Brain-Derived Neurotrophic Factor in Pediatric Acquired Brain Injury and Recovery
Abstract
:1. Introduction
2. BDNF in Preclinical Models of Pediatric ABI
Reference | Type of Injury (TBI, Global Cerebral Ischemia, Stroke) | Brain Region from Which Sample Was Taken | Model | BDNF Concentration, Expression, Mimetics, or Genotype | Time Post Injury, | Results |
---|---|---|---|---|---|---|
Dyck et al., 2018 [40] | TBI | Motor cortex, prefrontal cortex | Juvenile rats post-natal day 27 | Concentration | 4 days | Rats with TBI had higher BDNF concentration in right and left motor cortex vs. sham |
Griesbach et al., 2002 [41] | TBI | Hippocampus and occipital cortex | Juvenile rats post-natal day 19 | Concentration, mRNA expression | 24 h, 7 days, and 14 days | Rats with TBI had higher BDNF expression vs. sham at 24 h and 7 days in contralateral hippocampus and occipital cortex; higher BDNF concentration in occipital cortex and ipsilateral hippocampus at 7 and 14 days post TBI vs. sham |
Rostami et al., 2014 [43] | TBI | Frontal cortex, hippocampus | Adult rats | Concentration, mRNA expression | 24 h, 3 day, 2 weeks, 8 weeks | Lower BDNF expression in ipsilateral hippocampus and higher BDNF expression in contralateral hippocampus at 1 day, 3 days, and 2 weeks after TBI vs. sham; higher BDNF concentration in frontal cortex on days 1, 3, and 14 post TBI vs. sham |
Hicks et al., 1997 [44] | TBI | Hippocampus | Adult rats | mRNA expression | 1, 3, 6, 24, and 72 h | Higher BDNF bilaterally in dentate gyrus for 1 to 72 h post TBI vs. sham and in CA3 at 1, 3, and 6 h post TBI vs. sham |
Chen et al., 2005 [45] | TBI | Hippocampus, frontal cortex | Adult rats | Concentration | 4 weeks | Higher BDNF expression in ipsilateral frontal cortex for males vs. sham; higher BDNF in contralateral hippocampus vs. sham |
Griesbach et al., 2009 [46] | TBI | Hippocampus, parietal cortex | Adult rats | Concentration | 21 days | Rats with TBI had lower BDNF in ipsilateral hippocampus and injured parietal cortex vs. sham, but higher BDNF in contralateral parietal cortex vs. sham |
Madathil et al., 2017 [47] | TBI | Hippocampus, cortex | Adult rats | Concentration | 1 h, 6 h, 1 day, 2 days, 3 days, 1 week, 2 weeks | BDNF was higher in rats with TBI in the hours after injury vs. sham |
Corne et al., 2019 [48] | TBI | Parietal lobe, hippocampus, amygdala, medial prefrontal cortex | Adult mice | mRNA expression | 3 weeks | BDNF was lower in animals with TBI at exon IV vs. sham in injured parietal lobe |
Thapak et al., 2023 [50] | TBI | Hippocampus | Adult rats | Mimetics, protein concentration (both mature BDNF and pro-BDNF, a precursor to mature BDNF) | 8 days | Animals with TBI had lower mature BDNF vs. sham; rats treated with BDNF mimetic (R13) had greater mature BDNF and better cognitive function after TBI vs. controls |
Agrawal et al., 2015 [51] | TBI | Hippocampus | Adult rats | Mimetics, concentration | 6 days | Rats treated with BDNF mimetic (7,8-dihydroxyflavone) had less cognitive behavioral deficit and fewer cellular changes after TBI vs. controls; treatment group had similar cortical BDNF levels vs. controls |
Wu et al., 2014 [52] | TBI | Parietal cortex | Adult mice | Mimetics, mRNA expression, and protein concentrations | 1 day, 4 days | Mice treated with BDNF mimetic (7,8-dihydroxyflavone) had higher BDNF concentrations, improved survival, and reduced cell death after TBI vs. controls |
Zhao et al., 2016 [53] | TBI | Hippocampus | Adult mice | Mimetics | 2 weeks | Mice that received 7,8-dihydroxyflavone for 2 weeks after TBI had improved neurogenesis and dendrite arborization in the ipsilateral hippocampus vs. controls |
Smith et al., 2023 [54] | TBI | Whole brain MRI scans | Adult rats | Mimetics | Up to 7 days post injury | Rats that received R13 had greater functional connectivity, and cellular and behavioral outcomes after TBI vs. controls |
Schober et al., 2012 [55] | TBI | Hippocampus (ipsilateral) | Rat pups post-natal day 17 | Concentration and mRNA expression | 1, 2, 3, 7, and 14 days | Rats with TBI had lower BDNF protein vs. sham at 14 days |
D’Cruz et al., 2002 [58] | Global cerebral ischemia | Hippocampus | Adult rats | Concentration | 12 and 24 h | Rats with ischemia had higher BDNF concentrations vs. sham |
Tsukahara et al., 1998 [59] | Global cerebral ischemia | Hippocampus, cortex | Adult mice | mRNA expression | 2, 4, 8, 16, or 24 h | Mice with ischemia had higher BDNF mRNA in the hippocampus and cerebral cortex vs. controls |
Dietz et al., 2018 [63] | Global cerebral ischemia | Hippocampus | Juvenile mice post-natal day 20–25 | Concentration | 7 days, 30 days | Lower hippocampal BDNF concentration vs. sham at 7 days in mice with cardiac arrest; no difference in BDNF in TBI vs. sham at 30 days |
Yan et al., 2012 [64] | Global cerebral ischemia | Hippocampus | Juvenile gerbils and adult gerbils | Concentration | 4, 7 days | BDNF expression was higher in injured animals vs. sham at 4 days after ischemia in juveniles but not adults |
Li et al., 2020 [61] | Global cerebral ischemia | Hippocampus | Adult rats | Concentration transcript expression | 48 h | Higher BDNF concentration vs. sham in CA3 and dentate gyrus; lower BDNF concentration vs. sham in CA1; higher BDNF mRNA vs. sham in CA1, CA3, and dentate gyrus at BDNF transcripts I, II, VI, and XI |
Miyake et al., 2002 [66] | Stroke | Hippocampus | Adult rats | Concentration, mRNA expression | 1, 3, 7 days | BDNF concentrations were higher in rats with ischemia vs. sham |
Grade et al., 2013 [67] | Stroke | Striatum | Adult mice | mRNA expression | 1, 2 weeks | Higher BDNF in ischemic striatum 1 week post injury vs. naïve mice |
Lindvall et al., 1992 [62] | Global cerebral ischemia | Hippocampus | Adult rats | mRNA expression | 10 min, 30 min, 2 h, 4 h, 24 h | Higher BDNF in dentate gyrus from 2 to 24 h in rats with ischemia vs. sham |
Kokaia et al., 1996 [60] | Global cerebral ischemia | Hippocampus and parietal cortex | Adult rats | Concentration, mRNA expression | 1, 2, 4, and 18 h (mRNA), and 6, 12, 24 h, or 1 weeks (protein) | Higher BDNF concentration at 6 h vs. sham in dentate gyrus and at 1 week in CA3; higher BDNF mRNA expression at 2 h in CA3 vs. sham |
Madinier et al., 2013 [68] | Stroke | Cortex and hippocampus | Adult rats | Concentration, mRNA expression | 4 h, 24 h, 8 days, 30 days | Higher mature BDNF in cortex vs. control; higher mature BDNF in hippocampus at 30 days vs. control |
Cheng et al., 2020 [69] | Stroke | Ischemic penumbra | Juvenile rats (matured for 6–7 weeks) | Concentration, mRNA expression | 7, 14 days | Higher BDNF concentration at 7 days vs. sham; higher BDNF expression in ischemic penumbra at 7 and 14 days post injury vs. sham |
Clarkson et al., 2011 [70] | Stroke | Periinfarct cortex | Adult mice | Inhibition of BDNF | 7 days | Mice with BDNF blocked have less AMPA-mediated motor recovery vs. controls |
Zhang and Pardridge 2001 [71] | Stroke | Cortex | Adult rats | Mimetics | 24 h | Rats treated with BDNF conjugate with a monoclonal antibody have smaller infarct size vs. controls |
Zhang and Pardridge 2001 [72] | Stroke | Cortex | Adult rats | Mimetics | 24 h, 7 days | Rats treated with BDNF conjugate have lower stroke volume at 24 h or 7 days after ischemia vs. controls |
Shabitz et al., 2000 [73] | Stroke | Cortex | Adult rats | Mimetics | 24 h | Rats with BDNF treatment have less neurological deficit and less stroke volume vs. controls |
Yamashita et al., 1997 [74] | Stroke | Cortex | Adult rats | Mimetics | 24 h | Rats with BDNF have lower infarct volume vs. controls; no differences in physiological measures vs. controls |
Wang et al., 2023 [75] | Stroke | Cortex, cervical spinal cord | Adult rats | Mimetics, mRNA | 28 days | BDNF-treated rats have better behavioral outcomes and greater corticospinal connections vs. controls |
Zhang and Pardridge 2006 [76] | Stroke | Cortex | Adult rats | Mimetics | 24 h | Animals treated with BDNF conjugate had greater motor outcomes and lower infarct volume vs. rats treated with BDNF alone |
Ramos-Cejudo et al., 2006 [77] | Stroke | Cortex, serum | Adult rats | Mimetics, concentration | 4 h, 7 days, 28 days | Recombinant BDNF-treated rats had better functional recovery and white matter repair markers at 28 days vs. controls |
