Effects of Early Stress Exposure on Anxiety-like Behavior and MORC1 Expression in Rats
Abstract
:1. Introduction
2. Materials and Methods
2.1. Animals
2.2. Stress Exposure
2.3. Anxiety-like Behavior
2.4. Real-Time PCR mRNA Analysis
2.5. Statistical Analysis
3. Results
3.1. Juveniles
3.2. Adolescents
3.3. Adults
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Aisa, B.; Tordera, R.; Lasheras, B.; Del Río, J.; Ramírez, M.J. Effects of Maternal Separation on Hypothalamic-Pituitary-Adrenal Responses, Cognition and Vulnerability to Stress in Adult Female Rats. Neuroscience 2008, 154, 1218–1226. [Google Scholar] [CrossRef] [PubMed]
- Frodl, T.; O’Keane, V. How Does the Brain Deal with Cumulative Stress? A Review with Focus on Developmental Stress, HPA Axis Function and Hippocampal Structure in Humans. Neurobiol. Dis. 2013, 52, 24–37. [Google Scholar] [CrossRef] [PubMed]
- Heim, C.; Newport, D.J.; Mletzko, T.; Miller, A.H.; Nemeroff, C.B. The Link between Childhood Trauma and Depression: Insights from HPA Axis Studies in Humans. Psychoneuroendocrinology 2008, 33, 693–710. [Google Scholar] [CrossRef] [PubMed]
- Lupien, S.J.; McEwen, B.S.; Gunnar, M.R.; Heim, C. Effects of Stress throughout the Lifespan on the Brain, Behaviour and Cognition. Nat. Rev. Neurosci. 2009, 10, 434–445. [Google Scholar] [CrossRef]
- Hart, H.; Rubia, K. Neuroimaging of Child Abuse: A Critical Review. Front. Hum. Neurosci. 2012, 6, 52. [Google Scholar] [CrossRef]
- Carr, C.P.; Martins, C.M.S.; Stingel, A.M.; Lemgruber, V.B.; Juruena, M.F. The Role of Early Life Stress in Adult Psychiatric Disorders: A Systematic Review According to Childhood Trauma Subtypes. J. Nerv. Ment. Dis. 2013, 201, 1007–1020. [Google Scholar] [CrossRef]
- Teicher, M.H.; Samson, J.A.; Anderson, C.M.; Ohashi, K. The Effects of Childhood Maltreatment on Brain Structure, Function and Connectivity. Nat. Rev. Neurosci. 2016, 17, 652–666. [Google Scholar] [CrossRef]
- Kendler, K.S.; Kuhn, J.W.; Prescott, C.A. Childhood Sexual Abuse, Stressful Life Events and Risk for Major Depression in Women. Psychol. Med. 2004, 34, 1475–1482. [Google Scholar] [CrossRef]
- Mc Elroy, S.; Hevey, D. Relationship between Adverse Early Experiences, Stressors, Psychosocial Resources and Wellbeing. Child Abuse Negl. 2014, 38, 65–75. [Google Scholar] [CrossRef]
- Worlein, J.M. Nonhuman Primate Models of Depression: Effects of Early Experience and Stress. ILAR J. 2014, 55, 259–273. [Google Scholar] [CrossRef]
- Geronazzo-Alman, L.; Eisenberg, R.; Shen, S.; Duarte, C.S.; Musa, G.J.; Wicks, J.; Fan, B.; Doan, T.; Guffanti, G.; Bresnahan, M.; et al. Cumulative Exposure to Work-Related Traumatic Events and Current Post-Traumatic Stress Disorder in New York City’s First Responders. Compr. Psychiatry 2017, 74, 134–143. [Google Scholar] [CrossRef] [PubMed]
