Canna Starch Improves Intestinal Barrier Function, Inhibits Allergen Uptake, and Suppresses Anaphylactic Symptoms in Ovalbumin-Induced Food Allergy in Mice
Abstract
:1. Introduction
2. Materials and Methods
2.1. Canna Starch Preparation
2.2. Animals and Diets
2.3. Sensitization
2.4. Animal Protocol
2.5. Analyses of Fecal-Specific IgA, Total IgA, and Mucin
2.6. Immunohistochemistry
2.7. Histology
2.8. Statistical Analysis
3. Results
3.1. Body Weight, Feed Intake, and Dry Feces Weight
3.2. Measurement of Body Temperature
3.3. Immunohistochemical Analysis Using Anti-Ovalbumin Antibody
3.4. Evaluation of Intestinal Barrier Function Using Fecal IgA and Mucin
3.5. Effect of Canna Starch Intake on Intestinal Mucosal Barrier
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Ebisawa, M.; Ito, K.; Fujisawa, T. Japanese guidelines for food allergy 2020. Allergol. Int. 2020, 69, 370–386. [Google Scholar] [CrossRef] [PubMed]
- Rheumatism and Allergy Countermeasure Committee Report; Welfare Science Council Disease Control Committee: Chiyoda City, Japan, 2011.
- Hasegawa, M.; Imai, T.; Hayashi, N.; Yanagida, N.; Komata, T.; Sato, S.; Tomikawa, M.; Shukuya, A.; Ebisawa, M. Inappropriate food elimination affects quality of life of food allergy patients and guardians. Jpn. J. Pediatr. Allergy 2011, 25, 163–173. [Google Scholar] [CrossRef]
- Chung, M.Y.; Shin, H.S.; Choi, D.W.; Shon, D.H. Citrus Tachibana Leaf Extract Mitigates Symptoms of Food Allergy by Inhibiting Th2-Associated Responses. J. Food Sci. 2016, 81, H1537–H1545. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Jia, X.; Yu, Q.; Shen, S.; Gao, Y.; Lin, X.; Zhang, W. Piper nigrum extract attenuates food allergy by decreasing Th2 cell response and regulating the Th17/Treg balance. Phytother. Res. 2021, 35, 3214–3225. [Google Scholar] [CrossRef]
- Langworthy, C.F.; Deuel, H.J. Digestibility of raw rice, arrowroot, canna, cassava, taro, tree-fern, and potato starches. J. Biol. Chem. 1922, 52, 251–261. [Google Scholar] [CrossRef]
- Cisneros, F.H.; Zevillanos, R.; Cisneros-Zevallos, L. Characterization of starch from two ecotypes of andean achira roots (Canna edulis). J. Agric. Food Chem. 2009, 57, 7363–7368. [Google Scholar] [CrossRef]
- Mishra, T.; Goyal, A.K.; Middha, S.K.; Sen, A. Antioxidative properties of Canna edulis Ker-Gawl. Indian J. Nat. Prod. Resour. 2011, 2, 315–321. [Google Scholar]
- Wu, J.; Qiu, M.; Zhang, C.; Zhang, C.; Wang, N.; Zhao, F.; Lv, L.; Li, J.; Lyu-Bu, A.G.A.; Wang, T.; et al. Type 3 resistant starch from Canna edulis modulates obesity and obesity-related low-grade systemic inflammation in mice by regulating gut microbiota composition and metabolism. Food Funct. 2021, 29, 12098–12114. [Google Scholar] [CrossRef]
- Zhang, C.; Ma, S.; Wu, J.; Luo, L.; Qiao, S.; Li, R.; Xu, W.; Wang, N.; Zhao, B.; Wang, X.; et al. A specific gut microbiota and metabolomic profiles shifts related to antidiabetic action: The similar and complementary antidiabetic properties of type 3 resistant starch from Canna edulis and metformin. Pharmacol. Res. 2020, 159, 104985. [Google Scholar] [CrossRef]
- Burhannudin; Mahmudah, N.; Widyarini, S.; Purnomosari, D. Chemopreventive Effects of Edible Canna (Canna edulis Kerr.) Against Colorectal Carcinogenesis: Effects on Expression of Adenomatous Polyposis Coli and Inducible Nitric Oxide Synthase in Rat Inflammatory Model. Asian Pac. J. Cancer Prev. 2018, 19, 839–844. [Google Scholar] [CrossRef]
- Tanaka, M.; Koida, A.; Miyazaki, A.; Tabata, K.; Takei, Y.; Tanimoto, Y.; Kawamura, M.; Tsuzuki, M.; Takahashi, H.; Yano, T.; et al. Canna starch improves immune functions and the intestinal environment in mice. Biosci. Microbiota Food Health 2023, 42, 131–137. [Google Scholar] [CrossRef]
