Iron Dysregulation in Alzheimer’s Disease: LA-ICP-MS Bioimaging of the Distribution of Iron and Ferroportin in the CA1 Region of the Human Hippocampus
Abstract
:1. Introduction
2. Materials and Methods
2.1. Subjects of Study
2.2. Tissue Processing
2.3. Neurons, Senile Plaques, Neurofibrillary Tangles and Amyloid-Beta Staining
2.4. Chromogenic Immunohistochemistry
2.5. Immunohistochemistry with Gold Nanocluster (AuNC) for LA-ICP-MS
2.6. Registration of LA-ICP-MS
2.7. Preparation of Laboratory Gelatin Standards for Quantitative LA-ICP-MS Measurements
2.8. Statistical Analyses
3. Results
4. Discussion
5. Future Perspectives
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Lei, P.; Ayton, S.; Bush, A.I. The Essential Elements of Alzheimer’s Disease. J. Biol. Chem. 2021, 296, 100105. [Google Scholar] [CrossRef]
- Chen, P.; Miah, M.R.; Aschner, M. Metals and Neurodegeneration. F1000Research 2016, 5, 1–12. [Google Scholar] [CrossRef]
- Cristóvão, J.S.; Santos, R.; Gomes, C.M. Metals and Neuronal Metal Binding Proteins Implicated in Alzheimer’s Disease. Oxid. Med. Cell. Longev. 2016, 2016, 9812178. [Google Scholar] [CrossRef]
- Raha, A.A.; Vaishnav, R.A.; Friedland, R.P.; Bomford, A.; Raha-Chowdhury, R. The Systemic Iron-Regulatory Proteins Hepcidin and Ferroportin Are Reduced in the Brain in Alzheimer’s Disease. Acta Neuropathol. Commun. 2013, 1, 55. [Google Scholar] [CrossRef]
- Bandyopadhyay, S.; Rogers, J.T. Alzheimer’s Disease Therapeutics Targeted to the Control of Amyloid Precursor Protein Translation: Maintenance of Brain Iron Homeostasis. Biochem. Pharmacol. 2014, 88, 486–494. [Google Scholar] [CrossRef]
- Carocci, A.; Catalano, A.; Sinicropi, M.S.; Genchi, G. Oxidative Stress and Neurodegeneration: The Involvement of Iron. BioMetals 2018, 31, 715–735. [Google Scholar] [CrossRef]
- Connor, J.R.; Snyder, B.S.; Beard, J.L.; Fine, R.E.; Mufson, E.J. Regional Distribution of Iron and Iron-regulatory Proteins in the Brain in Aging and Alzheimer’s Disease. J. Neurosci. Res. 1992, 31, 327–335. [Google Scholar] [CrossRef]
- Peters, D.G.; Connor, J.R.; Meadowcroft, M.D. The Relationship between Iron Dyshomeostasis and Amyloidogenesis in Alzheimer’s Disease: Two Sides of the Same Coin. Neurobiol. Dis. 2015, 81, 49–65. [Google Scholar] [CrossRef]
- Wang, T.; Xu, S.F.; Fan, Y.G.; Li, L.B.; Guo, C. Iron Pathophysiology in Alzheimer’s Diseases. In Advances in Experimental Medicine and Biology; Springer: Singapore, 2019; Volume 1173, pp. 67–104. [Google Scholar]
- van Duijn, S.; Nabuurs, R.J.A.; van Duinen, S.G.; Natté, R. Comparison of Histological Techniques to Visualize Iron in Paraffin-Embedded Brain Tissue of Patients with Alzheimer’s Disease. J. Histochem. Cytochem. 2013, 61, 785–792. [Google Scholar] [CrossRef]
- van Duijn, S.; Bulk, M.; Van Duinen, S.G.; Nabuurs, R.J.A.; Van Buchem, M.A.; Van Der Weerd, L.; Natté, R. Cortical Iron Reflects Severity of Alzheimer’s Disease. J. Alzheimers Dis. 2017, 60, 1533–1545. [Google Scholar] [CrossRef]
- Meguro, R.; Asano, Y.; Odagiri, S.; Li, C.; Iwatsuki, H.; Shoumura, K.; Meguro, R.; Asano, Y.; Odagiri, S.; Li, C.; et al. Nonheme-Iron Histochemistry for Light and Electron Microscopy: A Historical, Theoretical and Technical Review. Arch. Histol. Cytol. 2007, 70, 1–19. [Google Scholar] [CrossRef]