- Suliman, S.; Mkabile, S.G.; Fincham, D.S.; Ahmed, R.; Stein, D.J.; Seedat, S. Cumulative Effect of Multiple Trauma on Symptoms of Posttraumatic Stress Disorder, Anxiety, and Depression in Adolescents. Compr. Psychiatry 2009, 50, 121–127. [Google Scholar] [CrossRef] [PubMed]
- Belleau, E.L.; Treadway, M.T.; Pizzagalli, D.A. The Impact of Stress and Major Depressive Disorder on Hippocampal and Medial Prefrontal Cortex Morphology. Biol. Psychiatry 2019, 85, 443–453. [Google Scholar] [CrossRef] [PubMed]
- Saxton, K.; Chyu, L. Early Life Adversity Increases the Salience of Later Life Stress: An Investigation of Interactive Effects in the PSID. J. Dev. Orig. Health Dis. 2020, 11, 25–36. [Google Scholar] [CrossRef]
- Aragam, N.; Wang, K.-S.; Pan, Y. Genome-Wide Association Analysis of Gender Differences in Major Depressive Disorder in the Netherlands NESDA and NTR Population-Based Samples. J. Affect. Disord. 2011, 133, 516–521. [Google Scholar] [CrossRef]
- Farrell, C.; O’Keane, V. Epigenetics and the Glucocorticoid Receptor: A Review of the Implications in Depression. Psychiatry Res. 2016, 242, 349–356. [Google Scholar] [CrossRef]
- Sullivan, P.F.; de Geus, E.J.C.; Willemsen, G.; James, M.R.; Smit, J.H.; Zandbelt, T.; Arolt, V.; Baune, B.T.; Blackwood, D.; Cichon, S.; et al. Genome-Wide Association for Major Depressive Disorder: A Possible Role for the Presynaptic Protein Piccolo. Mol. Psychiatry 2009, 14, 359–375. [Google Scholar] [CrossRef]
- Mundorf, A.; Schmitz, J.; Hünten, K.; Fraenz, C.; Schlüter, C.; Genç, E.; Ocklenburg, S.; Freund, N. MORC1 Methylation and BDI Are Associated with Microstructural Features of the Hippocampus and Medial Prefrontal Cortex. J. Affect. Disord. 2021, 282, 91–97. [Google Scholar] [CrossRef]
- Mundorf, A.; Schmitz, J.; Güntürkün, O.; Freund, N.; Ocklenburg, S. Methylation of MORC1: A Possible Biomarker for Depression? J. Psychiatr. Res. 2018, 103, 208–211. [Google Scholar] [CrossRef]
- Nieratschker, V.; Massart, R.; Gilles, M.; Luoni, A.; Suderman, M.J.; Krumm, B.; Meier, S.; Witt, S.H.; Nöthen, M.M.; Suomi, S.J.; et al. MORC1 Exhibits Cross-Species Differential Methylation in Association with Early Life Stress as Well as Genome-Wide Association with MDD. Transl. Psychiatry 2014, 4, e429. [Google Scholar] [CrossRef]
- Thomas, M.; Coope, A.; Falkenberg, C.; Dunlop, B.W.; Czamara, D.; Provencal, N.; Craighead, W.E.; Mayberg, H.S.; Nemeroff, C.B.; Binder, E.B.; et al. Investigation of MORC1 DNA Methylation as Biomarker of Early Life Stress and Depressive Symptoms. J. Psychiatr. Res. 2020, 120, 154–162. [Google Scholar] [CrossRef] [PubMed]
- Razin, A.; Cedar, H. DNA Methylation and Gene Expression. Microbiol. Rev. 1991, 55, 451–458. [Google Scholar] [CrossRef] [PubMed]
- Moore, L.D.; Le, T.; Fan, G. DNA Methylation and Its Basic Function. Neuropsychopharmacology 2013, 38, 23–38. [Google Scholar] [CrossRef] [PubMed]