Alam et al., 2020 [78] | Stroke | Cortex | Young rats (3 months) | Concentration | 6 weeks | Rats treated with p38 mitogen-activated protein kinase had higher BDNF after ischemia and greater functional recovery vs. controls |
Kokaia et al., 1995 [82] | Stroke | Frontal and cingulate cortex, hippocampus | Adult rats | Concentration, mRNA expression | 30 min, 2 h, 4 h, 24 h | Higher BDNF expression from 30 min to 4 h post ischemia vs. controls; no difference vs. controls at 24 h |
Uchida et al., 2010 [83] | Stroke | Substantia nigra | Adult rats | mRNA expression | 1, 2, 6, 20 weeks | Higher BDNF at 1 week and 20 weeks after ischemia vs. sham in neurons; greater BDNF released by astrocytes at 20 weeks vs. sham |
3. BDNF in Clinical Studies of Pediatric ABI
3.1. BDNF Concentrations
Reference | Type of Injury (TBI, Cardiac Arrest, Stroke, Brain Mass, CNS Infection, or Inflammation) | Groups | Time Post Injury | BDNF Concentration, Genotype, or DNAm | Tissue (CSF, Serum, Plasma, Saliva) | Results |
---|---|---|---|---|---|---|
Tylicka et al., 2020 [86] | TBI | Children with mild concussion (−)LOC (n = 12); children with severe concussion (+)LOC (n = 17); and healthy controls (n = 13) | 2–6 h | Concentration | Plasma | Higher plasma BDNF in children with mild head trauma (−)LOC and children with severe concussion (+)LOC 2–6 h post injury vs. healthy controls; BDNF concentration did not differ between children with mild vs. children with severe concussions |
Chiaretti et al., 2003 [87] | TBI | Children with severe head injury (n = 14) vs. children with obstructive hydrocephalus (n = 12) | 2 and 24 h | Concentration | CSF and plasma | Decrease in CSF BDNF concentration from 2 h to 24 h post injury |
Chiaretti et al., 2009 [88] | TBI | Children with severe head injury (n = 32) vs. healthy controls (n = 32) | 2 and 48 h after admission | Concentration | CSF | Higher CSF BDNF concentration in children with severe head injury vs. healthy controls; BDNF concentrations decreased in children with severe head injury from 2 to 48 h after admission |
Pinelis et al., 2015 [89] | TBI | Children with TBI (n = 177) | 1–3 days, 7–8 days, 14–15 days, 20–23 days, and 11–12 months | Concentration | Plasma | Decrease in BDNF concentration between days 1 and 3 post injury among mild and severe TBI; lowest BDNF concentration found at 1 day post injury in children with severe TBI and fatal outcomes |
Madurski et al., 2021 [90] | TBI, cardiac arrest, stroke, brain mass, or CNS infection, or inflammation | Children with acquired brain injury (n = 44) | Admission days 0, 1, 3, 5, and day closest to hospital discharge | Concentration | Serum | Lower serum BDNF in children on day 3 of admission, day 5 of admission, and day closest to hospital discharge associated with greater functional impairment |
Mahmoud et al., 2023 [91] | Stroke | Children with Sickle cell disease (n = 40) vs. healthy controls (n = 40) | During hospital admission | Concentration | Serum | Higher serum BDNF in children with SCD vs. healthy controls; higher serum BDNF in children with sickle cell disease associated with elevated transcranial doppler velocities |
Kernan et al., 2021 [94] | Cardiac Arrest | Pediatric cardiac arrest patients (n = 42) | Twice within a 24 h period between 0 and 96 h and once at 196 h | Concentration | Serum | BDNF serum levels not found to be significantly associated with 6-month neurologic outcome |
Treble-Barna et al., 2022 [95] | TBI | Children with TBI (n = 69) vs. OI (n = 72) | 18 months | Genotype | Saliva | Allele status x injury group interactions associated with behavioral adjustment outcomes; within-group non-significant trends of poorer behavioral adjustment in Met carriers |
Treble-Barna et al., 2022 [96] | TBI | Children with TBI (n = 69) vs. OI (n = 72) | 18 months | Genotype | Saliva | Poorer verbal fluency functioning in Met carriers vs. Val/Val in the TBI group |
Gagner et al., 2021 [97] | TBI | Children with mild TBI (n = 47), OI (n = 42), and typically developing children (TDC) (n = 56) | Any time point within 18 months | Genotype | Saliva | Val/Val mTBI associated with more internalizing problems vs. Met mTBI at 6 months post injury; Val/Val and Met mTBI groups associated with more internalizing problems vs. OI and TDC at 18 months post injury |
Tuerk et al., 2020 [98] | TBI | Children with mild TBI (n = 52), OI (n = 43), and typically developing children (TDC) (n = 64) | Any time point within 18 months | Genotype | Saliva | Higher quality of life at 6 months post injury in Met carriers vs. Val/Val among TBI |
3.2. BDNF Genotype
3.3. BDNF DNAm
4. The Potential of BDNF as an ABI Biomarker Responsive to Environmental Influences
4.1. Psychosocial Environment
4.2. Rehabilitative Therapies
5. BDNF DNAm as a Modifiable Therapeutic Target
6. Discussion
7. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Dewan, M.C.; Rattani, A.; Gupta, S.; Baticulon, R.E.; Hung, Y.C.; Punchak, M.; Agrawal, A.; Adeleye, A.O.; Shrime, M.G.; Rubiano, A.M.; et al. Estimating the global incidence of traumatic brain injury. J. Neurosurg. 2019, 130, 1080–1097. [Google Scholar] [CrossRef]
- Suskauer, S.J.; Houtrow, A.J. Invited Commentary on “The Report to Congress on the Management of Traumatic Brain Injury in Children”. Arch. Phys. Med. Rehabil. 2018, 99, 2389–2391. [Google Scholar] [CrossRef]
- Williams, C.N.; Piantino, J.; McEvoy, C.; Fino, N.; Eriksson, C.O. The Burden of Pediatric Neurocritical Care in the United States. Pediatr. Neurol. 2018, 89, 31–38. [Google Scholar] [CrossRef]
- Fink, E.L.; Kochanek, P.M.; Tasker, R.C.; Beca, J.; Bell, M.J.; Clark, R.S.B.; Hutchison, J.; Vavilala, M.S.; Fabio, A.; Angus, D.C.; et al. International Survey of Critically Ill Children With Acute Neurologic Insults: The Prevalence of Acute Critical Neurological Disease in Children: A Global Epidemiological Assessment Study. Pediatr. Crit. Care Med. 2017, 18, 330–342. [Google Scholar] [CrossRef] [PubMed]
- Treble-Barna, A.; Zang, H.; Zhang, N.; Taylor, H.G.G.; Yeates, K.O.; Wade, S.L. Long-Term Neuropsychological Profiles and Their Role as Mediators of Adaptive Functioning after Traumatic Brain Injury in Early Childhood. J. Neurotrauma 2017, 34, 353–362. [Google Scholar] [CrossRef] [PubMed]
- Treble-Barna, A.; Schultz, H.; Minich, N.; Taylor, H.; Yeates, K.; Stancin, T.; Wade, S. Long-term classroom functioning and its association with neuropsychological and academic performance following traumatic brain injury during early childhood. Neuropsychology 2017, 31, 486–498. [Google Scholar] [CrossRef] [PubMed]
- Treble-Barna, A.; Zang, H.; Zhang, N.; Taylor, H.G.G.; Stancin, T.; Yeates, K.O.K.O.; Wade, S.L. Observed parent behaviors as time-varying moderators of problem behaviors following traumatic brain injury in young children. Dev. Psychol. 2016, 52, 1777–1792. [Google Scholar] [CrossRef] [PubMed]
- Kriel, R.L.; Krach, L.E.; Luxenberg, M.G.; Jones-Saete, C.; Sanchez, J. Outcome of severe anoxic/ischemic brain injury in children. Pediatr. Neurol. 1994, 10, 207–212. [Google Scholar] [CrossRef] [PubMed]
- Slomine, B.S.; Silverstein, F.S.; Christensen, J.R.; Holubkov, R.; Page, K.; Dean, J.M.; Moler, F.W.; on behalf of the THAPCA Trial Group. Neurobehavioral Outcomes in Children After Out-of-Hospital Cardiac Arrest. Pediatrics 2016, 137, e20153412. [Google Scholar] [CrossRef] [PubMed]
- Saatman, K.E.; Duhaime, A.-C.; Bullock, R.; Maas, A.I.R.; Valadka, A.; Manley, G.T. Workshop Scientific Team and Advisory Panel Members Classification of traumatic brain injury for targeted therapies. J. Neurotrauma 2008, 25, 719–738. [Google Scholar] [CrossRef] [PubMed]
- Hawryluk, G.W.J.; Manley, G.T. Classification of traumatic brain injury: Past, present, and future. Handb. Clin. Neurol. 2015, 127, 15–21. [Google Scholar]
- Gray, J.M.; Kramer, M.E.; Suskauer, S.J.; Slomine, B.S. Functional Recovery During Inpatient Rehabilitation in Children With Anoxic or Hypoxic Brain Injury. Arch. Phys. Med. Rehabil. 2023, 104, 918–924. [Google Scholar] [CrossRef]
