Insight into Antifungal Metabolites from Bacillus stercoris 92p Against Banana Cordana Leaf Spot Caused by Neocordana musae
Abstract
:1. Introduction
2. Materials and Methods
2.1. Pathogen Strains and Plant Material
2.2. Isolation and Purification of Bacteria from Banana Rhizosphere Soil
2.3. In Vitro Antagonism Assay for Bacterial Isolates Against N. musae
2.4. Identification of Strain 92p
2.5. Antifungal Spectrum Tests
2.6. The Impact of B. stercoris 92p Cell-Free Supernatant on the Growth of N. musae Hyphae
2.7. Control Efficacy of B. stercoris 92p Against Cordana Leaf Spot of Banana
2.8. In Vitro Assessment of Biocontrol and Plant Growth-Promoting Characteristics of B. stercoris 92p
2.9. Complete Genome Sequencing and Analysis of B. stercoris 92p
2.10. Extraction, Purification, and Characterization of Extracellular Lipopeptides from B. stercoris 92p
2.11. Statistical Analysis
3. Results
3.1. Isolation and Screening of Antagonistic Bacteria Against N. musae
3.2. Identification and Phylogenetic Analysis of Antagonistic Bacterium 92p
3.3. Antagonistic Activity of B. stercoris 92p Against Plant Fungal Pathogens
3.4. Microscopic Analysis of Fungal Pathogen Hyphae Post-Treatment
3.5. Biocontrol Effects of Strain B. stercoris 92p Against Leaf Spot of Banana
3.6. Impact of the Cell-Free Supernatant from Strain 92p on the Mycelial Growth of N. musae
3.7. Analysis of Biocontrol Activities and Plant Growth-Promoting Traits of B. stercoris 92p
3.8. Genome Sequencing Analysis of B. stercoris 92p
3.9. Gene Clusters Responsible for the Biosynthesis of Secondary Metabolites in B. stercoris 92p
3.10. UHPLC–QTOF–MS/MS Analysis of Lipopeptides in Strain 92p
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Jones, D.R. Handbook of Diseases of Banana, Abacá and Enset; CABI International: Wallingford, UK, 2019. [Google Scholar]
- Perera, N.T.T.; Kelaniyangoda, D.B. Fungal Leaf Spot Diseases in Banana (Musa spp.); Symptom Verification and Their Control (In Vitro). In Proceedings of the 12th Agricultural Research Symposium, Makandura, Sri Lanka, 30–31 May 2013; pp. 136–140. [Google Scholar]
- Henuk, J.B.; Kadja, D.H.; Mau, Y.S. Inventory and Identification of Banana Cultivar and Diseases Caused by Bacterial and Fungal Pathogens in West Timor, East Nusa Tenggara Province, Indonesia. Int. J. Trop. Drylands 2020, 4, 10–16. [Google Scholar] [CrossRef]
- Mathew, D.; Kumar, C.S.; Cherian, K.A. Foliar Fungal Disease Classification in Banana Plants Using Elliptical Local Binary Pattern on Multiresolution Dual Tree Complex Wavelet Transform Domain. Inf. Process. Agric. 2020, 8, 581–592. [Google Scholar] [CrossRef]
- Restrepo, M.H.; Groenewald, J.Z.; Crous, P.W. Neocordana gen. nov., the Causal Organism of Cordana Leaf Spot in banana. Phytotaxa 2015, 205, 229–238. [Google Scholar] [CrossRef]
- Gaikwad, C.B.; Thorat, B.S.; Bhokare, K.R. Isolation, Culturing and Identification of the Fungus Neocordana musae (Zimm.) Hohn Causing Leaf Spot of Banana. J. Entomol. Zool. Stud. 2017, 5, 1646–1648. [Google Scholar]
- Jalander, V.; Gachande, B.D. In-vitro Efficacy of Fungicides Against The Growth of Leaf Spot Pathogen [Cordana musae (zimm.) Hohn.] of Banana. Sci. Res. Report. 2013, 3, 04–06. [Google Scholar]