- Mundorf, A.; Koch, J.; Kubitza, N.; Wagner, S.C.; Schmidt, M.; Gass, P.; Freund, N. Morc1 as a Potential New Target Gene in Mood Regulation: When and Where to Find in the Brain. Exp. Brain Res. 2021, 239, 2999–3005. [Google Scholar] [CrossRef]
- Schmidt, M.; Brandwein, C.; Luoni, A.; Sandrini, P.; Calzoni, T.; Deuschle, M.; Cirulli, F.; Riva, M.A.; Gass, P. Morc1 Knockout Evokes a Depression-like Phenotype in Mice. Behav. Brain Res. 2016, 296, 7–14. [Google Scholar] [CrossRef]
- Bölükbas, I.; Mundorf, A.; Freund, N. Maternal Separation in Rats Induces Neurobiological and Behavioral Changes on the Maternal Side. Sci. Rep. 2020, 10, 22431. [Google Scholar] [CrossRef]
- Lehmann, J.; Feldon, J. Long-Term Biobehavioral Effects of Maternal Separation in the Rat: Consistent or Confusing? Rev. Neurosci. 2000, 11, 383–408. [Google Scholar] [CrossRef]
- Tractenberg, S.G.; Levandowski, M.L.; de Azeredo, L.A.; Orso, R.; Roithmann, L.G.; Hoffmann, E.S.; Brenhouse, H.; Grassi-Oliveira, R. An Overview of Maternal Separation Effects on Behavioural Outcomes in Mice: Evidence from a Four-Stage Methodological Systematic Review. Neurosci. Biobehav. Rev. 2016, 68, 489–503. [Google Scholar] [CrossRef]
- Freund, N.; Thompson, B.S.; Denormandie, J.; Vaccarro, K.; Andersen, S.L. Windows of Vulnerability: Maternal Separation, Age, and Fluoxetine on Adolescent Depressive-like Behavior in Rats. Neuroscience 2013, 249, 88–97. [Google Scholar] [CrossRef]
- Peña, C.J.; Kronman, H.G.; Walker, D.M.; Cates, H.M.; Bagot, R.C.; Purushothaman, I.; Issler, O.; Loh, Y.-H.E.; Leong, T.; Kiraly, D.D.; et al. Early Life Stress Confers Lifelong Stress Susceptibility in Mice via Ventral Tegmental Area OTX2. Science 2017, 356, 1185–1188. [Google Scholar] [CrossRef]
- Zhou, L.; Wu, Z.; Wang, G.; Xiao, L.; Wang, H.; Sun, L.; Xie, Y. Long-Term Maternal Separation Potentiates Depressive-like Behaviours and Neuroinflammation in Adult Male C57/BL6J Mice. Pharmacol. Biochem. Behav. 2020, 196, 172953. [Google Scholar] [CrossRef] [PubMed]
- Cui, Y.; Cao, K.; Lin, H.; Cui, S.; Shen, C.; Wen, W.; Mo, H.; Dong, Z.; Bai, S.; Yang, L.; et al. Early-Life Stress Induces Depression-Like Behavior and Synaptic-Plasticity Changes in a Maternal Separation Rat Model: Gender Difference and Metabolomics Study. Front. Pharmacol. 2020, 11, 102. [Google Scholar] [CrossRef] [PubMed]
- Honeycutt, J.A.; Demaestri, C.; Peterzell, S.; Silveri, M.M.; Cai, X.; Kulkarni, P.; Cunningham, M.G.; Ferris, C.F.; Brenhouse, H.C. Altered Corticolimbic Connectivity Reveals Sex-Specific Adolescent Outcomes in a Rat Model of Early Life Adversity. eLife 2020, 9, e52651. [Google Scholar] [CrossRef] [PubMed]
- Brenhouse, H.C.; Lukkes, J.L.; Andersen, S.L. Early Life Adversity Alters the Developmental Profiles of Addiction-Related Prefrontal Cortex Circuitry. Brain Sci. 2013, 3, 143–158. [Google Scholar] [CrossRef]
- Andersen, S.L.; Teicher, M.H. Delayed Effects of Early Stress on Hippocampal Development. Neuropsychopharmacol. Off. Publ. Am. Coll. Neuropsychopharmacol. 2004, 29, 1988–1993. [Google Scholar] [CrossRef]