- Korley, F.K.; Jain, S.; Sun, X.; Puccio, A.M.; Yue, J.K.; Gardner, R.C.; Wang, K.K.W.; Okonkwo, D.O.; Yuh, E.L.; Mukherjee, P.; et al. Prognostic value of day-of-injury plasma GFAP and UCH-L1 concentrations for predicting functional recovery after traumatic brain injury in patients from the US TRACK-TBI cohort: An observational cohort study. Lancet Neurol. 2022, 21, 803–813. [Google Scholar] [CrossRef]
- Munoz Pareja, J.C.; Li, X.; Gandham, N.; Wang, K.K.; Lautenslager, L.; Pareja, M.C.; Shanmugham, P.; Faulkinberry, S.; Ghosh, S.; Kerrigan, M.; et al. Biomarkers in Moderate to Severe Pediatric Traumatic Brain Injury: A Review of the Literature. Pediatr. Neurol. 2022, 130, 60–68. [Google Scholar] [CrossRef]
- Huie, J.R.; Mondello, S.; Lindsell, C.J.; Antiga, L.; Yuh, E.L.; Zanier, E.R.; Masson, S.; Rosario, B.L.; Ferguson, A.R. Biomarkers for Traumatic Brain Injury: Data Standards and Statistical Considerations. J. Neurotrauma 2021, 38, 2514–2529. [Google Scholar] [CrossRef]
- Barker, P.A. Whither proBDNF? Nat. Neurosci. 2009, 12, 105–106. [Google Scholar] [CrossRef] [PubMed]
- Lu, B.; Pang, P.T.; Woo, N.H. The yin and yang of neurotrophin action. Nat. Rev. Neurosci. 2005, 6, 603–614. [Google Scholar] [CrossRef] [PubMed]
- Cortés-Mendoza, J.; Díaz de León-Guerrero, S.; Pedraza-Alva, G.; Pérez-Martínez, L. Shaping synaptic plasticity: The role of activity-mediated epigenetic regulation on gene transcription. Int. J. Dev. Neurosci. 2013, 31, 359–369. [Google Scholar] [CrossRef] [PubMed]
- Koven, N.S.; Collins, L.R. Urinary brain-derived neurotrophic factor as a biomarker of executive functioning. Neuropsychobiology 2014, 69, 227–234. [Google Scholar] [CrossRef] [PubMed]
- Leckie, R.L.; Oberlin, L.E.; Voss, M.W.; Prakash, R.S.; Szabo-Reed, A.; Chaddock-Heyman, L.; Phillips, S.M.; Gothe, N.P.; Mailey, E.; Vieira-Potter, V.J.; et al. BDNF mediates improvements in executive function following a 1-year exercise intervention. Front. Hum. Neurosci. 2014, 8, 985. [Google Scholar] [CrossRef] [PubMed]
- Manju, S.; Vignoli, B.; Canossa, M.; Blum, R. Neurobiology of local and intercellular BDNF signaling. Pflug. Arch. Eur. J. Physiol. 2017, 3, 593–610. [Google Scholar]
- van der Kolk, N.M.; Speelman, A.D.; van Nimwegen, M.; Kessels, R.P.C.; IntHout, J.; Hakobjan, M.; Munneke, M.; Bloem, B.R.; van de Warrenburg, B.P. BDNF polymorphism associates with decline in set shifting in Parkinson’s disease. Neurobiol. Aging 2015, 36, 1605.e1–1605.e6. [Google Scholar] [CrossRef]
- Huang, E.J.A.; Reichardt, L.F. Neurotrophins: Roles in neuronal development and function. Annu. Rev. Neurosci. 2001, 24, 677–736. [Google Scholar] [CrossRef]
- Wiłkość, M.; Szałkowska, A.; Skibińska, M.; Zając-Lamparska, L.; Maciukiewicz, M.; Araszkiewicz, A. BDNF gene polymorphisms and haplotypes in relation to cognitive performance in Polish healthy subjects. Acta Neurobiol. Exp. 2016, 76, 43–52. [Google Scholar] [CrossRef]
- Chen, Z.-Y.; Patel, P.D.; Sant, G.; Meng, C.-X.; Teng, K.K.; Hempstead, B.L.; Lee, F.S. Variant brain-derived neurotrophic factor (BDNF) (Met66) alters the intracellular trafficking and activity-dependent secretion of wild-type BDNF in neurosecretory cells and cortical neurons. J. Neurosci. 2004, 24, 4401–4411. [Google Scholar] [CrossRef]
- Egan, M.F.; Kojima, M.; Callicott, J.H.; Goldberg, T.E.; Kolachana, B.S.; Bertolino, A.; Zaitsev, E.; Gold, B.; Goldman, D.; Dean, M.; et al. The BDNF val66met polymorphism affects activity-dependent secretion of BDNF and human memory and hippocampal function. Cell 2003, 112, 257–269. [Google Scholar] [CrossRef] [PubMed]
- Kawasaki, Y.; Oishi, K.; Hernandez, A.; Ernst, T.; Wu, D.; Otsuka, Y.; Ceritoglu, C.; Chang, L. Brain-derived neurotrophic factor Val66Met variant on brain volumes in infants. Brain Struct. Funct. 2021, 226, 919–925. [Google Scholar] [CrossRef] [PubMed]
- Nemoto, K.; Ohnishi, T.; Mori, T.; Moriguchi, Y.; Hashimoto, R.; Asada, T.; Kunugi, H. The Val66Met polymorphism of the brain-derived neurotrophic factor gene affects age-related brain morphology. Neurosci. Lett. 2006, 397, 25–29. [Google Scholar] [CrossRef] [PubMed]
- Pezawas, L.; Verchinski, B.A.; Mattay, V.S.; Callicott, J.H.; Kolachana, B.S.; Straub, R.E.; Egan, M.F.; Meyer-Lindenberg, A.; Weinberger, D.R. The brain-derived neurotrophic factor val66met polymorphism and variation in human cortical morphology. J. Neurosci. 2004, 24, 10099–10102. [Google Scholar] [CrossRef] [PubMed]
- Szeszko, P.R.; Lipsky, R.; Mentschel, C.; Robinson, D.; Gunduz-Bruce, H.; Sevy, S.; Ashtari, M.; Napolitano, B.; Bilder, R.M.; Kane, J.M.; et al. Brain-derived neurotrophic factor val66met polymorphism and volume of the hippocampal formation. Mol. Psychiatry 2005, 10, 631–636. [Google Scholar] [CrossRef] [PubMed]
- Park, C.H.; Kim, J.; Namgung, E.; Lee, D.W.; Kim, G.H.; Kim, M.; Kim, N.; Kim, T.D.; Kim, S.; Lyoo, I.K.; et al. The BDNF val66met polymorphism affects the vulnerability of the brain structural network. Front. Hum. Neurosci. 2017, 11, 400. [Google Scholar] [CrossRef]
- Ueda, I.; Takemoto, K.; Watanabe, K.; Sugimoto, K.; Ikenouchi, A.; Kakeda, S.; Katsuki, A.; Yoshimura, R.; Korogi, Y. The brain-derived neurotrophic factor Val66Met polymorphism increases segregation of structural correlation networks in healthy adult brains. PeerJ 2020, 8, e9632. [Google Scholar] [CrossRef]
- Kambeitz, J.P.; Bhattacharyya, S.; Kambeitz-Ilankovic, L.M.; Valli, I.; Collier, D.A.; McGuire, P. Effect of BDNF val66met polymorphism on declarative memory and its neural substrate: A meta-analysis. Neurosci. Biobehav. Rev. 2012, 36, 2165–2177. [Google Scholar] [CrossRef]
- Toh, Y.L.; Ng, T.; Tan, M.; Tan, A.; Chan, A. Impact of brain-derived neurotrophic factor genetic polymorphism on cognition: A systematic review. Brain Behav. 2018, 8, e01009. [Google Scholar] [CrossRef] [PubMed]
- Brown, D.T.; Vickers, J.C.; Stuart, K.E.; Cechova, K.; Ward, D.D. The BDNF Val66Met polymorphism modulates resilience of neurological functioning to brain ageing and dementia: A narrative review. Brain Sci. 2020, 10, 195. [Google Scholar] [CrossRef]
- Notaras, M.; Hill, R.; Van Den Buuse, M. The BDNF gene Val66Met polymorphism as a modifier of psychiatric disorder susceptibility: Progress and controversy. Mol. Psychiatry 2015, 20, 916–930. [Google Scholar] [CrossRef]
- Nikolova, Y.S.; Hariri, A.R. Can we observe epigenetic effects on human brain function? Trends Cogn. Sci. 2015, 19, 366–373. [Google Scholar] [CrossRef] [PubMed]
- Jang, H.S.; Shin, W.J.; Lee, J.E.; Do, J.T. CpG and non-CpG methylation in epigenetic gene regulation and brain function. Genes 2017, 8, 148. [Google Scholar] [CrossRef] [PubMed]
- Treble-Barna, A.; Heinsberg, L.W.; Stec, Z.; Breazeale, S.; Davis, T.S.; Kesbhat, A.A.; Chattopadhyay, A.; VonVille, H.M.; Ketchum, A.M.; Yeates, K.O.; et al. Brain-derived neurotrophic factor (BDNF) epigenomic modifications and brain-related phenotypes in humans: A systematic review. Neurosci. Biobehav. Rev. 2023, 147, 105078. [Google Scholar] [CrossRef]
- Dyck, A.C.F.; Ivanco, T.L. BDNF expression increases without changes in play behavior following concussion in juvenile rats (Rattus Norvegicus). Dev. Neurorehabil 2018, 21, 475–479. [Google Scholar] [CrossRef]
- Griesbach, G.S.; Hovda, D.A.; Molteni, R.; Gomez-Pinilla, F. Alterations in BDNF and synapsin I within the occipital cortex and hippocampus after mild traumatic brain injury in the developing rat: Reflections of injury-induced neuroplasticity. J. Neurotrauma 2002, 19, 803–814. [Google Scholar] [CrossRef] [PubMed]
- Shimamura, M.; Garcia, J.M.; Prough, D.S.; Hellmich, H.L. Laser capture microdissection and analysis of amplified antisense RNA from distinct cell populations of the young and aged rat brain: Effect of traumatic brain injury on hippocampal gene expression. Mol. Brain Res. 2004, 122, 47–61. [Google Scholar] [CrossRef]
- Rostami, E.; Krueger, F.; Plantman, S.; Davidsson, J.; Agoston, D.; Grafman, J.; Risling, M. Alteration in BDNF and its receptors, full-length and truncated TrkB and p75NTR following penetrating traumatic brain injury. Brain Res. 2014, 1542, 195–205. [Google Scholar] [CrossRef]
- Hicks, R.R.; Numan, S.; Dhillon, H.S.; Prasad, M.R.; Seroogy, K.B. Alterations in BDNF and NT-3 mRNAs in rat hippocampus after experimental brain trauma. Mol. Brain Res. 1997, 48, 401–406. [Google Scholar] [CrossRef]