- Atarashi, K.; Tanoue, T.; Shima, T.; Imaoka, A.; Kuwahara, T.; Momose, Y.; Cheng, G.; Yamasaki, S.; Saito, T.; Ohba, Y.; et al. Induction of colonic regulatory T cells by indigenous Clostridium species. Science 2011, 331, 337–341. [Google Scholar] [CrossRef]
- Atarashi, K.; Tanoue, T.; Oshima, K.; Suda, W.; Nagano, Y.; Nishikawa, H.; Fukuda, S.; Saito, T.; Narushima, S.; Hase, K.; et al. Treg induction by a rationally selected mixture of Clostridia strains from the human microbiota. Nature 2013, 500, 232–236. [Google Scholar] [CrossRef]
- Furusawa, Y.; Obata, Y.; Fukuda, S.; Endo, T.A.; Nakato, G.; Takahashi, D.; Nakanishi, Y.; Uetake, C.; Kato, K.; Kato, T.; et al. Commensal microbe-derived butyrate induces the differentiation of colonic regulatory T cells. Nature 2013, 504, 446–450. [Google Scholar] [CrossRef]
- Ito, H.; Wada, T.; Ohguchi, M.; Sugiyama, K.; Kiriyama, S.; Morita, T. The degree of polymerization of inulin-like fructans affects cecal mucin and immunoglobulin A in rats. J. Food Sci. 2008, 73, H36–H41. [Google Scholar] [CrossRef]
- Sakaguchi, S. Naturally arising CD4+ regulatory t cells for immunologic self-tolerance and negative control of immune responses. Annu. Rev. Immunol. 2004, 22, 531–562. [Google Scholar] [CrossRef] [PubMed]
- Tanaka, M.; Lu, R.; Kozai, H. Continuous ingestion of sodium chloride solution promotes allergen absorption and may exacerbate allergy symptoms on ovalbumin-induced food allergy in mice. Drug Discov. Ther. 2023, 17, 66–69. [Google Scholar] [CrossRef] [PubMed]
- Kawamoto, T. Use of a new adhesive film for the preparation of multi-purpose fresh-frozen sections from hard tissues, whole-animals, insects and plants. Arch. Histol. Cytol. 2003, 66, 123–143. [Google Scholar] [CrossRef] [PubMed]
- Makabe-Kobayashi, Y.; Hori, Y.; Adachi, T.; Ishigaki-Suzuki, S.; Kikuchi, Y.; Kagaya, Y.; Shirato, K.; Nagy, A.; Ujike, A.; Takai, T.; et al. The control effect of histamine on body temperature and respiratory function in IgE-dependent systemic anaphylaxis. J. Allergy Clin. Immunol. 2002, 110, 298–303. [Google Scholar] [CrossRef] [PubMed]
- Tanaka, M.; Nagano, T.; Yano, H.; Haruma, K.; Kato, Y. Exercise-independent wheat-induced anaphylaxis caused by ω-5 gliadin in mice. Int. Arch. Allergy Immunol. 2011, 156, 434–442. [Google Scholar] [CrossRef] [PubMed]
- Castillo-Courtade, L.; Han, S.; Lee, S.; Mian, F.M.; Buck, R.; Forsythe, P. Attenuation of food allergy symptoms following treatment with human milk oligosaccharides in a mouse model. Allergy 2015, 70, 1091–1102. [Google Scholar] [CrossRef] [PubMed]
- Takahashi, H.; Fujii, T.; Yamakawa, S.; Yamada, C.; Fujiki, K.; Kondo, N.; Funasaka, K.; Hirooka, Y.; Tochio, T. Combined oral intake of short and long fructans alters the gut microbiota in food allergy model mice and contributes to food allergy prevention. BMC Microbiol. 2023, 23, 266. [Google Scholar] [CrossRef] [PubMed]
- Matsubara, T.; Aoki, N.; Honjoh, T.; Mizumachi, K.; Kurisaki, J.; Okajima, T.; Nadano, D.; Matsuda, T. Absorption, migration and kinetics in peripheral blood of orally administered ovalbumin in a mouse model. Biosci. Biotechnol. Biochem. 2008, 72, 2555–2565. [Google Scholar] [CrossRef] [PubMed]
- Järvinen, K.M.; Konstantinou, G.N.; Pilapil, M.; Arrieta, M.C.; Noone, S.; Sampson, H.A.; Meddings, J.; Nowak-Węgrzyn, A. Intestinal permeability in children with food allergy on specific elimination diets. Pediatr. Allergy Immunol. 2013, 24, 589–595. [Google Scholar] [CrossRef] [PubMed]