- Meguro, R.; Asano, Y.; Iwatsuki, H.; Shoumura, K. Perfusion-Perls and -Turnbull Methods Supplemented by DAB Intensification for Nonheme Iron Histochemistry: Demonstration of the Superior Sensitivity of the Methods in the Liver, Spleen, and Stomach of the Rat. Histochem. Cell Biol. 2003, 120, 73–82. [Google Scholar] [CrossRef]
- Cruz-Alonso, M.; Fernandez, B.; García, M.; González-Iglesias, H.; Pereiro, R. Quantitative Imaging of Specific Proteins in the Human Retina by Laser Ablation ICPMS Using Bioconjugated Metal Nanoclusters as Labels. Anal. Chem. 2018, 90, 12145–12151. [Google Scholar] [CrossRef]
- Cruz-Alonso, M.; Fernandez, B.; Navarro, A.; Junceda, S.; Astudillo, A.; Pereiro, R. Laser Ablation ICP-MS for Simultaneous Quantitative Imaging of Iron and Ferroportin in Hippocampus of Human Brain Tissues with Alzheimer’s Disease. Talanta 2019, 197, 413–421. [Google Scholar] [CrossRef]
- Braak, H.; Braak, E. Neuropathological Stageing of Alzheimer-Related Changes. Acta Neuropathol. 1991, 82, 239–259. [Google Scholar] [CrossRef]
- Martínez-Pinilla, E.; Navarro, A.; Ordóñez, C.; del Valle, E.; Tolivia, J. Apolipoprotein D Subcellular Distribution Pattern in Neuronal Cells during Oxidative Stress. Acta Histochem. 2015, 117, 536–544. [Google Scholar] [CrossRef]
- Tolivia, J.; Navarro, A.; Tolivia, D. Differential Staining of Nerve Cells and Fibres for Sections of Paraffin-Embedded Material in Mammalian Central Nervous System. Histochemistry 1994, 102, 101–104. [Google Scholar] [CrossRef]
- Reusche, E. Silver Staining of Senile Plaques and Neurofibrillary Tangles in Paraffin Sections: A Simple and Effective Method. Pathol. Res. Pract. 1991, 187, 1045–1049. [Google Scholar] [CrossRef]
- Navarro, A.; Tolivia, J.; Del Valle, E. Congo Red Method for Demonstrating Amyloid in Paraffin Sections. J. Histotechnol. 1999, 22, 305–308. [Google Scholar] [CrossRef]
- Navarro, A.; Del Valle, E.; Mártínez, E.; Ordóñez, C.; Pérez, C.; Tolivia, J. Highly Selective and Fast Diagnosis of Alzheimer’s Disease Hallmark Lesions Using Congo Red in Isopropyl Alcoholic Solution. J. Alzheimers Dis. 2013, 35, 589–597. [Google Scholar] [CrossRef]
- Di Guardo, G. Lipofuscin, Lipofuscin-like Pigments and Autofluorescence. Eur. J. Histochem. 2015, 59, 2485. [Google Scholar] [CrossRef]
- He, D.; Li, T.; Yang, X.; Xu, Y.; Sun, H. Sudan Black B Treatment for Reducing Autofluorescence in Human Glioma Tissue and Improving Fluorescent Signals of Bacterial LPS Staining. J. Biophotonics 2023, 16, e202200357. [Google Scholar] [CrossRef]
- Luo, Z.; Zheng, K.; Xie, J. Engineering Ultrasmall Water-Soluble Gold and Silver Nanoclusters for Biomedical Applications. Chem. Commun. 2014, 50, 5143–5155. [Google Scholar] [CrossRef]
- Khan, I.M.; Niazi, S.; Yue, L.; Zhang, Y.; Pasha, I.; Iqbal Khan, M.K.; Akhtar, W.; Mohsin, A.; Chughati, M.F.J.; Wang, Z. Research Update of Emergent Gold Nanoclusters: A Reinforced Approach towards Evolution, Synthesis Mechanism and Application. Talanta 2022, 241, 123228. [Google Scholar] [CrossRef]
- De Barros, A.; Arribarat, G.; Combis, J.; Chaynes, P.; Péran, P. Matching Ex Vivo MRI with Iron Histology: Pearls and Pitfalls. Front. Neuroanat. 2019, 13, 68. [Google Scholar] [CrossRef]