- Chen, X.; Li, Y.; Kline, A.E.; Dixon, C.E.; Zafonte, R.D.; Wagner, A.K. Gender and environmental effects on regional brain-derived neurotrophic factor expression after experimental traumatic brain injury. Neuroscience 2005, 135, 11–17. [Google Scholar] [CrossRef] [PubMed]
- Griesbach, G.S.; Sutton, R.L.; Hovda, D.A.; Ying, Z.; Gomez-Pinilla, F. Controlled Contusion Injury Alters Molecular Systems Associated With Cognitive Performance. J. Neurosci. Res. 2009, 87, 795–805. [Google Scholar] [CrossRef]
- Madathil, S.K.; Deng-Bryant, Y.; Wilfred, B.S.; Leung, L.Y.; Gilsdorf, J.S.; Shear, D.A. Alterations in brain-derived neurotrophic factor and insulin-like growth factor-1 protein levels after penetrating ballistic-like brain injury in rats. J. Trauma Acute Care Surg. 2017, 83, S16. [Google Scholar] [CrossRef]
- Corne, R.; Leconte, C.; Ouradou, M.; Fassina, V.; Zhu, Y.; Déou, E.; Besson, V.; Plotkine, M.; Marchand-Leroux, C.; Mongeau, R. Spontaneous resurgence of conditioned fear weeks after successful extinction in brain injured mice. Prog. Neuro-Psychopharmacol. Biol. Psychiatry 2019, 88, 276–286. [Google Scholar] [CrossRef]
- Gustafsson, D.; Klang, A.; Thams, S.; Rostami, E. The Role of BDNF in Experimental and Clinical Traumatic Brain Injury. Int. J. Mol. Sci. 2021, 22, 3582. [Google Scholar] [CrossRef]
- Thapak, P.; Smith, G.; Ying, Z.; Paydar, A.; Harris, N.; Gomez-Pinilla, F. The BDNF mimetic R-13 attenuates TBI pathogenesis using TrkB-related pathways and bioenergetics. Biochim. Biophys. Acta Mol. Basis Dis. 2023, 1869, 166781. [Google Scholar] [CrossRef]
- Agrawal, R.; Noble, E.; Tyagi, E.; Zhuang, Y.; Ying, Z.; Gomez-Pinilla, F. Flavonoid derivative 7,8-DHF attenuates TBI pathology via TrkB activation. Biochim. Et Biophys. Acta (BBA)—Mol. Basis Dis. 2015, 1852, 862–872. [Google Scholar] [CrossRef] [PubMed]
- Wu, C.-H.; Hung, T.-H.; Chen, C.-C.; Ke, C.-H.; Lee, C.-Y.; Wang, P.-Y.; Chen, S.-F. Post-Injury Treatment with 7,8-Dihydroxyflavone, a TrkB Receptor Agonist, Protects against Experimental Traumatic Brain Injury via PI3K/Akt Signaling. PLoS ONE 2014, 9, e113397. [Google Scholar] [CrossRef] [PubMed]
- Zhao, S.; Yu, A.; Wang, X.; Gao, X.; Chen, J. Post-Injury Treatment of 7,8-Dihydroxyflavone Promotes Neurogenesis in the Hippocampus of the Adult Mouse. J. Neurotrauma 2016, 33, 2055–2064. [Google Scholar] [CrossRef] [PubMed]
- Smith, G.; Thapak, P.; Paydar, A.; Ying, Z.; Gomez-Pinilla, F.; Harris, N.G. Altering the Trajectory of Perfusion-Diffusion Deficits Using A BDNF Mimetic Acutely After TBI is Associated with Improved Functional Connectivity. Prog. Neurobiol. 2023, 10, 1–12. [Google Scholar]
- Schober, M.E.; Block, B.; Requena, D.F.; Hale, M.A.; Lane, R.H. Developmental traumatic brain injury decreased brain derived neurotrophic factor expression late after injury. Metab. Brain Dis. 2012, 27, 167–173. [Google Scholar] [CrossRef] [PubMed]
- Schober, M.E.; Block, B.; Beachy, J.C.; Statler, K.D.; Giza, C.C.; Lane, R.H. Early and Sustained Increase in the Expression of Hippocampal IGF-1, But Not EPO, in a Developmental Rodent Model of Traumatic Brain Injury. J. Neurotrauma 2010, 27, 2011–2020. [Google Scholar] [CrossRef] [PubMed]
- Dietz, R.M.; Dingman, A.L.; Herson, P.S. Cerebral ischemia in the developing brain. J. Cereb. Blood Flow Metab. 2022, 42, 1777–1796. [Google Scholar] [CrossRef]
- D’Cruz, B.J.; Fertig, K.C.; Filiano, A.J.; Hicks, S.D.; DeFranco, D.B.; Callaway, C.W. Hypothermic reperfusion after cardiac arrest augments brain-derived neurotrophic factor activation. J. Cereb. Blood Flow Metab. 2002, 22, 843–851. [Google Scholar] [CrossRef]
- Tsukahara, T.; Iihara, K.; Hashimoto, N.; Nishijima, T.; Taniguchi, T. Increases in levels of brain-derived neurotrophic factor mRNA and its promoters after transient forebrain ischemia in the rat brain. Neurochem. Int. 1998, 33, 201–207. [Google Scholar] [CrossRef]
- Kokaia, Z.; Nawa, H.; Uchino, H.; Elmér, E.; Kokaia, M.; Carnahan, J.; Smith, M.-L.; Siesjö, B.K.; Lindvall, O. Regional brain-derived neurotrophic factor mRNA and protein levels following transient forebrain ischemia in the rat. Mol. Brain Res. 1996, 38, 139–144. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Yan, D.; Ma, N.; Chen, J.; Zhao, X.; Zhang, Y.; Zhang, C. Transient Forebrain Ischemia Induces Differential Bdnf Transcript Expression and Histone Acetylation Patterns in the Rat Hippocampus. J. Mol. Neurosci. 2020, 70, 568–575. [Google Scholar] [CrossRef]
- Lindvall, O.; Ernfors, P.; Bengzon, J.; Kokaia, Z.; Smith, M.L.; Siesjö, B.K.; Persson, H. Differential regulation of mRNAs for nerve growth factor, brain-derived neurotrophic factor, and neurotrophin 3 in the adult rat brain following cerebral ischemia and hypoglycemic coma. Proc. Natl. Acad. Sci. USA 1992, 89, 648–652. [Google Scholar] [CrossRef] [PubMed]
- Dietz, R.M.; Orfila, J.E.; Rodgers, K.M.; Patsos, O.P.; Deng, G.; Chalmers, N.; Quillinan, N.; Traystman, R.J.; Herson, P.S. Juvenile cerebral ischemia reveals age-dependent BDNF–TrkB signaling changes: Novel mechanism of recovery and therapeutic intervention. J. Cereb. Blood Flow Metab. 2018, 38, 2223–2235. [Google Scholar] [CrossRef] [PubMed]
- Yan, B.C.; Park, J.H.; Kim, S.K.; Choi, J.H.; Lee, C.H.; Yoo, K.-Y.; Kwon, Y.-G.; Kim, Y.-M.; Kim, J.-D.; Won, M.-H. Comparison of trophic factors changes in the hippocampal CA1 region between the young and adult gerbil induced by transient cerebral ischemia. Cell Mol. Neurobiol. 2012, 32, 1231–1242. [Google Scholar] [CrossRef]
- Araki, T.; Kato, H.; Kogure, K. Selective neuronal vulnerability following transient cerebral ischemia in the gerbil: Distribution and time course. Acta Neurol. Scand 1989, 80, 548–553. [Google Scholar] [CrossRef]
- Miyake, K.; Yamamoto, W.; Tadokoro, M.; Takagi, N.; Sasakawa, K.; Nitta, A.; Furukawa, S.; Takeo, S. Alterations in hippocampal GAP-43, BDNF, and L1 following sustained cerebral ischemia. Brain Res. 2002, 935, 24–31. [Google Scholar] [CrossRef] [PubMed]
- Grade, S.; Weng, Y.C.; Snapyan, M.; Kriz, J.; Malva, J.O.; Saghatelyan, A. Brain-Derived Neurotrophic Factor Promotes Vasculature-Associated Migration of Neuronal Precursors toward the Ischemic Striatum. PLoS ONE 2013, 8, e55039. [Google Scholar] [CrossRef] [PubMed]
- Madinier, A.; Bertrand, N.; Rodier, M.; Quirié, A.; Mossiat, C.; Prigent-Tessier, A.; Marie, C.; Garnier, P. Ipsilateral versus contralateral spontaneous post-stroke neuroplastic changes: Involvement of BDNF? Neuroscience 2013, 231, 169–181. [Google Scholar] [CrossRef]
- Cheng, J.; Shen, W.; Jin, L.; Pan, J.; Zhou, Y.; Pan, G.; Xie, Q.; Hu, Q.; Wu, S.; Zhang, H.; et al. Treadmill exercise promotes neurogenesis and myelin repair via upregulating Wnt/β-catenin signaling pathways in the juvenile brain following focal cerebral ischemia/reperfusion. Int. J. Mol. Med. 2020, 45, 1447–1463. [Google Scholar] [CrossRef]
- Clarkson, A.N.; Overman, J.J.; Zhong, S.; Mueller, R.; Lynch, G.; Carmichael, S.T. AMPA Receptor-Induced Local Brain-Derived Neurotrophic Factor Signaling Mediates Motor Recovery after Stroke. J. Neurosci. 2011, 31, 3766–3775. [Google Scholar] [CrossRef]
- Zhang, Y.; Pardridge, W.M. Conjugation of brain-derived neurotrophic factor to a blood–brain barrier drug targeting system enables neuroprotection in regional brain ischemia following intravenous injection of the neurotrophin. Brain Res. 2001, 889, 49–56. [Google Scholar] [CrossRef]
- Zhang, Y.; Pardridge, W.M. Neuroprotection in Transient Focal Brain Ischemia After Delayed Intravenous Administration of Brain-Derived Neurotrophic Factor Conjugated to a Blood-Brain Barrier Drug Targeting System. Stroke 2001, 32, 1378–1384. [Google Scholar] [CrossRef]
- Schäbitz, W.-R.; Sommer, C.; Zoder, W.; Kiessling, M.; Schwaninger, M.; Schwab, S. Intravenous Brain-Derived Neurotrophic Factor Reduces Infarct Size and Counterregulates Bax and Bcl-2 Expression After Temporary Focal Cerebral Ischemia. Stroke 2000, 31, 2212–2217. [Google Scholar] [CrossRef]
- Yamashita, K.; Wiessner, C.; Lindholm, D.; Thoenen, H.; Hossmann, K.-A. Post-occlusion treatment with BDNF reduces infarct size in a model of permanent occlusion of the middle cerebral artery in rat. Metab. Brain Dis. 1997, 12, 271–280. [Google Scholar] [CrossRef]