- Lei, L.Y.; Xiong, Z.X.; Li, J.L.; Yang, D.Z.; Li, L.; Chen, L.; Zhong, Q.F.; Yin, F.Y.; Li, R.X.; Cheng, Z.Q.; et al. Biological Control of Magnaporthe oryzae Using Natively Isolated Bacillus subtilis G5 from Magnaporthe oryzae Roots. Front. Microbiol. 2023, 14, 1264000. [Google Scholar] [CrossRef] [PubMed]
- Li, P.; Feng, B.; Yao, Z.; Wei, B.; Zhao, Y.; Shi, S. Antifungal activity of endophytic Bacillus K1 against Botrytis cinerea. Front. Microbiol. 2022, 13, 935675. [Google Scholar] [CrossRef]
- Zanon, M.S.A.; Cavaglieri, L.R.; Palazzini, J.M.; Chulze, S.N.; Chiotta, M.L. Bacillus velezensis RC218 and Emerging Biocontrol Agents against Fusarium graminearum and Fusarium poae in Barley: In Vitro, Greenhouse and Field Conditions. Int. J. Food Microbiol. 2024, 413, 110580. [Google Scholar] [CrossRef]
- Liu, Z.; Fan, C.; Xiao, J.; Sun, S.; Gao, T.; Zhu, B.; Zhang, D. Metabolomic and Transcriptome Analysis of the Inhibitory Effects of Bacillus subtilis Strain Z-14 against Fusarium oxysporum Causing Vascular Wilt Diseases in Cucumber. J. Agric. Food Chem. 2023, 71, 2644–2657. [Google Scholar] [CrossRef]
- Duan, Y.; Pang, Z.; Yin, S.; Xiao, W.; Hu, H.; Xie, J. Screening and Analysis of Antifungal Strains Bacillus subtilis JF-4 and B. amylum JF-5 for the Biological Control of Fusarium Wilt of Banana. J. Fungi 2023, 9, 886. [Google Scholar] [CrossRef]
- Guerrero-Barajas, C.; Constantino-Salinas, E.A.; Amora-Lazcano, E.; Tlalapango-Ángeles, D.; Mendoza-Figueroa, J.S.; Cruz-Maya, J.A.; Jan-Roblero, J. Bacillus mycoides A1 and Bacillus tequilensis A3 Inhibit the Growth of a Member of the Phytopathogen Colletotrichum gloeosporioides Species Complex in avocado. J. Sci. Food Agric. 2020, 100, 4049–4056. [Google Scholar] [CrossRef] [PubMed]
- Jangir, M.; Pathak, R.; Sharma, S.; Sharma, S. Biocontrol Mechanisms of Bacillus sp., Isolated from Tomato Rhizosphere, against Fusarium oxysporum f. sp. lycopersici. Biol. Control. 2018, 123, 60–70. [Google Scholar] [CrossRef]
- Fan, B.; Wang, C.; Song, X.; Ding, X.; Wu, L.; Wu, H.; Gao, X.; Borriss, R. Bacillus velezensis FZB42 in 2018: The Gram-positive Model Strain for Plant Growth Promotion and Biocontrol. Front. Microbiol. 2018, 9, 2491. [Google Scholar] [CrossRef] [PubMed]
- Han, X.; Shen, D.; Xiong, Q.; Bao, B.; Zhang, W.; Dai, T.; Zhao, Y.; Borriss, R.; Fan, B. The Plant-beneficial Rhizobacterium Bacillus velezensis FZB42 Controls the Soybean Pathogen Phytophthora sojae due to Bacilysin Production. Appl. Environ. Microbiol. 2021, 87, e0160121. [Google Scholar] [CrossRef]
- Dunlap, C.A.; Bowman, M.J.; Zeigler, D.R. Promotion of Bacillus subtilis subsp. inaquosorum, Bacillus subtilis subsp. spizizenii and Bacillus subtilis subsp. stercoris to species status. Antonie van Leeuwenhoek 2019, 113, 1–12. [Google Scholar] [CrossRef]
- Wang, B.; Peng, H.; Wu, W.; Yang, B.; Chen, Y.; Xu, F.; Peng, Y.; Qin, Y.; Fu, P.; Lu, J. Genomic Insights into Biocontrol Potential of Bacillus stercoris LJBS06. 3 Biotech 2021, 11, 1–12. [Google Scholar] [CrossRef]
- Pengproh, R.; Thanyasiriwat, T.; Sangdee, K.; Saengprajak, J.; Kawicha, P.; Sangdee, A. Evaluation and Genome Mining of Bacillus stercoris Isolate B.PNR1 as Potential Agent for Fusarium Wilt Control and Growth Promotion of Tomato. Plant Pathol. J. 2023, 39, 430–448. [Google Scholar] [CrossRef] [PubMed]