- Uchida, Y.; Kan, H.; Sakurai, K.; Oishi, K.; Matsukawa, N. Quantitative Susceptibility Mapping as an Imaging Biomarker for Alzheimer’s Disease: The Expectations and Limitations. Front. Neurosci. 2022, 16, 938092. [Google Scholar] [CrossRef]
- Van Oostveen, W.M.; de Lange, E.C.M. Imaging Techniques in Alzheimer’s Disease: A Review of Applications in Early Diagnosis and Longitudinal Monitoring. Int. J. Mol. Sci. 2021, 22, 2110. [Google Scholar] [CrossRef]
- Bulk, M.; Abdelmoula, W.M.; Geut, H.; Wiarda, W.; Ronen, I.; Dijkstra, J.; van der Weerd, L.; Breimer, W.; Lebedev, N.; Webb, A.; et al. Quantitative MRI and Laser Ablation-Inductively Coupled Plasma-Mass Spectrometry Imaging of Iron in the Frontal Cortex of Healthy Controls and Alzheimer’s Disease Patients. Neuroimage 2020, 215, 116808. [Google Scholar] [CrossRef]
- Ayton, S.; Wang, Y.; Diouf, I.; Schneider, J.A.; Brockman, J.; Morris, M.C.; Bush, A.I. Brain Iron Is Associated with Accelerated Cognitive Decline in People with Alzheimer Pathology. Mol. Psychiatry 2020, 25, 2932–2941. [Google Scholar] [CrossRef]
- Falangola, M.F.; Lee, S.P.; Nixon, R.A.; Duff, K.; Helpern, J.A. Histological Co-Localization of Iron in Aβ Plaques of PS/APP Transgenic Mice. Neurochem. Res. 2005, 30, 201–205. [Google Scholar] [CrossRef]
- Meguro, R.; Asano, Y.; Odagiri, S.; Li, C.; Shoumura, K. Cellular and Subcellular Localizations of Nonheme Ferric and Ferrous Iron in the Rat Brain: A Light and Electron Microscopic Study by the Perfusion-Perls and -Turnbull Methods. Arch. Histol. Cytol. 2008, 71, 205–222. [Google Scholar] [CrossRef]
- Nikparast, F.; Ganji, Z.; Danesh Doust, M.; Faraji, R.; Zare, H. Brain Pathological Changes during Neurodegenerative Diseases and Their Identification Methods: How Does QSM Perform in Detecting This Process? Insights Imaging 2022, 13, 74. [Google Scholar] [CrossRef]
- Ayton, S.; Fazlollahi, A.; Bourgeat, P.; Raniga, P.; Ng, A.; Lim, Y.Y.; Diouf, I.; Farquharson, S.; Fripp, J.; Ames, D.; et al. Cerebral Quantitative Susceptibility Mapping Predicts Amyloid-β-Related Cognitive Decline. Brain 2017, 140, 2112–2119. [Google Scholar] [CrossRef]
- Spotorno, N.; Acosta-Cabronero, J.; Stomrud, E.; Lampinen, B.; Strandberg, O.T.; van Westen, D.; Hansson, O. Relationship between Cortical Iron and Tau Aggregation in Alzheimer’s Disease. Brain 2020, 143, 1341–1349. [Google Scholar] [CrossRef]
- Cogswell, P.M.; Fan, A.P. Multimodal Comparisons of QSM and PET in Neurodegeneration and Aging. Neuroimage 2023, 273, 120068. [Google Scholar] [CrossRef]
- Cogswell, P.M.; Wiste, H.J.; Senjem, M.L.; Gunter, J.L.; Weigand, S.D.; Schwarz, C.G.; Arani, A.; Therneau, T.M.; Lowe, V.J.; Knopman, D.S.; et al. Associations of Quantitative Susceptibility Mapping with Alzheimer’s Disease Clinical and Imaging Markers. Neuroimage 2021, 224, 117433. [Google Scholar] [CrossRef]
- Hare, D.J.; Raven, E.P.; Roberts, B.R.; Bogeski, M.; Portbury, S.D.; McLean, C.A.; Masters, C.L.; Connor, J.R.; Bush, A.I.; Crouch, P.J.; et al. Laser Ablation-Inductively Coupled Plasma-Mass Spectrometry Imaging of White and Gray Matter Iron Distribution in Alzheimer’s Disease Frontal Cortex. Neuroimage 2016, 137, 124–131. [Google Scholar] [CrossRef]
