Involvement of Metalloproteases in the Fertilization of the Ascidian Halocynthia roretzi
Abstract
:1. Introduction
2. Materials and Methods
2.1. Animals and Gametes
2.2. Fertilization Experiments
2.3. RNA Preparation from Various Tissues/Organs and Reverse Transcription (RT)
2.4. BLAST Search of Tast-Homologous Gene Models in H. roretzi
2.5. Preparation of Antibodies Against HrTast2c and Their Effects on Fertilization
2.6. Sperm Extraction
3. Results
3.1. Effects of Metalloprotease Inhibitors on Fertilization
3.2. Candidate Astacin-like Metalloproteases Involved in Fertilization
3.3. Transcription of HrTast Genes in H. roretzi
3.4. Effects of HrTast2c Antibodies on Fertilization
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Mengerink, K.J.; Vacquier, V.D. Glycobiology of sperm-egg interactions in deuterostomes. Glycobiology 2001, 11, 37R–43R. [Google Scholar] [CrossRef] [PubMed]
- Litscher, E.S.; Wassarman, P.M. Extracellular Matrix and Egg Coats; Academic Press: Cambridge, MA, USA, 2018; Volume 130. [Google Scholar]
- Florman, H.M.; Ducibella, T. Fertilization in mammals. In Knobil and Neill’s Physiology of Reproduction, 3rd ed.; Neil, J.D., Ed.; Academic Pres: Amsterdam, The Netherlands, 2006; Volume 1, pp. 55–112. [Google Scholar]
- Avella, M.A.; Xiong, B.; Dean, J. The molecular basis of gamete recognition in mice and humans. Mol. Human. Reprod. 2013, 19, 279–289. [Google Scholar] [CrossRef] [PubMed]
- Ikawa, M.; Inoue, N.; Benham, A.M.; Okabe, M. Fertilization: A sperm’s journey to and interaction with the oocyte. J. Clin. Investig. 2010, 120, 984–994. [Google Scholar] [CrossRef] [PubMed]
- Morton, D.B. The occurrence and function of proteolytic enzymes in the reproductive tract of mammals. In Proteinases in Mammalian Cells and Tissues; Barret, A.J., Ed.; North–Holland: Amsterdam, The Netherlands, 1977; pp. 445–500. [Google Scholar]
- Hoshi, M. Lysins. In Biology of Fertilization; Metz, C.B., Monroy, A., Eds.; Academic Press: Orlando, FL, USA, 1985; pp. 431–462. [Google Scholar]
- Sawada, H. Ascidian sperm lysin system. Zool. Sci. 2002, 19, 139–151. [Google Scholar] [CrossRef] [PubMed]
- Sutovsky, P. Sperm proteasome and fertilization. Reproduction 2011, 142, 1–14. [Google Scholar] [CrossRef]
- Yi, Y.-J.; Manandhar, G.; Oko, R.J.; Breed, W.G.; Sutovsky, P. Mechanism of sperm-zona pellucida penetration during mammalian fertilization: 26S proteasome as a candidate egg coat lysin. Soc. Reprod. Fertil. 2007, 63, 385–408. [Google Scholar]
- Raj, I.; Hosseini, H.S.; Dioguardi, E.; Nishimura, K.; Han, L.; Villa, A.; de Sanctis, D.; Jovine, L. Structural basis of egg-coat sperm recognition at fertilization. Cell 2017, 169, 1315–1326. [Google Scholar] [CrossRef]
- Urch, U.A. The action of acrosin on the zona pellucida. Adv. Exp. Med. Biol. 1986, 207, 113–132. [Google Scholar]
- Baba, T.; Azuma, S.; Kashiwabara, S.; Toyoda, Y. Sperm from mice carrying a targeted mutation of the acrosin gene can penetrate the oocyte zona pellucida and effect fertilization. J. Biol. Chem. 1994, 269, 31845–31849. [Google Scholar] [CrossRef]