- Xu, S.; Wang, Y.; Hu, J.; Chen, X.; Qiu, Y.; Shi, J.; Wang, G.; Xu, J. Isolation and Characterization of Bacillus amyloliquefaciens MQ01, a Bifunctional Biocontrol Bacterium with Antagonistic Activity against Fusarium graminearum and Biodegradation Capacity of Zearalenone. Food Control. 2021, 130, 108259. [Google Scholar] [CrossRef]
- Cui, W.; He, P.; Munir, S.; He, P.; Li, X.; Li, Y.; Wu, J.; Wu, Y.; Yang, L.; He, P.; et al. Efficacy of Plant Growth Promoting Bacteria Bacillus amyloliquefaciens B9601-Y2 for Biocontrol of Southern Corn Leaf Blight. Biol. Control. 2019, 139, 104080. [Google Scholar] [CrossRef]
- Weisburg, W.G.; Barns, S.M.; Pelletier, D.A.; Lane, D.J. 16S Ribosomal DNA Amplification for Phylogenetic Study. J. Bacteriol. 1991, 173, 697–703. [Google Scholar] [CrossRef]
- Yamamoto, S.; Harayama, S. PCR Amplification and Direct Sequencing of gyrB Genes with Universal Primers and Their Application to the Detection and Taxonomic Analysis of Pseudomonas putida Strains. Appl. Environ. Microbiol. 1995, 61, 1104–1109. [Google Scholar] [CrossRef] [PubMed]
- Liao, J.; Liang, X.; Li, H.; Mo, L.; Mo, R.; Chen, W.; Wei, Y.; Wang, T.; Jiang, W. Biocontrol Ability of Bacillus velezensis T9 against Apiospora arundinis Causing Apiospora Mmold on Sugarcane. Front. Microbiol. 2023, 14, 1314887. [Google Scholar] [CrossRef]
- Jain, C.; Rodriguez-R., L.M.; Phillippy, A.M.; Konstantinidis, K.T.; Aluru, S. High Throughput ANI Analysis of 90K Prokaryotic Genomes Reveals Clear Species Boundaries. Nat. Commun. 2018, 9, 5114. [Google Scholar] [CrossRef]
- Su, Z.; Chen, X.; Liu, X.; Guo, Q.; Li, S.; Lu, X.; Zhang, X.; Wang, P.; Dong, L.; Zhao, W.; et al. Genome Mining and UHPLC–QTOF–MS/MS to Identify the Potential Antimicrobial Compounds and Determine the Specificity of Biosynthetic Gene Clusters in Bacillus subtilis NCD-2. BMC Genom. 2020, 21, 767. [Google Scholar] [CrossRef] [PubMed]
- Li, X.-Y.; Mao, Z.-C.; Wang, Y.-H.; Wu, Y.-X.; He, Y.-Q.; Long, C.-L. ESI LC-MS and MS/MS Characterization of Antifungal Cyclic Lipopeptides Produced by Bacillus subtilis XF-1. Microb. Physiol. 2012, 22, 83–93. [Google Scholar] [CrossRef] [PubMed]
- Ma, Y.; Kong, Q.; Qin, C.; Chen, Y.; Chen, Y.; Lv, R.; Zhou, G. Identification of Lipopeptides in Bacillus megaterium by Two-step Ultrafiltration and LC–ESI–MS/MS. AMB Express 2016, 6, 1–15. [Google Scholar] [CrossRef]
- Khadiri, M.; Boubaker, H.; Askarne, L.; Ezrari, S.; Radouane, N.; Farhaoui, A.; El Hamss, H.; Tahiri, A.; Barka, E.A.; Lahlali, R. Bacillus cereus B8W8 an Effective Bacterial Antagonist against Major Postharvest Fungal Pathogens of Fruit. Postharvest Biol. Technol. 2023, 200, 112315. [Google Scholar] [CrossRef]
- Yang, R.; Liu, P.; Ye, W.; Chen, Y.; Wei, D.; Qiao, C.; Zhou, B.; Xiao, J. Biological Control of Root Rot of Strawberry by Bacillus amyloliquefaciens Strains CMS5 and CMR12. J. Fungi 2024, 10, 410. [Google Scholar] [CrossRef]
- Xie, L.; Liu, L.; Luo, Y.; Rao, X.; Di, Y.; Liu, H.; Qian, Z.; Shen, Q.; He, L.; Li, F. Complete Genome Sequence of Biocontrol Strain Bacillus velezensis YC89 and Its Biocontrol Potential against Sugarcane Red Rot. Front. Microbiol. 2023, 14, 1180474. [Google Scholar] [CrossRef]
- Luan, P.; Yi, Y.; Huang, Y.; Cui, L.; Hou, Z.; Zhu, L.; Ren, X.; Jia, S.; Liu, Y. Biocontrol Potential and Action Mechanism of Bacillus amyloliquefaciens DB2 on Bipolaris sorokiniana. Front. Microbiol. 2023, 14, 1149363. [Google Scholar] [CrossRef]
