Identification of Marine Compounds Inhibiting NF-κBInducing Kinase Through Molecular Docking and Molecular Dynamics Simulations
Abstract
:1. Introduction
2. Materials and Methods
2.1. NIK Structure Retrieval and Identification of Active Binding Sites
2.2. Ligand Preparation
2.3. Molecular Docking
2.4. Molecular Dynamics Simulations
2.5. gmxMMPBSA Binding Free Energy Calculation
3. Results and Discussion
3.1. Structure and Binding Site Analysis
3.2. Marine Library Accession and Optimization
3.3. Molecular Docking
Molecular Docking Interactions
3.4. Molecular Dynamic Simulation
3.4.1. Root Mean Square Analysis
3.4.2. Hydrogen Bonds
3.4.3. MD Interaction Energy
3.5. Binding Free Energy Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Valiño-Rivas, L.; Vaquero, J.J.; Sucunza, D.; Gutierrez, S.; Sanz, A.B.; Fresno, M.; Ortiz, A.; Sanchez-Niño, M.D. NIK as a Druggable Mediator of Tissue Injury. Trends Mol. Med. 2019, 25, 341–360. [Google Scholar] [CrossRef]
- Sun, S.C. The non-canonical NF-κB pathway in immunity and inflammation. Nat. Rev. Immunol. 2017, 17, 545–558. [Google Scholar] [CrossRef]
- Thu, Y.M.; Richmond, A. NF-κB inducing kinase: A key regulator in the immune system and in cancer. Cytokine Growth Factor Rev. 2010, 21, 213–226. [Google Scholar] [CrossRef]
- Pflug, K.M.; Sitcheran, R. Targeting NF-κB-Inducing Kinase (NIK) in Immunity, Inflammation, and Cancer. Int. J. Mol. Sci. 2020, 21, 8470. [Google Scholar] [CrossRef]
- Paul, A.; Edwards, J.; Pepper, C.; Mackay, S.J. Inhibitory-κB kinase (IKK) α and nuclear factor-κB (NFκB)-inducing kinase (NIK) as anti-cancer drug targets. Cells 2018, 7, 176. [Google Scholar] [CrossRef] [PubMed]
- Gasparini, C.; Feldmann, M. NF-κB as a target for modulating inflammatory responses. Curr. Pharm. Des. 2012, 18, 5735–5745. [Google Scholar] [CrossRef] [PubMed]
- Chawla, M.; Roy, P.; Basak, S. Role of the NF-κB system in context-specific tuning of the inflammatory gene response. Curr. Opin. Immunol. 2021, 68, 21–27. [Google Scholar] [CrossRef] [PubMed]
- Maubach, G.; Feige, M.H.; Lim, M.C.; Naumann, M. NF-kappaB-inducing kinase in cancer. Biochim. Biophys. Acta (BBA)-Rev. Cancer 2019, 1871, 40–49. [Google Scholar] [CrossRef] [PubMed]
- Cheng, J.; Feng, X.; Li, Z.; Zhou, F.; Yang, J.M.; Zhao, Y. Pharmacological inhibition of NF-κB-inducing kinase (NIK) with small molecules for the treatment of human diseases. RSC Med. Chem. 2021, 12, 552–565. [Google Scholar] [CrossRef]
- Li, Z.; Li, X.; Su, M.B.; Gao, L.X.; Zhou, Y.B.; Yuan, B.; Lyu, X.; Yan, Z.; Hu, C.; Zhang, H.; et al. Discovery of a potent and selective NF-κB-inducing kinase (NIK) inhibitor that has anti-inflammatory effects in vitro and in vivo. J. Med. Chem. 2020, 63, 4388–4407. [Google Scholar] [CrossRef]