- Yamagata, K.; Murayama, K.; Okabe, M.; Toshimori, K.; Nakanishi, T.; Kashiwabara, S.; Baba, T. Acrosin accelerates the dispersal of sperm acrosomal proteins during acrosome reaction. J. Biol. Chem. 1998, 273, 10470–10474. [Google Scholar] [CrossRef]
- Kawano, N.; Kang, W.; Yamashita, M.; Koga, Y.; Yamazaki, T.; Hata, T.; Miyado, K.; Baba, T. Mice lacking two sperm serine proteases, ACR and PRSS21, are subfertile, but the mutant sperm are infertile in vitro. Biol. Reprod. 2010, 83, 359–369. [Google Scholar] [CrossRef] [PubMed]
- Honda, A.; Siruntawineti, J.; Baba, T. Role of acrosomal matrix proteases in sperm-zona pellucida interactions. Hum. Reprod. Update 2002, 8, 405–412. [Google Scholar] [CrossRef] [PubMed]
- Hirose, M.; Honda, A.; Fulka, H.; Tamura-Nakano, M.; Matoba, S.; Tomishima, T.; Mochida, K.; Hasegawa, A.; Nagashima, K.; Inoue, K.; et al. Acrosin is essential for sperm penetration through the zona pellucida in hamsters. Proc. Natl. Acad. Sci. USA 2020, 117, 2513–2518. [Google Scholar] [CrossRef] [PubMed]
- Hoshi, M.; Numakunai, T.; Sawada, H. Evidence for participation of sperm proteinases in fertilization of the solitary ascidian, Halocynthia roretzi: Effects of protease inhibitors. Dev. Biol. 1981, 86, 117–121. [Google Scholar] [CrossRef] [PubMed]
- Sawada, H.; Yokosawa, H.; Hoshi, M.; Ishii, S. Evidence for acrosin-like enzyme in sperm extract and its involvement in fertilization of the ascidian, Halocynthia roretzi. Gamete Res. 1982, 5, 291–301. [Google Scholar] [CrossRef]
- Saito, T.; Sawada, H. Fertilization of ascidians: Gamete interaction, self/nonself recognition, and sperm penetration of egg-coat. Front. Cell Dev. Biol. 2022, 9, 827214. [Google Scholar] [CrossRef]
- Sawada, H.; Saito, T. Mechanisms of sperm-egg interactions: What ascidian fertilization research has taught us. Cells 2022, 11, 2096. [Google Scholar] [CrossRef]
- Akasaka, M.; Harada, Y.; Sawada, H. Vitellongenin C-terminal fragments participate in fertilization as egg-coat binding partners of sperm trypsin-like proteases in the ascidian Halocynthia roretzi. Biochem. Biophys. Res. Commun. 2010, 392, 479–484. [Google Scholar] [CrossRef]
- Akasaka, M.; Kato, K.H.; Kitajima, K.; Sawada, H. Identification of novel isoforms of vitellogenin expressed in ascidian eggs. J. Exp. Zool. Part B Mol. Dev. Evol. 2013, 320, 118–128. [Google Scholar] [CrossRef]
- Saitoh, Y.; Sawada, H.; Yokosawa, H. High molecular weight protease complexes (proteasomes) of sperm of the ascidian, Halocynthia roretzi: Isolation, characterization, and physiological roles in fertilization. Dev. Biol. 1993, 158, 238–244. [Google Scholar] [CrossRef]
- Lambert, C.C.; Lambert, G. The ascidian sperm reaction: Ca2+ uptake in relation to H+ efflux. Dev. Biol. 1981, 88, 312–317. [Google Scholar] [CrossRef] [PubMed]
- Sawada, H.; Sakai, N.; Abe, Y.; Tanaka, E.; Takahashi, Y.; Fujino, J.; Kodama, E.; Takizawa, S.; Yokosawa, H. Extracellular ubiquitination and proteasome-mediated degradation of the ascidian sperm receptor. Proc. Natl. Acad. Sci. USA 2002, 99, 1223–1228. [Google Scholar] [CrossRef] [PubMed]