- Dong, Q.; Liu, Q.; Goodwin, P.H.; Deng, X.; Xu, W.; Xia, M.; Zhang, J.; Ru, S.; Wu, C.; Wang, Q.; et al. Isolation and Genome-Based Characterization of Biocontrol Potential of Bacillus siamensis YB-1631 against Wheat Crown Rot Caused by Fusarium pseudograminearum. J. Fungi 2023, 9, 547. [Google Scholar] [CrossRef] [PubMed]
- Ongena, M.; Jacques, P. Bacillus Lipopeptides: Versatile Weapons for Plant Disease Biocontrol. Trends Microbiol. 2008, 16, 115–125. [Google Scholar] [CrossRef] [PubMed]
- Jaha, H.F.; Anwar, Y.; Almaaqar, S.; Khan, T.; Khan, S.B. Iron-Based Nanoparticles Synthesis, Characterization, and Antimicrobial Effectiveness. Adv. Life Sci. 2024, 11, 525–532. [Google Scholar] [CrossRef]
Gene Clusters | Cluster Type | Product | Start-End Position in the Genome | Identity (%) | Source Strain |
---|---|---|---|---|---|
Cluster 1 | T3PKS | - | 955,290–995,947 | - | - |
Cluster 2 | terpene | - | 1,043,278–1,064,120 | - | - |
Cluster 3 | NRPS | fengycin | 1,128,972–1,206,171 | 100 | BGC0001095 |
Cluster 4 | NRPS | bacillaene | 1,282,951–1,388,148 | 100 | BGC0001089 |
Cluster 5 | terpene | - | 1,981,498–2,002,305 | - | - |
Cluster 6 | T1PKS | zwittermicin A | 2,412,315–2,492,924 | 18 | BGC0001059 |
Cluster 7 | NRPS | surfactin | 2,759,681–2,822,513 | 82 | BGC0000433 |
Cluster 8 | NRPS | bacillibactin | 3,100,621–3,147,758 | 100 | BGC0000309 |
Cluster 9 | sactipeptide | subtilosin A | 3,692,153–3,713,765 | 100 | BGC0000602 |
Cluster 10 | other | bacilysin | 3,724,192–3,765,611 | 100 | BGC0001184 |
Cluster 11 | RRE-containing | - | 3,963,689–3,983,959 | - | - |
No. | Mass Peak, m/z | Assignment | Sequence |
---|---|---|---|
1 | 1008.6574 | C14SurfactinB [M + H]+ | |
2 | 1022.6784 | C14SurfactinA; [M + H]+ | |
3 | 1036.5731 | C15SurfactinA; [M + H]+ | |
4 | 732.4121, 1463.8242 | C16fengycinA; [M + 2H]2+, [M + H]+ | |
5 | 739.4112, 1477.8224 | C17fengycinA; [M + 2H]2+, [M + H]+ | |
6 | 746.4169, 1491.8338 | C16fengycin B; [M + 2H]2+, [M + H]+ | |
7 | 753.4319, 1505.8638 | C17fengycin B; [M + 2H]2+, [M + H]+ |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yu, Q.; He, P.; Qi, Y.; He, P.; Ahmed, A.; Zhang, X.; Zhang, H.; Wu, Y.; Munir, S.; He, Y. Insight into Antifungal Metabolites from Bacillus stercoris 92p Against Banana Cordana Leaf Spot Caused by Neocordana musae. Biomolecules 2024, 14, 1495. https://doi.org/10.3390/biom14121495
Yu Q, He P, Qi Y, He P, Ahmed A, Zhang X, Zhang H, Wu Y, Munir S, He Y. Insight into Antifungal Metabolites from Bacillus stercoris 92p Against Banana Cordana Leaf Spot Caused by Neocordana musae. Biomolecules. 2024; 14(12):1495. https://doi.org/10.3390/biom14121495
Chicago/Turabian StyleYu, Qunfang, Pengbo He, Yanxiang Qi, Pengfei He, Ayesha Ahmed, Xin Zhang, He Zhang, Yixin Wu, Shahzad Munir, and Yueqiu He. 2024. "Insight into Antifungal Metabolites from Bacillus stercoris 92p Against Banana Cordana Leaf Spot Caused by Neocordana musae" Biomolecules 14, no. 12: 1495. https://doi.org/10.3390/biom14121495
APA StyleYu, Q., He, P., Qi, Y., He, P., Ahmed, A., Zhang, X., Zhang, H., Wu, Y., Munir, S., & He, Y. (2024). Insight into Antifungal Metabolites from Bacillus stercoris 92p Against Banana Cordana Leaf Spot Caused by Neocordana musae. Biomolecules, 14(12), 1495. https://doi.org/10.3390/biom14121495