- Qian, Z.M.; Ke, Y. Brain Iron Transport. Biol. Rev. 2019, 94, 1672–1684. [Google Scholar] [CrossRef]
- Zhao, Z.; Nelson, A.R.; Betsholtz, C.; Zlokovic, B.V. Establishment and Dysfunction of the Blood-Brain Barrier. Cell 2015, 163, 1064–1078. [Google Scholar] [CrossRef]
- Raha, A.A.; Biswas, A.; Henderson, J.; Chakraborty, S.; Holland, A.; Friedland, R.P.; Mukaetova-Ladinska, E.; Zaman, S.; Raha-Chowdhury, R. Interplay of Ferritin Accumulation and Ferroportin Loss in Ageing Brain: Implication for Protein Aggregation in Down Syndrome Dementia, Alzheimer’s, and Parkinson’s Diseases. Int. J. Mol. Sci. 2022, 23, 1060. [Google Scholar] [CrossRef]
- Bao, W.-D.; Pang, P.; Zhou, X.-T.; Hu, F.; Xiong, W.; Chen, K.; Wang, J.; Wang, F.; Xie, D.; Hu, Y.-Z.; et al. Loss of Ferroportin Induces Memory Impairment by Promoting Ferroptosis in Alzheimer’s Disease. Cell Death Differ. 2021, 28, 1548–1562. [Google Scholar] [CrossRef]
- Zlokovic, B. V Neurovascular Pathways to Neurodegeneration in Alzheimer’s Disease and Other Disorders. Nat. Rev. Neurosci. 2011, 12, 723–738. [Google Scholar] [CrossRef]
- Montagne, A.; Zhao, Z.; Zlokovic, B.V. Alzheimer’s Disease: A Matter of Blood-Brain Barrier Dysfunction? J. Exp. Med. 2017, 214, 3151–3169. [Google Scholar] [CrossRef]
Donor | Age | Sex | Cause of Death | Break Scale | Other Brain Pathology |
---|---|---|---|---|---|
#1 | 57 | Male | Cardiogenic shock | -- | No |
#2 | 71 | Female | Cardiorespiratory arrest | -- | No |
#3 | 82 | Male | Cardiorespiratory arrest | -- | No |
#4 | 100 | Female | Multi-organic failure | -- | No |
#5 | 84 | Female | Multi-organic failure | II–III | No |
#6 | 77 | Male | Cardiorespiratory arrest | VI | No |
#7 | 91 | Female | Acute myocardial infarction | V–VI | No |
#8 | 62 | Male | Cardiorespiratory arrest | VI | No |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Junceda, S.; Cruz-Alonso, M.; Fernandez, B.; Pereiro, R.; Martínez-Pinilla, E.; Navarro, A. Iron Dysregulation in Alzheimer’s Disease: LA-ICP-MS Bioimaging of the Distribution of Iron and Ferroportin in the CA1 Region of the Human Hippocampus. Biomolecules 2024, 14, 295. https://doi.org/10.3390/biom14030295
Junceda S, Cruz-Alonso M, Fernandez B, Pereiro R, Martínez-Pinilla E, Navarro A. Iron Dysregulation in Alzheimer’s Disease: LA-ICP-MS Bioimaging of the Distribution of Iron and Ferroportin in the CA1 Region of the Human Hippocampus. Biomolecules. 2024; 14(3):295. https://doi.org/10.3390/biom14030295
Chicago/Turabian StyleJunceda, Susana, María Cruz-Alonso, Beatriz Fernandez, Rosario Pereiro, Eva Martínez-Pinilla, and Ana Navarro. 2024. "Iron Dysregulation in Alzheimer’s Disease: LA-ICP-MS Bioimaging of the Distribution of Iron and Ferroportin in the CA1 Region of the Human Hippocampus" Biomolecules 14, no. 3: 295. https://doi.org/10.3390/biom14030295
APA StyleJunceda, S., Cruz-Alonso, M., Fernandez, B., Pereiro, R., Martínez-Pinilla, E., & Navarro, A. (2024). Iron Dysregulation in Alzheimer’s Disease: LA-ICP-MS Bioimaging of the Distribution of Iron and Ferroportin in the CA1 Region of the Human Hippocampus. Biomolecules, 14(3), 295. https://doi.org/10.3390/biom14030295