- Brunetti, R.; Gissi, C.; Pennati, R.; Caicci, F.; Gasparini, F.; Manni, L. Morphological evidence that the molecularly determined Ciona intestinalis type A and type B are different species: Ciona robusta and Ciona intestinalis. J. Zool. Syst. Evol. 2015, 53, 186–193. [Google Scholar] [CrossRef]
- Sawada, H.; Pinto, M.R.; De Santis, R. Participation of sperm proteasome in fertilization of the Phlebobranch ascidian, Ciona intestinalis. Mol. Reprod. Develop. 1998, 50, 493–498. [Google Scholar] [CrossRef]
- Dehal, P.; Satou, Y.; Campbell, R.K.; Chapman, J.; Degnan, B.; De Tomaso, A.; Davidson, B.; Di Gregorio, A.; Gelpke, M.; Goodstein, D.M.; et al. The draft genome of Ciona intestinalis: Insights into chordate and vertebrate origins. Science 2002, 298, 2157–2167. [Google Scholar] [CrossRef]
- Brozovic, M.; Martin, C.; Dantec, C.; Dauga, D.; Mendez, M.; Simion, P.; Percher, M.; Laporte, B.; Scornavacca, C.; Di Gregorio, A.; et al. ANISEED 2015: A digital framework for the comparative developmental biology of ascidians. Nucleic Acids Res. 2016, 44, D808–D818. [Google Scholar] [CrossRef]
- Nakazawa, S.; Shirae-Kurabayashi, M.; Otsuka, K.; Sawada, H. Proteomics of ionomycin-induced ascidian sperm reaction: Released and exposed sperm proteins in the ascidian Ciona intestinalis. Proteomics 2015, 15, 4064–4079. [Google Scholar] [CrossRef]
- Nakazawa, S.; Shirae-Kurabayashi, M.; Sawada, H. The role of metalloproteases in fertilisation in the ascidian Ciona robusta. Sci. Rep. 2019, 9, 1009. [Google Scholar] [CrossRef]
- Saito, T.; Shiba, K.; Inaba, K.; Yamada, L.; Sawada, H. Self-incompatibility response induced by calcium increase in sperm of the ascidian Ciona intestinalis. Proc. Natl. Acad. Sci. USA 2012, 109, 4158–4162. [Google Scholar] [CrossRef]
- Sawada, H.; Takahashi, Y.; Fujino, J.; Flores, S.Y.; Yokosawa, H. Localization and roles in fertilization of sperm proteasomes in the ascidian Halocynthia roretzi. Mol. Reprod. Develop. 2002, 62, 271–276. [Google Scholar] [CrossRef]
- Sawada, H.; Yokosawa, H.; Numakunai, T.; Ishii, S. Timing of action of sperm proteases in ascidian fertilization. Experientia 1986, 42, 74–75. [Google Scholar] [CrossRef]
- Bode, W.; Gomis-Rüth, F.X.; Huber, R.; Zwilling, R.; Stöcker, W. Structure of astacin and implications for activation of astacins and zinc-ligation of collagenases. Nature 1992, 358, 164–167. [Google Scholar] [CrossRef] [PubMed]
- Yamamoto, M.; Tsujishita, H.; Hori, N.; Ohishi, Y.; Inoue, S.; Ikeda, S.; Okada, Y. Inhibition of membrane-type 1 matrix metalloproteinase by hydroxamate inhibitors: An examination of the subsite pocket. J. Med. Chem. 1998, 41, 1209–1217. [Google Scholar] [CrossRef] [PubMed]
- Hirayama, R.; Yamamoto, M.; Tsukida, T.; Matsuo, K.; Obata, Y.; Sakamoto, F.; Ikeda, S. Synthesis and biological evaluation of orally active matrix metalloproteinase inhibitors. Bioorganic Med. Chem. 1997, 5, 765–778. [Google Scholar] [CrossRef] [PubMed]
- Rawlings, N.D.; Salvesen, G. Handbook of Proteolytic Enzymes; Elsevier: Amsterdam, The Netherlands, 2013; Volume 1. [Google Scholar]