- Wang, J.; Cai, Y.; Sun, J.; Feng, H.; Zhu, X.; Chen, Q.; Gao, F.; Ni, Q.; Mao, L.; Yang, M.; et al. Administration of intramuscular AAV-BDNF and intranasal AAV-TrkB promotes neurological recovery via enhancing corticospinal synaptic connections in stroke rats. Exp. Neurol. 2023, 359, 114236. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Pardridge, W.M. Blood–brain barrier targeting of BDNF improves motor function in rats with middle cerebral artery occlusion. Brain Res. 2006, 1111, 227–229. [Google Scholar] [CrossRef] [PubMed]
- Ramos-Cejudo, J.; Gutiérrez-Fernández, M.; Otero-Ortega, L.; Rodríguez-Frutos, B.; Fuentes, B.; Vallejo-Cremades, M.T.; Hernanz, T.N.; Cerdán, S.; Díez-Tejedor, E. Brain-Derived Neurotrophic Factor Administration Mediated Oligodendrocyte Differentiation and Myelin Formation in Subcortical Ischemic Stroke. Stroke 2015, 46, 221–228. [Google Scholar] [CrossRef] [PubMed]
- Alam, J.J.; Krakovsky, M.; Germann, U.; Levy, A. Continuous administration of a p38α inhibitor during the subacute phase after transient ischemia-induced stroke in the rat promotes dose-dependent functional recovery accompanied by increase in brain BDNF protein level. PLoS ONE 2020, 15, e0233073. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.-Y.Z.; Zhang, Z.; Fauser, U.; Schluesener, H.J. Global hypomethylation defines a sub-population of reactive microglia/macrophages in experimental traumatic brain injury. Neurosci. Lett. 2007, 429, 1–6. [Google Scholar] [CrossRef] [PubMed]
- Lundberg, J.; Karimi, M.; von Gertten, C.; Holmin, S.; Ekstrom, T.J.; Sandberg-Nordqvist, A.C. Traumatic brain injury induces relocalization of DNA-methyltransferase 1. Neurosci. Lett. 2009, 457, 8–11. [Google Scholar] [CrossRef] [PubMed]
- Haghighi, F.; Ge, Y.; Chen, S.; Xin, Y.; Umali, M.U.; De Gasperi, R.; Gama Sosa, M.A.; Ahlers, S.T.; Elder, G.A. Neuronal DNA Methylation Profiling of Blast-Related Traumatic Brain Injury. J. Neurotrauma 2015, 32, 1200–1209. [Google Scholar] [CrossRef]
- Kokaia, Z.; Zhao, Q.; Kokaia, M.; Elmér, E.; Metsis, M.; Smith, M.L.; Siesjö, B.K.; Lindvall, O. Regulation of brain-derived neurotrophic factor gene expression after transient middle cerebral artery occlusion with and without brain damage. Exp. Neurol. 1995, 136, 73–88. [Google Scholar] [CrossRef] [PubMed]
- Uchida, H.; Yokoyama, H.; Kimoto, H.; Kato, H.; Araki, T. Long-term changes in the ipsilateral substantia nigra after transient focal cerebral ischaemia in rats. Int. J. Exp. Pathol. 2010, 91, 256–266. [Google Scholar] [CrossRef] [PubMed]
- Failla, M.D.; Conley, Y.P.; Wagner, A.K. Brain-Derived Neurotrophic Factor (BDNF) in traumatic brain injury-related mortality: Interrelationships between genetics and acute systemic and central nervous system BDNF profiles. Neurorehabilit. Neural Repair 2016, 30, 83–93. [Google Scholar] [CrossRef] [PubMed]
- Munoz, M.J.; Kumar, R.G.; Oh, B.; Conley, Y.P. Cerebrospinal Fluid Cortisol Mediates Brain-Derived Neurotrophic Factor Relationships to Mortality after Severe TBI: A Prospective Cohort Study. Front. Mol. Neurosci. 2017, 10, 44. [Google Scholar] [CrossRef] [PubMed]
- Tylicka, M.; Matuszczak, E.; Hermanowicz, A.; Dębek, W.; Karpińska, M.; Kamińska, J.; Koper-Lenkiewicz, O.M. BDNF and IL-8, But Not UCHL-1 and IL-11, Are Markers of Brain Injury in Children Caused by Mild Head Trauma. Brain Sci. 2020, 10, 665. [Google Scholar] [CrossRef] [PubMed]
- Chiaretti, A.; Piastra, M.; Polidori, G.; Di Rocco, C.; Caresta, E.; Antonelli, A.; Amendola, T.; Aloe, L. Correlation between neurotrophic factor expression and outcome of children with severe traumatic brain injury. Intensive Care Med. 2003, 29, 1329–1338. [Google Scholar] [CrossRef] [PubMed]
- Chiaretti, A.; Barone, G.; Riccardi, R.; Antonelli, A.; Pezzotti, P.; Genovese, O.; Tortorolo, L.; Conti, G. NGF, DCX, and NSE upregulation correlates with severity and outcome of head trauma in children. Neurology 2009, 72, 609–616. [Google Scholar] [CrossRef] [PubMed]
- Pinelis, V.G.; Sorokina, E.G.; Semenova, J.B.; Karaseva, O.V.; Mescheryakov, S.V.; Chernisheva, T.A.; Arsenieva, E.N.; Roshal, L.M. Biomarkers in children with traumatic brain injury. Zh Nevrol Psikhiatr Im SS Korsakova 2015, 115, 66–72. [Google Scholar] [CrossRef]
- Madurski, C.; Jarvis, J.M.; Beers, S.R.; Houtrow, A.J.; Wagner, A.K.; Fabio, A.; Wang, C.; Smith, C.M.; Doughty, L.; Janesko-Feldman, K.; et al. Serum Biomarkers of Regeneration and Plasticity are Associated with Functional Outcome in Pediatric Neurocritical Illness: An Exploratory Study. Neurocrit. Care 2021, 35, 457–467. [Google Scholar] [CrossRef]
- Mahmoud, A.A.; Abd El Naby, S.A.; Abdelgawad, A.S.; Rizq, M.S.; Abd El Hady, N.M.S. Brain-derived neurotrophic factor and neuroimaging in pediatric patients with sickle cell disease. Pediatr. Res. 2023, 93, 1922–1926. [Google Scholar] [CrossRef]
- Béjot, Y.; Mossiat, C.; Giroud, M.; Prigent-Tessier, A.; Marie, C. Circulating and Brain BDNF Levels in Stroke Rats. Relevance to Clinical Studies. PLoS ONE 2011, 6, e29405. [Google Scholar] [CrossRef]
- Luo, H.-Y.; Rahman, M.; Bobrovskaya, L.; Zhou, X.-F. The Level of proBDNF in Blood Lymphocytes Is Correlated with that in the Brain of Rats with Photothrombotic Ischemic Stroke. Neurotox Res. 2019, 36, 49–57. [Google Scholar] [CrossRef] [PubMed]
- Kernan, K.F.; Berger, R.P.; Clark, R.S.B.; Scott Watson, R.; Angus, D.C.; Panigrahy, A.; Callaway, C.W.; Bell, M.J.; Kochanek, P.M.; Fink, E.L.; et al. An exploratory assessment of serum biomarkers of post-cardiac arrest syndrome in children. Resuscitation 2021, 167, 307–316. [Google Scholar] [CrossRef] [PubMed]
- Treble-Barna, A.; Wade, S.L.; Pilipenko, V.; Martin, L.J.; Yeates, K.O.; Taylor, H.G.; Kurowski, B.G. Brain-Derived Neurotrophic Factor Val66Met and Behavioral Adjustment after Early Childhood Traumatic Brain Injury. J. Neurotrauma 2022, 39, 114–121. [Google Scholar] [CrossRef] [PubMed]
- Treble-Barna, A.; Wade, S.L.; Pilipenko, V.; Martin, L.J.; Yeates, K.O.; Taylor, H.G.; Kurowski, B.G. Brain-derived neurotrophic factor Val66Met and neuropsychological functioning after early childhood traumatic brain injury. J. Int. Neuropsychol. Soc. 2022, 29, 246–256. [Google Scholar] [CrossRef] [PubMed]
- Gagner, C.; Tuerk, C.; De Beaumont, L.; Bernier, A.; Beauchamp, M.H. Brain-Derived Neurotrophic Factor Val66Met Polymorphism and Internalizing Behaviors after Early Mild Traumatic Brain Injury. J. Neurotrauma 2021, 38, 102–110. [Google Scholar] [CrossRef] [PubMed]
- Tuerk, C.; Gagner, C.; Dégeilh, F.; Bellerose, J.; Lalonde, G.; Landry-Roy, C.; Séguin, M.; de Beaumont, L.; Gravel, J.; Bernier, A.; et al. Quality of life 6 and 18 months after mild traumatic brain injury in early childhood: An exploratory study of the role of genetic, environmental, injury, and child factors. Brain Res. 2020, 1748, 147061. [Google Scholar] [CrossRef] [PubMed]
- Math, N.; Han, T.S.; Lubomirova, I.; Hill, R.; Bentley, P.; Sharma, P. Influences of genetic variants on stroke recovery: A meta-analysis of the 31,895 cases. Neurol. Sci. 2019, 40, 2437–2445. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.-M.; Fernandez-Cadenas, I.; Lindgren, A.G. Using Human Genetics to Understand Mechanisms in Ischemic Stroke Outcome: From Early Brain Injury to Long-Term Recovery. Stroke 2021, 52, 3013–3024. [Google Scholar] [CrossRef]
- Kals, M.; Kunzmann, K.; Parodi, L.; Radmanesh, F.; Wilson, L.; Izzy, S.; Anderson, C.D.; Puccio, A.M.; Okonkwo, D.O.; Temkin, N.; et al. A genome-wide association study of outcome from traumatic brain injury. EBioMedicine 2022, 77, 103933. [Google Scholar] [CrossRef] [PubMed]
- Meng, Q.; Zhuang, Y.; Ying, Z.; Agrawal, R.; Yang, X.; Gomez-Pinilla, F. Traumatic Brain Injury Induces Genome-Wide Transcriptomic, Methylomic, and Network Perturbations in Brain and Blood Predicting Neurological Disorders. EBioMedicine 2017, 16, 184–194. [Google Scholar] [CrossRef] [PubMed]
- Plog, B.A.; Dashnaw, M.L.; Hitomi, E.; Peng, W.; Liao, Y.; Lou, N.; Deane, R.; Nedergaard, M. Biomarkers of Traumatic Injury Are Transported from Brain to Blood via the Glymphatic System. J. Neurosci. 2015, 35, 518–526. [Google Scholar] [CrossRef] [PubMed]