- Gildawie, K.R.; Honeycutt, J.A.; Brenhouse, H.C. Region-Specific Effects of Maternal Separation on Perineuronal Net and Parvalbumin-Expressing Interneuron Formation in Male and Female Rats. Neuroscience 2020, 428, 23–37. [Google Scholar] [CrossRef]
- Mumtaz, F.; Khan, M.I.; Zubair, M.; Dehpour, A.R. Neurobiology and Consequences of Social Isolation Stress in Animal Model—A Comprehensive Review. Biomed. Pharmacother. 2018, 105, 1205–1222. [Google Scholar] [CrossRef]
- Weiss, I.C.; Pryce, C.R.; Jongen-Rêlo, A.L.; Nanz-Bahr, N.I.; Feldon, J. Effect of Social Isolation on Stress-Related Behavioural and Neuroendocrine State in the Rat. Behav. Brain Res. 2004, 152, 279–295. [Google Scholar] [CrossRef]
- Biggio, F.; Pisu, M.G.; Garau, A.; Boero, G.; Locci, V.; Mostallino, M.C.; Olla, P.; Utzeri, C.; Serra, M. Maternal Separation Attenuates the Effect of Adolescent Social Isolation on HPA Axis Responsiveness in Adult Rats. Eur. Neuropsychopharmacol. J. Eur. Coll. Neuropsychopharmacol. 2014, 24, 1152–1161. [Google Scholar] [CrossRef]
- Gildawie, K.R.; Ryll, L.M.; Hexter, J.C.; Peterzell, S.; Valentine, A.A.; Brenhouse, H.C. A Two-Hit Adversity Model in Developing Rats Reveals Sex-Specific Impacts on Prefrontal Cortex Structure and Behavior. Dev. Cogn. Neurosci. 2021, 48, 100924. [Google Scholar] [CrossRef]
- Jaric, I.; Rocks, D.; Cham, H.; Herchek, A.; Kundakovic, M. Sex and Estrous Cycle Effects on Anxiety- and Depression-Related Phenotypes in a Two-Hit Developmental Stress Model. Front. Mol. Neurosci. 2019, 12, 74. [Google Scholar] [CrossRef] [PubMed]
- Lukkes, J.L.; Mokin, M.V.; Scholl, J.L.; Forster, G.L. Adult Rats Exposed to Early-Life Social Isolation Exhibit Increased Anxiety and Conditioned Fear Behavior, and Altered Hormonal Stress Responses. Horm. Behav. 2009, 55, 248–256. [Google Scholar] [CrossRef] [PubMed]
- Vargas, J.; Junco, M.; Gomez, C.; Lajud, N. Early Life Stress Increases Metabolic Risk, HPA Axis Reactivity, and Depressive-Like Behavior When Combined with Postweaning Social Isolation in Rats. PLoS ONE 2016, 11, e0162665. [Google Scholar] [CrossRef] [PubMed]
- Solmi, M.; Radua, J.; Olivola, M.; Croce, E.; Soardo, L.; Salazar de Pablo, G.; Il Shin, J.; Kirkbride, J.B.; Jones, P.; Kim, J.H.; et al. Age at Onset of Mental Disorders Worldwide: Large-Scale Meta-Analysis of 192 Epidemiological Studies. Mol. Psychiatry 2021, 27, 281–295. [Google Scholar] [CrossRef]
- De Brouwer, G.; Fick, A.; Harvey, B.H.; Wolmarans, D.W. A Critical Inquiry into Marble-Burying as a Preclinical Screening Paradigm of Relevance for Anxiety and Obsessive-Compulsive Disorder: Mapping the Way Forward. Cogn. Affect. Behav. Neurosci. 2019, 19, 1–39. [Google Scholar] [CrossRef]
- Pellow, S.; Chopin, P.; File, S.E.; Briley, M. Validation of Open: Closed Arm Entries in an Elevated plus-Maze as a Measure of Anxiety in the Rat. J. Neurosci. Methods 1985, 14, 149–167. [Google Scholar] [CrossRef]