- Ma, Q.; Hao, S.; Hong, W.; Tergaonkar, V.; Sethi, G.; Tian, Y.; Duan, C. Versatile function of NF-ĸB in inflammation and cancer. Exp. Hematol. Oncol. 2024, 13, 68. [Google Scholar] [CrossRef] [PubMed]
- Goenka, A.; Khan, F.; Verma, B.; Sinha, P.; Dmello, C.C.; Jogalekar, M.P.; Gangadaran, P.; Ahn, B. Tumor microenvironment signaling and therapeutics in cancer progression. Cancer Commun. 2023, 43, 525–561. [Google Scholar] [CrossRef] [PubMed]
- Medler, J.; Kucka, K.; Wajant, H. Tumor necrosis factor receptor 2 (TNFR2): An emerging target in cancer therapy. Cancers 2022, 14, 2603. [Google Scholar] [CrossRef]
- Ramakrishnan, S.K.; Zhang, H.; Ma, X.; Jung, I.; Schwartz, A.J.; Triner, D.; Devenport, S.N.; Das, N.K.; Xue, X.; Zeng, M.Y.; et al. Intestinal non-canonical NFκB signaling shapes the local and systemic immune response. Nat. Commun. 2019, 10, 660. [Google Scholar] [CrossRef]
- Liu, T.; Zhang, L.; Joo, D.; Sun, S.C. NF-κB signaling in inflammation. Signal Transduct. Target. Ther. 2017, 2, 17023. [Google Scholar] [CrossRef]
- Shih, R.-H.; Wang, C.-Y.; Yang, C.-M. NF-kappaB Signaling Pathways in Neurological Inflammation: A Mini Review. Front. Mol. Neurosci. 2015, 8, 77. [Google Scholar] [CrossRef]
- Willard, L.; Ranjan, A.; Zhang, H.; Monzavi, H.; Boyko, R.F.; Sykes, B.D.; Wishart, D.S. VADAR: A web server for quantitative evaluation of protein structure quality. Nucleic Acids Res. 2003, 31, 3316–3319. [Google Scholar] [CrossRef] [PubMed]
- Pettersen, E.F.; Goddard, T.D.; Huang, C.C.; Couch, G.S.; Greenblatt, D.M.; Meng, E.C.; Ferrin, T.E. UCSF Chimera—A visualization system for exploratory research and analysis. J. Comput. Chem. 2004, 25, 1605–1612. [Google Scholar] [CrossRef]
- Pawar, S.S.; Rohane, S.H. Review on Discovery Studio: An Important Tool for Molecular Docking. 2021. Available online: https://www.indianjournals.com/ijor.aspx?target=ijor:ajrc&volume=14&issue=1&article=014 (accessed on 20 September 2024).
- Yasir, M.; Park, J.; Han, E.-T.; Han, J.-H.; Park, W.S.; Chun, W. Investigating the Inhibitory Potential of Flavonoids against Aldose Reductase: Insights from Molecular Docking, Dynamics Simulations, and gmx_MMPBSA Analysis. Curr. Issues Mol. Biol. 2024, 46, 11503–11518. [Google Scholar] [CrossRef]
- Chun, W.; Yasir, M.; Park, J.; Han, E.-T.; Park, W.S.; Han, J.-H.; Kwon, Y.-S.; Lee, H.-J. Virtual screening of flavonoids against Plasmodium vivax Duffy binding protein utilizing molecular docking and molecular dynamic simulation. Curr. Comput. Aided-Drug Des. 2024, 20, 616–627. [Google Scholar]
- Fan, J.; Fu, A.; Zhang, L. Progress in molecular docking. Quant. Biol. 2019, 7, 83–89. [Google Scholar] [CrossRef]
- Agarwal, S.; Mehrotra, R. An overview of molecular docking. JSM Chem 2016, 4, 1024–1028. [Google Scholar]