- Santoro, M.; Siotto, M.; Germanotta, M.; Bray, E.; Mastrorosa, A.; Galli, C.; Papadopoulou, D.; Aprile, I. Bdnf rs6265 polymorphism and its methylation in patients with stroke undergoing rehabilitation. Int. J. Mol. Sci. 2020, 21, 8438. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.M.; Stewart, R.; Kang, H.J.; Kim, S.Y.S.W.; Kim, S.Y.S.W.; Shin, I.S.; Park, M.S.; Kim, H.R.; Shin, M.G.; Cho, K.H.; et al. A longitudinal study of BDNF promoter methylation and genotype with poststroke depression. J. Affect. Disord. 2013, 149, 93–99. [Google Scholar] [CrossRef] [PubMed]
- Kang, H.J.; Kim, K.O.; Kim, J.J.W.J.M.J.; Kim, S.W.; Park, M.S.; Kim, H.R.; Shin, M.G.; Cho, K.H.; Kim, J.J.W.J.M.J. A longitudinal study of the associations of BDNF genotype and methylation with poststroke anxiety. Int. J. Geriatr. Psychiatry 2019, 34, 1706–1714. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.M.; Stewart, R.; Park, M.S.; Kang, H.J.; Kim, S.W.; Shin, I.S.; Kim, H.R.; Shin, M.G.; Cho, K.H.; Yoon, J.S. Associations of BDNF Genotype and Promoter Methylation with Acute and Long-Term Stroke Outcomes in an East Asian Cohort. PLoS ONE 2012, 7, e51280. [Google Scholar] [CrossRef]
- Treble-Barna, A.; Heinsberg, L.W.; Puccio, A.M.; Shaffer, J.R.; Okonkwo, D.O.; Beers, S.R.; Weeks, D.E.; Conley, Y.P. Acute Brain-Derived Neurotrophic Factor DNA Methylation Trajectories in Cerebrospinal Fluid and Associations With Outcomes Following Severe Traumatic Brain Injury in Adults. Neurorehabil Neural. Repair. 2021, 35, 790–800. [Google Scholar] [CrossRef]
- Liu, D.; Zusman, B.E.; Shaffer, J.R.; Li, Y.; Arockiaraj, A.I.; Liu, S.; Weeks, D.E.; Desai, S.M.; Kochanek, P.M.; Puccio, A.M.; et al. Decreased DNA Methylation of RGMA is Associated with Intracranial Hypertension After Severe Traumatic Brain Injury: An Exploratory Epigenome-Wide Association Study. Neurocrit. Care 2022, 37, 26–37. [Google Scholar] [CrossRef]
- Hamdeh, S.A.; Ciuculete, D.M.; Sarkisyan, D.; Bakalkin, G.; Ingelsson, M.; Schiöth, H.B.; Marklund, N. Differential DNA methylation of the genes for amyloid precursor protein, tau, and neurofilaments in human traumatic brain injury. J. Neurotrauma 2021, 38, 1662–1669. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Wilson, C.M.; Mendelev, N.; Ge, Y.; Galfalvy, H.; Elder, G.; Ahlers, S.; Yarnell, A.M.; LoPresti, M.L.; Kamimori, G.H.; et al. Acute and Chronic Molecular Signatures and Associated Symptoms of Blast Exposure in Military Breachers. J Neurotrauma 2020, 37, 1221–1232. [Google Scholar] [CrossRef] [PubMed]
- Bahado-Singh, R.O.; Vishweswaraiah, S.; Er, A.; Aydas, B.; Turkoglu, O.; Taskin, B.D.; Duman, M.; Yilmaz, D.; Radhakrishna, U. Artificial Intelligence and the detection of pediatric concussion using epigenomic analysis. Brain Res. 2020, 1726, 146510. [Google Scholar] [CrossRef] [PubMed]
- Duan, K.; Mayer, A.R.; Shaff, N.A.; Chen, J.; Lin, D.; Calhoun, V.D.; Jensen, D.M.; Liu, J. DNA methylation under the major depression pathway predicts pediatric quality of life four-month post-pediatric mild traumatic brain injury. Clin. Epigenetics 2021, 13, 140. [Google Scholar] [CrossRef] [PubMed]
- Treble-Barna, A.; Patronick, J.; Uchani, S.; Marousis, N.C.; Zigler, C.K.; Fink, E.L.; Kochanek, P.M.; Conley, Y.P.; Yeates, K.O. Epigenetic Effects on Pediatric Traumatic Brain Injury Recovery (EETR): An Observational, Prospective, Longitudinal Concurrent Cohort Study Protocol. Front. Neurol. 2020, 11, 460. [Google Scholar] [CrossRef] [PubMed]
- Wade, S.L.; Zhang, N.; Yeates, K.O.; Stancin, T.; Taylor, H.G. Social environmental moderators of long-term functional outcomes of early childhood brain injury. JAMA Pediatr. 2016, 170, 343–349. [Google Scholar] [CrossRef]
- Pelletier, J.H.; Rakkar, J.; Simon, D.; Au, A.K.; Fuhrman, D.Y.; Clark, R.S.B.; Kochanek, P.M.; Horvat, C.M. Association between pediatric TBI mortality and median family income in the United States: A retrospective cohort study. Lancet Reg. Health Am. 2022, 5, 100164. [Google Scholar] [CrossRef]
- Kelly, K.A.; Patel, P.D.; Salwi, S.; Iii, H.N.L.; Naftel, R. Socioeconomic health disparities in pediatric traumatic brain injury on a national level. J. Neurosurg. Pediatr. 2021, 29, 335–341. [Google Scholar] [CrossRef]
- Max, J.E.; Schachar, R.J.; Levin, H.S.; Ewing-Cobbs, L.; Chapman, S.B.; Dennis, M.; Saunders, A.; Landis, J. Predictors of secondary attention-deficit/hyperactivity disorder in children and adolescents 6 to 24 months after traumatic brain injury. J. Am. Acad. Child Adolesc. Psychiatry 2005, 44, 1041–1049. [Google Scholar] [CrossRef]
- Yeates, K.O.; Taylor, H.G.; Walz, N.C.; Stancin, T.; Wade, S.L. The Family Environment as a Moderator of Psychosocial Outcomes Following Traumatic Brain Injury in Young Children. Neuropsychology 2010, 24, 345–356. [Google Scholar] [CrossRef] [PubMed]
- Gerring, J.P.; Wade, S. The Essential Role of Psychosocial Risk and Protective Factors in Pediatric Traumatic Brain Injury Research. J. Neurotrauma 2012, 29, 621–628. [Google Scholar] [CrossRef] [PubMed]
- Mrakotsky, C.; Williams, T.S.; Shapiro, K.A.; Westmacott, R. Rehabilitation in Pediatric Stroke: Cognition and Behavior. Semin. Pediatr. Neurol. 2022, 44, 100998. [Google Scholar] [CrossRef]
- Greenham, M.; Hearps, S.; Gomes, A.; Rinehart, N.; Gonzalez, L.; Gordon, A.; Mackay, M.; Lo, W.; Yeates, K.; Anderson, V. Environmental Contributions to Social and Mental Health Outcomes Following Pediatric Stroke. Dev. Neuropsychol. 2015, 40, 348–362. [Google Scholar] [CrossRef]
- Gao, S.; Treble-Barna, A.; Fabio, A.; Kelly, M.K.; Beers, S.R.; Rosario, B.L.; Bell, M.J.; Wisniewski, S.R. Effects of inpatient rehabilitation after acute care on functional and quality-of-life outcomes in children with severe traumatic brain injury. Brain Inj. 2022, 36, 1280–1287. [Google Scholar] [CrossRef]
- Horn, S.D.; Corrigan, J.D.; Dijkers, M.P. Traumatic Brain Injury Rehabilitation Comparative Effectiveness Research: Introduction to the Traumatic Brain Injury-Practice Based Evidence Archives Supplement. Arch. Phys. Med. Rehabil. 2015, 96, S173–S177. [Google Scholar] [CrossRef]
- Tepas, J.J.; Leaphart, C.L.; Pieper, P.; Beaulieu, C.L.; Spierre, L.R.; Tuten, J.D.; Celso, B.G. The effect of delay in rehabilitation on outcome of severe traumatic brain injury. J. Pediatr. Surg. 2009, 44, 368–372. [Google Scholar] [CrossRef] [PubMed]
- Blaze, J.; Roth, T.L. Evidence from clinical and animal model studies of the long-term and transgenerational impact of stress on DNA methylation. Semin. Cell Dev. Biol. 2015, 43, 76–84. [Google Scholar] [CrossRef]
- Li, M.; Du, W.; Shao, F.; Wang, W. Cognitive dysfunction and epigenetic alterations of the BDNF gene are induced by social isolation during early adolescence. Behav. Brain Res. 2016, 313, 177–183. [Google Scholar] [CrossRef] [PubMed]
- Seo, M.K.; Ly, N.N.; Lee, C.H.; Cho, H.Y.; Choi, C.M.; Nhu, L.H.; Lee, J.G.; Lee, B.J.; Kim, G.-M.; Yoon, B.J.; et al. Early life stress increases stress vulnerability through BDNF gene epigenetic changes in the rat hippocampus. Neuropharmacology 2016, 105, 388–397. [Google Scholar] [CrossRef]
- Kim, T.Y.; Kim, S.J.; Chung, H.G.; Choi, J.H.; Kim, S.H.; Kang, J.I. Epigenetic alterations of the BDNF gene in combat-related post-traumatic stress disorder. Acta Psychiatr. Scand. 2017, 135, 170–179. [Google Scholar] [CrossRef]
- Santos, H.P.; Nephew, B.C.; Bhattacharya, A.; Tan, X.; Smith, L.; Alyamani, R.A.S.; Martin, E.M.; Perreira, K.; Fry, R.C.; Murgatroyd, C. Discrimination exposure and DNA methylation of stress-related genes in Latina mothers. Psychoneuroendocrinology 2018, 98, 131–138. [Google Scholar] [CrossRef] [PubMed]
- Marzi, S.J.; Sugden, K.; Arseneault, L.; Belsky, D.W.; Burrage, J.; Corcoran, D.L.; Danese, A.; Fisher, H.L.; Hannon, E.; Moffitt, T.E.; et al. Analysis of DNA methylation in young people: Limited evidence for an association between victimization stress and epigenetic variation in blood. Am. J. Psychiatry 2018, 175, 517–529. [Google Scholar] [CrossRef]
- Thaler, L.; Gauvin, L.; Joober, R.; Groleau, P.; de Guzman, R.; Ambalavanan, A.; Israel, M.; Wilson, S.; Steiger, H. Methylation of BDNF in women with bulimic eating syndromes: Associations with childhood abuse and borderline personality disorder. Prog. Neuropsychopharmacol Biol. Psychiatry 2014, 54, 43–49. [Google Scholar] [CrossRef]