- Poling, A.; Cleary, J.; Monaghan, M. Burying by Rats in Response to Aversive and Nonaversive Stimuli. J. Exp. Anal. Behav. 1981, 35, 31–44. [Google Scholar] [CrossRef]
- Jarrar, Q.; Ayoub, R.; Alhussine, K.; Goh, K.W.; Moshawih, S.; Ardianto, C.; Goh, B.H.; Ming, L.C. Prolonged Maternal Separation Reduces Anxiety State and Increases Compulsive Burying Activity in the Offspring of BALB/c Mice. J. Pers. Med. 2022, 12, 1921. [Google Scholar] [CrossRef]
- Pellow, S.; File, S.E. Anxiolytic and Anxiogenic Drug Effects on Exploratory Activity in an Elevated Plus-Maze: A Novel Test of Anxiety in the Rat. Pharmacol. Biochem. Behav. 1986, 24, 525–529. [Google Scholar] [CrossRef]
- Andersen, S.L.; Teicher, M.H. Stress, Sensitive Periods and Maturational Events in Adolescent Depression. Trends Neurosci. 2008, 31, 183–191. [Google Scholar] [CrossRef]
- Chocyk, A.; Majcher-Maślanka, I.; Dudys, D.; Przyborowska, A.; Wędzony, K. Impact of Early-Life Stress on the Medial Prefrontal Cortex Functions—A Search for the Pathomechanisms of Anxiety and Mood Disorders. Pharmacol. Rep. PR 2013, 65, 1462–1470. [Google Scholar] [CrossRef] [PubMed]
- Faul, F.; Erdfelder, E.; Lang, A.-G.; Buchner, A. G*Power 3: A Flexible Statistical Power Analysis Program for the Social, Behavioral, and Biomedical Sciences. Behav. Res. Methods 2007, 39, 175–191. [Google Scholar] [CrossRef] [PubMed]
- Paxinos, G.; Watson, C. The Rat Brain in Stereotaxic Coordinates, 6th ed.; Elsevier: Amsterdam, The Netherlands, 2006. [Google Scholar]
- Abraham, M.; Schmerder, K.; Hedtstück, M.; Bösing, K.; Mundorf, A.; Freund, N. Maternal Separation and Its Developmental Consequences on Anxiety and Parvalbumin Interneurons in the Amygdala. J. Neural Transm. 2023, 130, 1167–1175. [Google Scholar] [CrossRef] [PubMed]
- Mundorf, A.; Matsui, H.; Ocklenburg, S.; Freund, N. Asymmetry of Turning Behavior in Rats Is Modulated by Early Life Stress. Behav. Brain Res. 2020, 393, 112807. [Google Scholar] [CrossRef]
- Mundorf, A.; Kubitza, N.; Hünten, K.; Matsui, H.; Juckel, G.; Ocklenburg, S.; Freund, N. Maternal Immune Activation Leads to Atypical Turning Asymmetry and Reduced DRD2 mRNA Expression in a Rat Model of Schizophrenia. Behav. Brain Res. 2021, 414, 113504. [Google Scholar] [CrossRef]
- De Boer, M.E.; de Boer, T.E.; Mariën, J.; Timmermans, M.J.; Nota, B.; van Straalen, N.M.; Ellers, J.; Roelofs, D. Reference Genes for QRT-PCR Tested under Various Stress Conditions in Folsomia Candida and Orchesella Cincta (Insecta, Collembola). BMC Mol. Biol. 2009, 10, 54. [Google Scholar] [CrossRef]
- Zainuddin, A.; Chua, K.H.; Abdul Rahim, N.; Makpol, S. Effect of Experimental Treatment on GAPDH mRNA Expression as a Housekeeping Gene in Human Diploid Fibroblasts. BMC Mol. Biol. 2010, 11, 59. [Google Scholar] [CrossRef]