- Yasir, M.; Park, J.; Chun, W. Discovery of Novel Aldose Reductase Inhibitors via the Integration of Ligand-Based and Structure-Based Virtual Screening with Experimental Validation. ACS Omega 2024, 9, 20338–20349. [Google Scholar] [CrossRef]
- Yasir, M.; Park, J.; Han, E.-T.; Park, W.S.; Han, J.-H.; Chun, W. Identification of Potential Tryptase Inhibitors from FDA-Approved Drugs Using Machine Learning, Molecular Docking, and Experimental Validation. ACS Omega 2024, 9, 38820–38831. [Google Scholar] [CrossRef] [PubMed]
- Jo, S.; Kim, T.; Iyer, V.G.; Im, W. CHARMM-GUI: A web-based graphical user interface for CHARMM. J. Comput. Chem. 2008, 29, 1859–1865. [Google Scholar] [CrossRef] [PubMed]
- Berendsen, H.J.C.; Van Der Spoel, D.; Van Drunen, R. GROMACS: A message-passing parallel molecular dynamics implementation. Comput. Phys. Commun. 1995, 91, 43–56. [Google Scholar] [CrossRef]
- Valdés-Tresanco, M.E.; Valiente, P.A.; Moreno, E. gmx_MMPBSA: A new tool to perform end-state free energy calculations with GROMACS. J. Chem. Theory Comput. 2021, 17, 6281–6291. [Google Scholar] [CrossRef]
- King, E.; Aitchison, E.; Li, H.; Luo, R. Recent developments in free energy calculations for drug discovery. Front. Mol. Biosci. 2021, 8, 712085. [Google Scholar] [CrossRef]
- Yasir, M.; Park, J.; Han, E.-T.; Park, W.S.; Han, J.-H.; Chun, W. Drug Repositioning via Graph Neural Networks: Identifying Novel JAK2 Inhibitors from FDA-Approved Drugs through Molecular Docking and Biological Validation. Molecules 2024, 29, 1363. [Google Scholar] [CrossRef]
- Stank, A.; Kokh, D.B.; Fuller, J.C.; Wade, R.C. Protein binding pocket dynamics. Accounts Chem. Res. 2016, 49, 809–815. [Google Scholar] [CrossRef]
- Roche, D.B.; Brackenridge, D.A.; McGuffin, L.J. Proteins and their interacting partners: An introduction to protein–ligand binding site prediction methods. Int. J. Mol. Sci. 2015, 16, 29829–29842. [Google Scholar] [CrossRef] [PubMed]
- Li, K.; McGee, L.R.; Fisher, B.; Sudom, A.; Liu, J.; Rubenstein, S.M.; Anwer, M.K.; Cushing, T.D.; Shin, Y.; Ayres, M.; et al. Inhibiting NF-κB-inducing kinase (NIK): Discovery, structure-based design, synthesis, structure-activity relationship, and co-crystal structures. Bioorganic Med. Chem. Lett. 2013, 23, 1238–1244. [Google Scholar] [CrossRef] [PubMed]
- Bayona, L.M.; de Voogd, N.J.; Choi, Y.H. Metabolomics on the study of marine organisms. Metabolomics Off. J. Metabolomic Soc. 2022, 18, 17. [Google Scholar] [CrossRef] [PubMed]
- Molinski, T.F.; Dalisay, D.S.; Lievens, S.L.; Saludes, J.P. Drug development from marine natural products. Nat. Rev. Drug Discov. 2009, 8, 69–85. [Google Scholar] [CrossRef]
- Christinat, A.; Leyvraz, S. Role of trabectedin in the treatment of soft tissue sarcoma. OncoTargets Ther. 2009, 2, 105–113. [Google Scholar] [CrossRef]
