL, Lowder EP, Mendez DL, Babbitt SE, Martinie A, Huynh JQ, Kranz RG. Structural Insights into Mechanisms Underlying Mitochondrial and Bacterial Cytochrome c Synthases. Biomolecules. 2024; 14(12):1483. https://doi.org/10.3390/biom14121483
Chicago/Turabian StyleChilds, Pema L., Ethan P. Lowder, Deanna L. Mendez, Shalon E. Babbitt, Amidala Martinie, Jonathan Q. Huynh, and Robert G. Kranz. 2024. "Structural Insights into Mechanisms Underlying Mitochondrial and Bacterial Cytochrome c Synthases" Biomolecules 14, no. 12: 1483. https://doi.org/10.3390/biom14121483
APA StyleChilds, P. L., Lowder, E. P., Mendez, D. L., Babbitt, S. E., Martinie, A., Huynh, J. Q., & Kranz, R. G. (2024). Structural Insights into Mechanisms Underlying Mitochondrial and Bacterial Cytochrome c Synthases. Biomolecules, 14(12), 1483. https://doi.org/10.3390/biom14121483