- Derveaux, S.; Vandesompele, J.; Hellemans, J. How to Do Successful Gene Expression Analysis Using Real-Time PCR. Methods San Diego Calif 2010, 50, 227–230. [Google Scholar] [CrossRef]
- Alves, R.L.; Portugal, C.C.; Summavielle, T.; Barbosa, F.; Magalhães, A. Maternal Separation Effects on Mother Rodents’ Behaviour: A Systematic Review. Neurosci. Biobehav. Rev. 2020, 117, 98–109. [Google Scholar] [CrossRef]
- Weaver, I.C.G.; Cervoni, N.; Champagne, F.A.; D’Alessio, A.C.; Sharma, S.; Seckl, J.R.; Dymov, S.; Szyf, M.; Meaney, M.J. Epigenetic Programming by Maternal Behavior. Nat. Neurosci. 2004, 7, 847–854. [Google Scholar] [CrossRef]
- Kaczkurkin, A.N.; Raznahan, A.; Satterthwaite, T.D. Sex Differences in the Developing Brain: Insights from Multimodal Neuroimaging. Neuropsychopharmacology 2019, 44, 71–85. [Google Scholar] [CrossRef] [PubMed]
- Premachandran, H.; Zhao, M.; Arruda-Carvalho, M. Sex Differences in the Development of the Rodent Corticolimbic System. Front. Neurosci. 2020, 14, 583477. [Google Scholar] [CrossRef] [PubMed]
- Lenroot, R.K.; Gogtay, N.; Greenstein, D.K.; Wells, E.M.; Wallace, G.L.; Clasen, L.S.; Blumenthal, J.D.; Lerch, J.; Zijdenbos, A.P.; Evans, A.C.; et al. Sexual Dimorphism of Brain Developmental Trajectories during Childhood and Adolescence. NeuroImage 2007, 36, 1065–1073. [Google Scholar] [CrossRef] [PubMed]
- Peper, J.S.; Brouwer, R.M.; Schnack, H.G.; van Baal, G.C.; van Leeuwen, M.; van den Berg, S.M.; Delemarre-Van de Waal, H.A.; Boomsma, D.I.; Kahn, R.S.; Hulshoff Pol, H.E. Sex Steroids and Brain Structure in Pubertal Boys and Girls. Psychoneuroendocrinology 2009, 34, 332–342. [Google Scholar] [CrossRef]
- Wang, D.; Levine, J.L.S.; Avila-Quintero, V.; Bloch, M.; Kaffman, A. Systematic Review and Meta-Analysis: Effects of Maternal Separation on Anxiety-like Behavior in Rodents. Transl. Psychiatry 2020, 10, 174. [Google Scholar] [CrossRef]
- Kokras, N.; Dalla, C. Sex Differences in Animal Models of Psychiatric Disorders. Br. J. Pharmacol. 2014, 171, 4595–4619. [Google Scholar] [CrossRef]
- Leussis, M.P.; Freund, N.; Brenhouse, H.C.; Thompson, B.S.; Andersen, S.L. Depressive-like Behavior in Adolescents after Maternal Separation: Sex Differences, Controllability, and GABA. Dev. Neurosci. 2012, 34, 210–217. [Google Scholar] [CrossRef]
- Dimatelis, J.J.; Vermeulen, I.M.; Bugarith, K.; Stein, D.J.; Russell, V.A. Female Rats Are Resistant to Developing the Depressive Phenotype Induced by Maternal Separation Stress. Metab. Brain Dis. 2016, 31, 109–119. [Google Scholar] [CrossRef]
- Ellis, S.N.; Honeycutt, J.A. Sex Differences in Affective Dysfunction and Alterations in Parvalbumin in Rodent Models of Early Life Adversity. Front. Behav. Neurosci. 2021, 15, 741454. [Google Scholar] [CrossRef]
- Mundorf, A.; Knorr, A.; Mezö, C.; Klein, C.; Beyer, D.K.; Fallgatter, A.J.; Schwarz, M.; Freund, N. Lithium and Glutamine Synthetase: Protective Effects Following Stress. Psychiatry Res. 2019, 281, 112544. [Google Scholar] [CrossRef]