- Banday, A.H.; Azha, N.u.; Farooq, R.; Sheikh, S.A.; Ganie, M.A.; Parray, M.N.; Mushtaq, H.; Hameed, I.; Lone, M.A. Exploring the potential of marine natural products in drug development: A comprehensive review. Phytochem. Lett. 2024, 59, 124–135. [Google Scholar] [CrossRef]
- Gromek, S.M.; deMayo, J.A.; Maxwell, A.T.; West, A.M.; Pavlik, C.M.; Zhao, Z.; Li, J.; Wiemer, A.J.; Zweifach, A.; Balunas, M.J. Synthesis and biological evaluation of santacruzamate A analogues for anti-proliferative and immunomodulatory activity. Bioorganic Med. Chem. 2016, 24, 5183–5196. [Google Scholar] [CrossRef]
- Xu, Y.; Lai, L.T.; Gabrilove, J.L.; Scheinberg, D.A. Antitumor activity of actinonin in vitro and in vivo. Clin. Cancer Res. Off. J. Am. Assoc. Cancer Res. 1998, 4, 171–176. [Google Scholar]
- Chen, D.Z.; Patel, D.V.; Hackbarth, C.J.; Wang, W.; Dreyer, G.; Young, D.C.; Margolis, P.S.; Wu, C.; Ni, Z.J.; Trias, J.; et al. Actinonin, a naturally occurring antibacterial agent, is a potent deformylase inhibitor. Biochemistry 2000, 39, 1256–1262. [Google Scholar] [CrossRef]
- Ahmed, S.A.; Sarma, P.; Barge, S.R.; Swargiary, D.; Devi, G.S.; Borah, J.C. Xanthosine, a purine glycoside mediates hepatic glucose homeostasis through inhibition of gluconeogenesis and activation of glycogenesis via regulating the AMPK/FoxO1/AKT/GSK3β signaling cascade. Chem. Interactions 2023, 371, 110347. [Google Scholar] [CrossRef]
- Guthrie, M.L.; Sidhu, P.S.; Hill, E.K.; Horan, T.C.; Nandhikonda, P.; Teske, K.A.; Yuan, N.Y.; Sidorko, M.; Rodali, R.; Cook, J.M.; et al. Antitumor Activity of 3-Indolylmethanamines 31B and PS121912. Anticancer Res. 2015, 35, 6001–6007. [Google Scholar] [PubMed]
- Kachanuban, K.; Yan, P.; Fu, P.; Zhu, W.; Wilaipun, P. Identification of Antibiotic Compounds from Thai Mangrove Soil-Derived Streptomyces iconiensis. J. Fish. Environ. 2022, 46, 145–162. [Google Scholar]
- Robledo, D.A.; Muhammad, G. Evaluation of the Cytotoxic Properties of Lumichrome-Derived Compounds on Breast Adenocarcinoma, Colorectal Cancer, and Liver Carcinoma. Cent. Asian J. Med. Nat. Sci. 2021, 2. [Google Scholar]
Sr No | Compounds | Molecular Formula | CDocker Energy (kcal/mol) | CDocker Interaction Energy (kcal/mol) |
---|---|---|---|---|
1 | Santacruzamate A | C15H22N2O3 | −49.0692 | −44.9589 |
2 | Actinonine | C19H35N3O5 | −45.5211 | −52.1040 |
3 | Cosbiol | C30H62 | −34.8735 | −49.9577 |
4 | Lumichrome | C12H10N4O2 | −31.5584 | −35.1686 |
5 | M3-indolylacetate | C11H11NO2 | −26.8642 | −29.1885 |
6 | Obtusin | C18H16O7 | −24.5937 | −44.5619 |
7 | 1-3-Tribromoacetone | C3H3Br3O | −23.8405 | −22.2132 |
8 | Xanthosine | C10H12N4O6 | −23.1161 | −45.7498 |
9 | 3-Indoleacetamide | C10H10N2O | −23.0780 | −26.7549 |
10 | Isoflavone | C15H10O2 | −20.8883 | −28.6739 |
11 | Phenylacetamide | C8H9NO | −20.5446 | −22.1003 |
12 | 2-6-Dibromophenol | C7H3Br2NO | −20.3419 | −23.9437 |
13 | Tryptophol | C10H11NO | −20.0190 | −25.7352 |