- Ventura, M.T.; Polimeno, L.; Amoruso, A.C.; Gatti, F.; Annoscia, E.; Marinaro, M.; Di Leo, E.; Matino, M.G.; Buquicchio, R.; Bonini, S.; et al. Intestinal permeability in patients with adverse reactions to food. Dig. Liver Dis. 2006, 38, 732–736. [Google Scholar] [CrossRef] [PubMed]
- Fukushima, T.; Yokooji, T.; Hirano, T.; Kataoka, Y.; Taogoshi, T.; Matsuo, H. Aspirin enhances sensitization to the egg-white allergen ovalbumin in rats. PLoS ONE 2019, 14, e0226165. [Google Scholar] [CrossRef] [PubMed]
- Tanabe, H.; Ito, H.; Sugiyama, K.; Kiriyama, S.; Morita, T. Dietary indigestible components exert different regional effects on luminal mucin secretion through their bulk-forming property and fermentability. Biosci. Biotechnol. Biochem. 2006, 70, 1188–1194. [Google Scholar] [CrossRef]
- Vahouny, G.V.; Le, T.; Ifrim, I.; Satchithanandam, S.; Cassidy, M.M. Stimulation of intestinal cytokinetics and mucin turnover in rats fed wheat bran or cellulose. Am. J. Clin. Nutr. 1985, 41, 895–900. [Google Scholar] [CrossRef]
- de Vos, W.M. Microbe Profile: Akkermansia muciniphila: A conserved intestinal symbiont that acts as the gatekeeper of our mucosa. Microbiology 2017, 163, 646–648. [Google Scholar] [CrossRef]
- Kim, S.; Shin, Y.C.; Kim, T.Y.; Kim, Y.; Lee, Y.S.; Lee, S.H.; Kim, M.N.; Eunju, O.; Kim, K.S.; Kweon, M.N. Mucin degrader Akkermansia muciniphila accelerates intestinal stem cell-mediated epithelial development. Gut Microbes. 2021, 13, 1892441. [Google Scholar] [CrossRef]
Component | Control Diet | Canna Diet |
---|---|---|
Cornstarch | 63.2 | 53.2 |
Casein | 20.0 | 20.0 |
Corn oil (no additives) | 7.0 | 7.0 |
Fiber | 5.0 | 5.0 |
Mineral mix (AIN-93G-MX) | 3.5 | 3.5 |
Vitamin mix (AIN-93VX) | 1.0 | 1.0 |
L-Cystine | 0.3 | 0.3 |
tert-Butylhydroquinone | 0.0014 | 0.0014 |
Canna starch | 0.0 | 10.0 |
Total | 100 | 100 |
Control | Canna | OVA | OVA-Canna | |
---|---|---|---|---|
Body weight gain (g) | ||||
Day 0 | 17.3 ± 0.3 a | 17.4 ± 0.3 a | 17.4 ± 0.3 a | 17.5 ± 0.3 a |
Day 28 | 18.3 ± 0.4 a | 18.9 ± 0.2 a | 19.5 ± 0.4 a | 19.3 ± 0.4 a |
Food intake (g/day) | 2.74 ± 0.05 a | 2.74 ± 0.04 a | 2.68 ± 0.04 a | 2.69 ± 0.03 a |
Dry weight of feces (g/24 h) | 0.20 ± 0.02 a | 0.44 ± 0.02 b | 0.20 ± 0.01 a | 0.46 ± 0.02 b |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Koida, A.; Tanaka, M.; Kosaka, R.; Okuda, S.; Takei, S.; Ota, S.; Yokoyama, S.; Miyake, K.; Watanabe, H. Canna Starch Improves Intestinal Barrier Function, Inhibits Allergen Uptake, and Suppresses Anaphylactic Symptoms in Ovalbumin-Induced Food Allergy in Mice. Biomolecules 2024, 14, 215. https://doi.org/10.3390/biom14020215
Koida A, Tanaka M, Kosaka R, Okuda S, Takei S, Ota S, Yokoyama S, Miyake K, Watanabe H. Canna Starch Improves Intestinal Barrier Function, Inhibits Allergen Uptake, and Suppresses Anaphylactic Symptoms in Ovalbumin-Induced Food Allergy in Mice. Biomolecules. 2024; 14(2):215. https://doi.org/10.3390/biom14020215
Chicago/Turabian StyleKoida, Ayaka, Mamoru Tanaka, Rina Kosaka, Shoei Okuda, Shiro Takei, Suzuno Ota, Sayaka Yokoyama, Kaho Miyake, and Hiroyuki Watanabe. 2024. "Canna Starch Improves Intestinal Barrier Function, Inhibits Allergen Uptake, and Suppresses Anaphylactic Symptoms in Ovalbumin-Induced Food Allergy in Mice" Biomolecules 14, no. 2: 215. https://doi.org/10.3390/biom14020215
APA StyleKoida, A., Tanaka, M., Kosaka, R., Okuda, S., Takei, S., Ota, S., Yokoyama, S., Miyake, K., & Watanabe, H. (2024). Canna Starch Improves Intestinal Barrier Function, Inhibits Allergen Uptake, and Suppresses Anaphylactic Symptoms in Ovalbumin-Induced Food Allergy in Mice. Biomolecules, 14(2), 215. https://doi.org/10.3390/biom14020215