- Smith, J.A.; Zhao, W.; Wang, X.; Ratliff, S.M.; Mukherjee, B.; Kardia, S.L.R.; Liu, Y.; Roux, A.V.D.; Needham, B.L. Neighborhood characteristics influence DNA methylation of genes involved in stress response and inflammation: The Multi-Ethnic Study of Atherosclerosis. Epigenetics 2017, 12, 662–673. [Google Scholar] [CrossRef]
- Moser, D.A.; Paoloni-Giacobino, A.; Stenz, L.; Adouan, W.; Manini, A.; Suardi, F.; Cordero, M.I.; Vital, M.; Rossignol, A.S.; Rusconi-Serpa, S.; et al. BDNF methylation and maternal brain activity in a violence-related sample. PLoS ONE 2015, 10, e0143427. [Google Scholar] [CrossRef]
- Weder, N.; Zhang, H.; Jensen, K.; Yang, B.Z.; Simen, A.; Jackowski, A.; Lipschitz, D.; Douglas-Palumberi, H.; Ge, M.; Perepletchikova, F.; et al. Child abuse, depression, and methylation in genes involved with stress, neural plasticity, and brain circuitry. J. Am. Acad. Child Adolesc. Psychiatry 2014, 53, 417–424.e5. [Google Scholar] [CrossRef]
- Griesbach, G.S.; Gomez-Pinilla, F.; Hovda, D.A. The upregulation of plasticity-related proteins following TBI is disrupted with acute voluntary exercise. Brain Res. 2004, 1016, 154–162. [Google Scholar] [CrossRef]
- Griesbach, G.S.; Hovda, D.A.; Molteni, R.; Wu, A.; Gomez-Pinilla, F. Voluntary exercise following traumatic brain injury: Brain-derived neurotrophic factor upregulation and recovery of function. Neuroscience 2004, 125, 129–139. [Google Scholar] [CrossRef] [PubMed]
- Griesbach, G.S.; Hovda, D.A.; Gomez-Pinilla, F. Exercise-induced improvement in cognitive performance after traumatic brain injury in rats is dependent on BDNF activation. Brain Res. 2009, 1288, 105–115. [Google Scholar] [CrossRef] [PubMed]
- Crane, A.T.; Fink, K.D.; Smith, J.S. The effects of acute voluntary wheel running on recovery of function following medial frontal cortical contusions in rats. Restor. Neurol. Neurosci. 2012, 30, 325–333. [Google Scholar] [CrossRef] [PubMed]
- Griesbach, G.S.; Gómez-Pinilla, F.; Hovda, D.A. Time Window for Voluntary Exercise–Induced Increases in Hippocampal Neuroplasticity Molecules after Traumatic Brain Injury Is Severity Dependent. J. Neurotrauma 2007, 24, 1161–1171. [Google Scholar] [CrossRef] [PubMed]
- Krishna, G.; Agrawal, R.; Zhuang, Y.; Ying, Z.; Paydar, A.; Harris, N.G.; Royes, L.F.F.; Gomez-Pinilla, F. 7,8-Dihydroxyflavone facilitates the action exercise to restore plasticity and functionality: Implications for early brain trauma recovery. Biochim. Et Biophys. Acta (BBA)—Mol. Basis Dis. 2017, 1863, 1204–1213. [Google Scholar] [CrossRef]
- Chen, M.-F.; Huang, T.-Y.; Kuo, Y.-M.; Yu, L.; Chen, H.; Jen, C.J. Early postinjury exercise reverses memory deficits and retards the progression of closed-head injury in mice. J. Physiol. 2013, 591, 985–1000. [Google Scholar] [CrossRef]
- Hicks, R.R.; Boggs, A.; Leider, D.; Kraemer, P.; Brown, R.; Scheff, S.W.; Seroogy, K.B. Effects of Exercise Following Lateral Fluid Percussion Brain Injury in Rats. Restor. Neurol. Neurosci. 1998, 12, 41–47. [Google Scholar]
- Itoh, T.; Imano, M.; Nishida, S.; Tsubaki, M.; Hashimoto, S.; Ito, A.; Satou, T. Exercise inhibits neuronal apoptosis and improves cerebral function following rat traumatic brain injury. J. Neural. Transm. 2011, 118, 1263–1272. [Google Scholar] [CrossRef] [PubMed]
- Kim, D.-H.; Ko, I.-G.; Kim, B.-K.; Kim, T.-W.; Kim, S.-E.; Shin, M.-S.; Kim, C.-J.; Kim, H.; Kim, K.-M.; Baek, S.-S. Treadmill exercise inhibits traumatic brain injury-induced hippocampal apoptosis. Physiol. Behav. 2010, 101, 660–665. [Google Scholar] [CrossRef] [PubMed]
- Amorós-Aguilar, L.; Portell-Cortés, I.; Costa-Miserachs, D.; Torras-Garcia, M.; Riubugent-Camps, È.; Almolda, B.; Coll-Andreu, M. The benefits of voluntary physical exercise after traumatic brain injury on rat’s object recognition memory: A comparison of different temporal schedules. Exp. Neurol. 2020, 326, 113178. [Google Scholar] [CrossRef] [PubMed]
- Yoon, K.J.; Kim, D.Y. Immediate Effects of a Single Exercise on Behavior and Memory in the Early Period of Traumatic Brain Injury in Rats. Ann. Rehabil. Med. 2018, 42, 643–651. [Google Scholar] [CrossRef] [PubMed]
- Ko, I.-G.; Kim, S.-E.; Hwang, L.; Jin, J.-J.; Kim, C.-J.; Kim, B.-K.; Kim, H. Late starting treadmill exercise improves spatial leaning ability through suppressing CREP/BDNF/TrkB signaling pathway following traumatic brain injury in rats. J. Exerc. Rehabil. 2018, 14, 327–334. [Google Scholar] [CrossRef]
- Chou, W.; Liu, Y.-F.; Lin, C.-H.; Lin, M.-T.; Chen, C.-C.; Liu, W.-P.; Chang, C.-P.; Chio, C.-C. Exercise Rehabilitation Attenuates Cognitive Deficits in Rats with Traumatic Brain Injury by Stimulating the Cerebral HSP20/BDNF/TrkB Signalling Axis. Mol. Neurobiol. 2018, 55, 8602–8611. [Google Scholar] [CrossRef]
- Gomez-Pinilla, F.; Zhuang, Y.; Feng, J.; Ying, Z.; Fan, G. Exercise impacts brain-derived neurotrophic factor plasticity by engaging mechanisms of epigenetic regulation. Eur. J. Neurosci. 2011, 33, 383–390. [Google Scholar] [CrossRef] [PubMed]
- Luo, L.; Li, C.; Du, X.; Shi, Q.; Huang, Q.; Xu, X.; Wang, Q. Effect of aerobic exercise on BDNF/proBDNF expression in the ischemic hippocampus and depression recovery of rats after stroke. Behav. Brain Res. 2019, 362, 323–331. [Google Scholar] [CrossRef] [PubMed]
- Shih, P.-C.; Yang, Y.-R.; Wang, R.-Y. Effects of Exercise Intensity on Spatial Memory Performance and Hippocampal Synaptic Plasticity in Transient Brain Ischemic Rats. PLoS ONE 2013, 8, e78163. [Google Scholar] [CrossRef] [PubMed]
- Lee, S.-S.; Kim, C.-J.; Shin, M.-S.; Lim, B.-V. Treadmill exercise ameliorates memory impairment through ERK-Akt-CREB-BDNF signaling pathway in cerebral ischemia gerbils. J. Exerc. Rehabil. 2020, 16, 49–57. [Google Scholar] [CrossRef] [PubMed]
- Ke, Z.; Yip, S.P.; Li, L.; Zheng, X.-X.; Tong, K.-Y. The Effects of Voluntary, Involuntary, and Forced Exercises on Brain-Derived Neurotrophic Factor and Motor Function Recovery: A Rat Brain Ischemia Model. PLoS ONE 2011, 6, e16643. [Google Scholar] [CrossRef] [PubMed]
- Sun, J.; Ke, Z.; Yip, S.P.; Hu, X.; Zheng, X.; Tong, K. Gradually Increased Training Intensity Benefits Rehabilitation Outcome after Stroke by BDNF Upregulation and Stress Suppression. BioMed Res. Int. 2014, 2014, e925762. [Google Scholar] [CrossRef] [PubMed]
- Himi, N.; Takahashi, H.; Okabe, N.; Nakamura, E.; Shiromoto, T.; Narita, K.; Koga, T.; Miyamoto, O. Exercise in the Early Stage after Stroke Enhances Hippocampal Brain-Derived Neurotrophic Factor Expression and Memory Function Recovery. J. Stroke Cerebrovasc. Dis. 2016, 25, 2987–2994. [Google Scholar] [CrossRef] [PubMed]
- Quirié, A.; Hervieu, M.; Garnier, P.; Demougeot, C.; Mossiat, C.; Bertrand, N.; Martin, A.; Marie, C.; Prigent-Tessier, A. Comparative Effect of Treadmill Exercise on Mature BDNF Production in Control versus Stroke Rats. PLoS ONE 2012, 7, e44218. [Google Scholar] [CrossRef]
- MacLellan, C.L.; Keough, M.B.; Granter-Button, S.; Chernenko, G.A.; Butt, S.; Corbett, D. A Critical Threshold of Rehabilitation Involving Brain-Derived Neurotrophic Factor Is Required for Poststroke Recovery. Neurorehabil. Neural Repair 2011, 25, 740–748. [Google Scholar] [CrossRef]
- Sayyah, M.; Seydyousefi, M.; Moghanlou, A.E.; Metz, G.A.S.; Shamsaei, N.; Faghfoori, M.H.; Faghfoori, Z. Activation of BDNF- and VEGF-mediated Neuroprotection by Treadmill Exercise Training in Experimental Stroke. Metab. Brain Dis. 2022, 37, 1843–1853. [Google Scholar] [CrossRef]
- Zhao, Z.; Sabirzhanov, B.; Wu, J.; Faden, A.I.; Stoica, B.A. Voluntary Exercise Preconditioning Activates Multiple Antiapoptotic Mechanisms and Improves Neurological Recovery after Experimental Traumatic Brain Injury. J. Neurotrauma 2015, 32, 1347–1360. [Google Scholar] [CrossRef]
- Kopczynski, A.; Carteri, R.B.; Rodolphi, M.S.; Oses, J.P.; Portela, L.O.; Geller, C.A.; de Oliveira, V.G.; De Bastiani, M.A.; Strogulski, N.R.; Smith, D.H.; et al. Lower and higher volumes of physical exercise build up brain reserves against memory deficits triggered by a head injury in mice. Exp. Neurol. 2023, 363, 114352. [Google Scholar] [CrossRef]