14 | Pentabromophenol | C6HBr5O | −12.4608 | −35.6949 |
15 | Tubermycin B | C13H8N2O2 | −12.4318 | −32.6023 |
Compounds | Interacting Residues | Binding Distances |
---|---|---|
Santacruzamate A | Cys533 | 2.34 Å |
Actinonine | Leu472 Arg408 | 2.40 Å, 2.20 Å 2.07 Å |
Cosbiol | Hydrophobic Interactions | |
Lumichrome | Arg408 Asp519 Asn520 | 2.89 Å 2.91 Å 2.46 Å |
M3-indolylacetate | Arg408 | 2.48 Å |
Obtusin | Arg408 | 3.00 Å |
1-3-Tribromoacetone | Hydrophobic Interactions | |
Xanthosine | Ser476 Asn520 Arg408 Glu470 Leu472 | 2.19 Å 1.93 Å 2.24 Å 2.30 Å 2.75 Å, 1.90 Å |
3-Indoleacetamide | Arg408 Asp519 Asn520 Cys533 | 2.67 Å 2.02 Å 2.49 Å 2.39 Å |
Isoflavone | Hydrophobic Interactions |
Sr No | Compound | Interaction Energy (kJ/mol) | ||
---|---|---|---|---|
Coul-SR | LJ-SR | Total Energy | ||
1 | Santacruzamate A | −155.8117 | −143.7820 | −299.5937 |
2 | Xanthosine | −126.1830 | −128.5430 | −254.7260 |
3 | Actinonine | −61.7505 | −147.9330 | −209.6835 |
4 | M3-indolylacetate | −81.5560 | −120.3740 | −201.9300 |
5 | Obtusin | −50.1384 | −143.7580 | −193.8964 |
6 | Lumichrome | −54.9542 | −116.1070 | −171.0612 |
7 | 3-Indoleacetamide | −39.6131 | −100.9670 | −140.5801 |
8 | Isoflavone | −41.9749 | −96.4999 | −138.4748 |
9 | Cosbiol | −0.2207 | −129.9020 | −130.1227 |
10 | 1-3-Tribromoacetone | −4.1828 | −1.2765 | −5.4593 |
Sr | Compounds | ΔG(TOTAL) | Standard Deviation |
---|---|---|---|
1 | Santacruzamate A | −24.29 | 4.26 |
2 | Actinonine | −19.76 | 4.07 |
3 | Xanthosine | −17.13 | 3.88 |
4 | M3-indolylacetate | −15.3 | 3.69 |
5 | 3-Indoleacetamide | −11.9 | 3.87 |
6 | Lumichrome | −9.05 | 3.78 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yasir, M.; Park, J.; Han, E.-T.; Han, J.-H.; Park, W.S.; Choe, J.; Chun, W. Identification of Marine Compounds Inhibiting NF-κBInducing Kinase Through Molecular Docking and Molecular Dynamics Simulations. Biomolecules 2024, 14, 1490. https://doi.org/10.3390/biom14121490
Yasir M, Park J, Han E-T, Han J-H, Park WS, Choe J, Chun W. Identification of Marine Compounds Inhibiting NF-κBInducing Kinase Through Molecular Docking and Molecular Dynamics Simulations. Biomolecules. 2024; 14(12):1490. https://doi.org/10.3390/biom14121490
Chicago/Turabian StyleYasir, Muhammad, Jinyoung Park, Eun-Taek Han, Jin-Hee Han, Won Sun Park, Jongseon Choe, and Wanjoo Chun. 2024. "Identification of Marine Compounds Inhibiting NF-κBInducing Kinase Through Molecular Docking and Molecular Dynamics Simulations" Biomolecules 14, no. 12: 1490. https://doi.org/10.3390/biom14121490
APA StyleYasir, M., Park, J., Han, E. -T., Han, J. -H., Park, W. S., Choe, J., & Chun, W. (2024). Identification of Marine Compounds Inhibiting NF-κBInducing Kinase Through Molecular Docking and Molecular Dynamics Simulations. Biomolecules, 14(12), 1490. https://doi.org/10.3390/biom14121490