- Giebeler, N.; Zigrino, P. A disintegrin and metalloprotease (ADAM): Historical overview of their functions. Toxins 2016, 8, 122. [Google Scholar] [CrossRef]
- Bond, J.; Beynon, R.J. The astacin family of metallopeptidases. Protein Sci. 1995, 4, 1247–1261. [Google Scholar] [CrossRef]
- Ferrer, M.; Rodriguez, H.; Zara, L.; Yu, Y.; Xu, W.; Oko, R. MMP2 and acrosin are major proteinases associated with the inner acrosomal membrane and may cooperate in sperm penetration of the zona pellucida during fertilization. Cell Tissue Res. 2012, 349, 881–895. [Google Scholar] [CrossRef]
- Saldívar-Hernández, A.; González-González, M.E.; Sánchez-Tusié, A.; Maldonado-Rosas, I.; López, P.; Treviño, C.L.; Larrea, F.; Chirinos, M. Human sperm degradation of zona pellucida proteins contributes to fertilization. Reprod. Biol. Endocrinol. 2015, 13, 99. [Google Scholar] [CrossRef]
Primer Name | Sequence (5′ -> 3′) |
---|---|
S147.g09103 (HrTast1) Forward | CTAGGAAACCGCACCATCAT |
S147.g09103 (HrTast1) Reverse | GCACGTGTTGATCATGTAAGG |
S41.g12587 (HrTast2b) Forward | CACAAACGACGATCACCTTC |
S41.g12587 (HrTast2b) Reverse | ATTCATTTTTCCGGCATCAC |
S41.g06549 (HrTast2c) Forward | GGCTCTTGGATTCATCATCG |
S41.g06549 (HrTast2c) Reverse | CGTGTGCACAGGTAGTGACG |
S261.g06577 (HrTast3c) Forward | AAGAACCCAAAGCACGTGAG |
S261.g06577 (HrTast3c) Reverse | CGCTTTCTTGGGAAGTTTCA |
HrEF1α Forward | GGGAAGAGTGGAGACTGGA |
HrEF1α Reverse | CTTACCAGAGCGACGATCG |
Gene Model * | Name | Total aa | Domain ** |
---|---|---|---|
S147.g09103 | HrTast1 | 866 | TM, ZnMc_astacin-like, TSP1, TSP1, TSP1 |
S41.g08115 | HrTast2a | 987 | ZnMc, TSP1, TSP1, TSP1, TSP1, TSP1, TSP1 |
S41.g12587 | HrTast2b | 630 | TM, ZnMc_astacin-like, TSP1, TSP1 |
S41.g06549 | HrTast2c | 661 | TM, ZnMc_astacin-like, TSP1, TSP1 |
S41.g11674 | HrTast2d | 733 | ZnMc_astacin-like, TSP1, TSP1, TSP1 |
S261.g05004 | HrTast3a | 1002 | ZnMc_astacin-like, TSP1, TSP1, TSP1, TSP1, TSP1 |
S261.g13853 | HrTast3b | 778 | ZnMc, TSP1, TSP1, TSP1 |
S261.g06577 | HrTast3c | 813 | TM, ZnMc_astacin-like, TSP1, TSP1, TSP1 |
S156.g05923 | HrTast4 | 533 | SP, ZnMc_astacin-like, TSP1, TSP1 |
S123.g08964 | HrTast5 | 566 | ZnMc_astacin-like, TSP1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sawada, H.; Hattori, I.; Hashii, N.; Saito, T. Involvement of Metalloproteases in the Fertilization of the Ascidian Halocynthia roretzi. Biomolecules 2024, 14, 1487. https://doi.org/10.3390/biom14121487
Sawada H, Hattori I, Hashii N, Saito T. Involvement of Metalloproteases in the Fertilization of the Ascidian Halocynthia roretzi. Biomolecules. 2024; 14(12):1487. https://doi.org/10.3390/biom14121487
Chicago/Turabian StyleSawada, Hitoshi, Ikuya Hattori, Noritaka Hashii, and Takako Saito. 2024. "Involvement of Metalloproteases in the Fertilization of the Ascidian Halocynthia roretzi" Biomolecules 14, no. 12: 1487. https://doi.org/10.3390/biom14121487
APA StyleSawada, H., Hattori, I., Hashii, N., & Saito, T. (2024). Involvement of Metalloproteases in the Fertilization of the Ascidian Halocynthia roretzi. Biomolecules, 14(12), 1487. https://doi.org/10.3390/biom14121487