- Chaturvedi, P.; Singh, A.K.; Tiwari, V.; Thacker, A.K. Post-stroke BDNF concentration changes following proprioceptive neuromuscular facilitation (PNF) exercises. J. Fam. Med. Prim. Care 2020, 9, 3361–3369. [Google Scholar]
- El-Tamawy, M.S.; Abd-Allah, F.; Ahmed, S.M.; Darwish, M.H.; Khalifa, H.A. Aerobic exercises enhance cognitive functions and brain derived neurotrophic factor in ischemic stroke patients. NeuroRehabilitation 2014, 34, 209–213. [Google Scholar] [CrossRef]
- Ryan, A.S.; Xu, H.; Ivey, F.M.; Macko, R.F.; Hafer-Macko, C.E. Brain-derived neurotrophic factor, epigenetics in stroke skeletal muscle, and exercise training. Neurology. Genet. 2019, 5, e331. [Google Scholar] [CrossRef] [PubMed]
- Voisey, J.; Lawford, B.; Bruenig, D.; Harvey, W.; Morris, C.P.; Young, R.M.; Mehta, D. Differential BDNF methylation in combat exposed veterans and the association with exercise. Gene 2019, 698, 107–112. [Google Scholar] [CrossRef] [PubMed]
- Choi, I.-A.; Lee, C.S.; Kim, H.Y.; Choi, D.-H.; Lee, J. Effect of Inhibition of DNA Methylation Combined with Task-Specific Training on Chronic Stroke Recovery. Int. J. Mol. Sci. 2018, 19, 2019. [Google Scholar] [CrossRef] [PubMed]
- Wille-Bille, A.; Bellia, F.; Jiménez García, A.M.; Miranda-Morales, R.S.; D’Addario, C.; Pautassi, R.M. Early exposure to environmental enrichment modulates the effects of prenatal ethanol exposure upon opioid gene expression and adolescent ethanol intake. Neuropharmacology 2020, 165, 107917. [Google Scholar] [CrossRef] [PubMed]
- Zajac, M.S.; Pang, T.Y.C.; Wong, N.; Weinrich, B.; Leang, L.S.K.; Craig, J.M.; Saffery, R.; Hannan, A.J. Wheel running and environmental enrichment differentially modify exon-specific BDNF expression in the hippocampus of wild-type and pre-motor symptomatic male and female Huntington’s disease mice. Hippocampus 2010, 20, 621–636. [Google Scholar] [CrossRef] [PubMed]
- Boschen, K.E.; McKeown, S.E.; Roth, T.L.; Klintsova, A.Y. Impact of exercise and a complex environment on hippocampal dendritic morphology, Bdnf gene expression, and DNA methylation in male rat pups neonatally exposed to alcohol. Dev. Neurobiol. 2017, 77, 708–725. [Google Scholar] [CrossRef] [PubMed]
- Livingston-Thomas, J.; Nelson, P.; Karthikeyan, S.; Antonescu, S.; Jeffers, M.S.; Marzolini, S.; Corbett, D. Exercise and Environmental Enrichment as Enablers of Task-Specific Neuroplasticity and Stroke Recovery. Neurotherapeutics 2016, 13, 395–402. [Google Scholar] [CrossRef]
- Gobbo, O.L.; O’Mara, S.M. Impact of enriched-environment housing on brain-derived neurotrophic factor and on cognitive performance after a transient global ischemia. Behav. Brain Res. 2004, 152, 231–241. [Google Scholar] [CrossRef] [PubMed]
- Ploughman, M.; Windle, V.; MacLellan, C.L.; White, N.; Doré, J.J.; Corbett, D. Brain-Derived Neurotrophic Factor Contributes to Recovery of Skilled Reaching After Focal Ischemia in Rats. Stroke 2009, 40, 1490–1495. [Google Scholar] [CrossRef] [PubMed]
- Naim, M.Y.; Friess, S.; Smith, C.; Ralston, J.; Ryall, K.; Helfaer, M.A.; Margulies, S.S. Folic Acid Enhances Early Functional Recovery in a Piglet Model of Pediatric Head Injury. Dev. Neurosci. 2011, 32, 466–479. [Google Scholar] [CrossRef] [PubMed]
- Dock, H.; Theodorsson, A.; Theodorsson, E. DNA Methylation Inhibitor Zebularine Confers Stroke Protection in Ischemic Rats. Transl. Stroke Res. 2015, 6, 296–300. [Google Scholar] [CrossRef] [PubMed]
- Endres, M.; Meisel, A.; Biniszkiewicz, D.; Namura, S.; Prass, K.; Ruscher, K.; Lipski, A.; Jaenisch, R.; Moskowitz, M.A.; Dirnagl, U. DNA methyltransferase contributes to delayed ischemic brain injury. J. Neurosci. 2000, 20, 3175–3181. [Google Scholar] [CrossRef] [PubMed]
- Tomiga, Y.; Sakai, K.; Ra, S.-G.; Kusano, M.; Ito, A.; Uehara, Y.; Takahashi, H.; Kawanaka, K.; Soejima, H.; Higaki, Y. Short-term running exercise alters DNA methylation patterns in neuronal nitric oxide synthase and brain-derived neurotrophic factor genes in the mouse hippocampus and reduces anxiety-like behaviors. FASEB J. 2021, 35, e21767. [Google Scholar] [CrossRef] [PubMed]
- Kurkjian, C.; Kummar, S.; Murgo, A.J. DNA Methylation: Its Role in Cancer Development and Therapy. Curr. Probl. Cancer 2008, 32, 187–235. [Google Scholar] [CrossRef]
- Hu, C.; Liu, X.; Zeng, Y.; Liu, J.; Wu, F. DNA methyltransferase inhibitors combination therapy for the treatment of solid tumor: Mechanism and clinical application. Clin. Epigenetics 2021, 13, 166. [Google Scholar] [CrossRef]
- Yang, X.; Lay, F.; Han, H.; Jones, P.A. Targeting DNA Methylation for Epigenetic Therapy. Trends Pharmacol. Sci. 2010, 31, 536–546. [Google Scholar] [CrossRef]
- Korkmaz, O.T. Can Brain-derived Neurotrophic Factor (BDNF) Mimetics be a Way Out for Neurodegenerative Diseases? Curr. Pharm. Des. 2023, 29, 246–250. [Google Scholar] [CrossRef]
- Moore, S.R. Commentary: What is the case for candidate gene approaches in the era of high-throughput genomics? A response to Border and Keller (2017). J. Child Psychol. Psychiatry 2017, 58, 331–334. [Google Scholar] [CrossRef]
- Saxton, K.B.; John-Henderson, N.; Reid, M.W.; Francis, D.D. The social environment and IL-6 in rats and humans. Brain Behav. Immun. 2011, 25, 1617–1625. [Google Scholar] [CrossRef]
- Saarinen, A.; Keltikangas-Järvinen, L.; Dobewall, H.; Ahola-Olli, A.; Salmi, M.; Lehtimäki, T.; Raitakari, O.; Jalkanen, S.; Hintsanen, M. Risky emotional family environment in childhood and depression-related cytokines in adulthood: The protective role of compassion. Dev. Psychobiol. 2021, 63, 1190–1201. [Google Scholar] [CrossRef]
- Park, J.-S.; Höke, A. Treadmill Exercise Induced Functional Recovery after Peripheral Nerve Repair Is Associated with Increased Levels of Neurotrophic Factors. PLoS ONE 2014, 9, e90245. [Google Scholar] [CrossRef]
- Vanzella, C.; Neves, J.D.; Vizuete, A.F.; Aristimunha, D.; Kolling, J.; Longoni, A.; Gonçalves, C.A.S.; Wyse, A.T.S.; Netto, C.A. Treadmill running prevents age-related memory deficit and alters neurotrophic factors and oxidative damage in the hippocampus of Wistar rats. Behav. Brain Res. 2017, 334, 78–85. [Google Scholar] [CrossRef]
- Williams, H.C.; Carlson, S.W.; Saatman, K.E. A role for insulin-like growth factor-1 in hippocampal plasticity following traumatic brain injury. Vitam. Horm. 2022, 118, 423–455. [Google Scholar] [PubMed]
- Ding, Q.; Vaynman, S.; Akhavan, M.; Ying, Z.; Gomez-Pinilla, F. Insulin-like growth factor I interfaces with brain-derived neurotrophic factor-mediated synaptic plasticity to modulate aspects of exercise-induced cognitive function. Neuroscience 2006, 140, 823–833. [Google Scholar] [CrossRef] [PubMed]
- Kazanis, I.; Giannakopoulou, M.; Philippidis, H.; Stylianopoulou, F. Alterations in IGF-I, BDNF and NT-3 levels following experimental brain trauma and the effect of IGF-I administration. Exp. Neurol. 2004, 186, 221–234. [Google Scholar] [CrossRef] [PubMed]
- Shein, S.L.; Shellington, D.K.; Exo, J.L.; Jackson, T.C.; Wisniewski, S.R.; Jackson, E.K.; Vagni, V.A.; Bayır, H.; Clark, R.S.B.; Dixon, C.E.; et al. Hemorrhagic Shock Shifts the Serum Cytokine Profile from Pro- to Anti-Inflammatory after Experimental Traumatic Brain Injury in Mice. J. Neurotrauma 2014, 31, 1386–1395. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Treble-Barna, A.; Petersen, B.A.; Stec, Z.; Conley, Y.P.; Fink, E.L.; Kochanek, P.M. Brain-Derived Neurotrophic Factor in Pediatric Acquired Brain Injury and Recovery. Biomolecules 2024, 14, 191. https://doi.org/10.3390/biom14020191
Treble-Barna A, Petersen BA, Stec Z, Conley YP, Fink EL, Kochanek PM. Brain-Derived Neurotrophic Factor in Pediatric Acquired Brain Injury and Recovery. Biomolecules. 2024; 14(2):191. https://doi.org/10.3390/biom14020191
Chicago/Turabian StyleTreble-Barna, Amery, Bailey A. Petersen, Zachary Stec, Yvette P. Conley, Ericka L. Fink, and Patrick M. Kochanek. 2024. "Brain-Derived Neurotrophic Factor in Pediatric Acquired Brain Injury and Recovery" Biomolecules 14, no. 2: 191. https://doi.org/10.3390/biom14020191
APA StyleTreble-Barna, A., Petersen, B. A., Stec, Z., Conley, Y. P., Fink, E. L., & Kochanek, P. M. (2024). Brain-Derived Neurotrophic Factor in Pediatric Acquired Brain Injury and Recovery. Biomolecules, 14(2), 191. https://doi.org/10.3390/biom14020191