- Schroeder, A.; Notaras, M.; Du, X.; Hill, R.A. On the Developmental Timing of Stress: Delineating Sex-Specific Effects of Stress across Development on Adult Behavior. Brain Sci. 2018, 8, 121. [Google Scholar] [CrossRef]
- Willing, J.; Juraska, J.M. The Timing of Neuronal Loss across Adolescence in the Medial Prefrontal Cortex of Male and Female Rats. Neuroscience 2015, 301, 268–275. [Google Scholar] [CrossRef]
- Markham, J.A.; Morris, J.R.; Juraska, J.M. Neuron Number Decreases in the Rat Ventral, but Not Dorsal, Medial Prefrontal Cortex between Adolescence and Adulthood. Neuroscience 2007, 144, 961–968. [Google Scholar] [CrossRef]
- Tran, C.H.; Shannon Weickert, C.; Weickert, T.W.; Sinclair, D. Early Life Stress Alters Expression of Glucocorticoid Stress Response Genes and Trophic Factor Transcripts in the Rodent Basal Ganglia. Int. J. Mol. Sci. 2022, 23, 5333. [Google Scholar] [CrossRef]
- Lukas, M.; Bredewold, R.; Neumann, I.D.; Veenema, A.H. Maternal Separation Interferes with Developmental Changes in Brain Vasopressin and Oxytocin Receptor Binding in Male Rats. Neuropharmacology 2010, 58, 78–87. [Google Scholar] [CrossRef]
- Comasco, E.; Schijven, D.; de Maeyer, H.; Vrettou, M.; Nylander, I.; Sundström-Poromaa, I.; Olivier, J.D.A. Constitutive Serotonin Transporter Reduction Resembles Maternal Separation with Regard to Stress-Related Gene Expression. ACS Chem. Neurosci. 2019, 10, 3132–3142. [Google Scholar] [CrossRef]
- Own, L.S.; Iqbal, R.; Patel, P.D. Maternal Separation Alters Serotonergic and HPA Axis Gene Expression Independent of Separation Duration in Mice. Brain Res. 2013, 1515, 29–38. [Google Scholar] [CrossRef]
- Nishi, M. Effects of Early-Life Stress on the Brain and Behaviors: Implications of Early Maternal Separation in Rodents. Int. J. Mol. Sci. 2020, 21, 7212. [Google Scholar] [CrossRef]
Age Tested | MS | CRL | ISO | MS + ISO |
---|---|---|---|---|
Juvenile (P22) | 10 | 13 | - | - |
Adolescent (P42) | 10 | 15 | 15 | 16 |
Adult (P62) | 12 | 15 | 11 | 11 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mundorf, A.; Freund, N. Effects of Early Stress Exposure on Anxiety-like Behavior and MORC1 Expression in Rats. Biomolecules 2024, 14, 1587. https://doi.org/10.3390/biom14121587
Mundorf A, Freund N. Effects of Early Stress Exposure on Anxiety-like Behavior and MORC1 Expression in Rats. Biomolecules. 2024; 14(12):1587. https://doi.org/10.3390/biom14121587
Chicago/Turabian StyleMundorf, Annakarina, and Nadja Freund. 2024. "Effects of Early Stress Exposure on Anxiety-like Behavior and MORC1 Expression in Rats" Biomolecules 14, no. 12: 1587. https://doi.org/10.3390/biom14121587
APA StyleMundorf, A., & Freund, N. (2024). Effects of Early Stress Exposure on Anxiety-like Behavior and MORC1 Expression in Rats. Biomolecules, 14(12), 1587. https://doi.org/10.3390/biom14121587