Utilization of Diverse Molecules as Receptors by Cry Toxin and the Promiscuous Nature of Receptor-Binding Sites Which Accounts for the Diversity
Abstract
:1. Introduction
2. Models of Receptors Involved in Determining Susceptibility to Cry Toxin in the Silkworm
2.1. BmABCC2, BmABCC3, and BmCad Usage Model for Cry1Aa Toxin
2.2. BmABCC2 and BmCad Usage Model for Cry1Ac Toxin
2.3. BmABCC2 and BmABCC3 Usage Model for Cry1Fa Toxin
2.4. BmABCB1 Usage Model for Cry1Ia Toxin
2.5. BmABCA2 Usage Model for Cry2Aa and Cry2Ab
3. Receptor-Binding Site Created by the Domain II Loops of Cry Toxin and Its Promiscuous Properties
4. Roles of ABC Transporters as Low-Efficiency Receptors and Inefficient Receptors to Cry Toxins
5. Protein Engineering of Cry Toxin by Imitating the Mechanism of Evolution
5.1. Directed Evolution of Cry Toxin Targeting Cad
5.2. Directed Evolution of Cry Toxin Targeting ABC Transporters
6. Conclusions
Funding
Conflicts of Interest
Abbreviations
References
- Ibrahim, M.A.; Griko, N.; Junker, M.; Bulla, L.A. Bacillus thuringiensis: A genomics and proteomics perspective. Bioeng. Bugs. 2010, 1, 31–50. [Google Scholar] [CrossRef] [PubMed]
- Crickmore, N.; Berry, C.; Panneerselvam, S.; Mishra, R.; Connor, T.R.; Bonning, B.C. A structure-based nomenclature for Bacillus thuringiensis and other bacteria-derived pesticidal proteins. J. Invertebr. Pathol. 2021, 186, 107438. [Google Scholar] [CrossRef] [PubMed]
- Tabashnik, B. Field development of resistance to Bacillus thuringiensis in diamondback moth (Lepidoptera: Plutellidae). J. Econ. Entomol. 1990, 83, 1671–1676. [Google Scholar] [CrossRef]
- Gahan, L.J.; Gould, F.; Heckel, D.G. Identification of a gene associated with Bt resistance in Heliothis virescens. Science 2001, 293, 857–860. [Google Scholar] [CrossRef] [PubMed]
- Morin, S.; Biggs, R.W.; Sisterson, M.S.; Shriver, L.; Ellers-kirk, C.; Higginson, D.; Dennehy, T.J.; Brown, J.K.; Holley, D.; Gahan, L.J.; et al. Three cadherin alleles associated with resistance to Bacillus thuringiensis in pink bollworm. Proc. Natl. Acad. Sci. USA 2003, 100, 5004–5009. [Google Scholar] [CrossRef] [PubMed]
- Xu, X.; Yu, L.; Wu, Y. Disruption of a cadherin gene associated with resistance to Cry1Ac δ-endotoxin of Bacillus thuringiensis in Helicoverpa armigera. Appl. Environ. Microbiol. 2005, 71, 948–954. [Google Scholar] [CrossRef] [PubMed]
- Gahan, L.J.; Pauchet, Y.; Vogel, H.; Heckel, D.G. An ABC transporter mutation is correlated with Insect resistance to Bacillus thuringiensis Cry1Ac toxin. PLoS Genet. 2010, 6, e1001248. [Google Scholar] [CrossRef] [PubMed]
- Baxter, S.W.; Badenes-Perez, F.R.; Morrison, A.; Vogel, H.; Crickmore, N.; Kain, W.; Wang, P.; Heckel, D.G.; Jiggins, C.D. Parallel evolution of Bt toxin resistance in lepidoptera. Genetics 2011, 189, 675–679. [Google Scholar] [CrossRef] [PubMed]
- Park, Y.; González-Martínez, R.M.; Navarro-Cerrillo, G.; Chakroun, M.; Kim, Y.; Ziarsolo, P.; Blanca, J.; Cañizares, J.; Ferré, J.; Herrero, S. ABCC transporters mediate insect resistance to multiple Bt toxins revealed by bulk segregant analysis. BMC Biol. 2014, 12, 46. [Google Scholar] [CrossRef]
- Atsumi, S.; Miyamoto, K.; Yamamoto, K.; Narukawa, J.; Kawai, S.; Sezutsu, H.; Kobayashi, I.; Uchino, K.; Tamura, T.; Mita, K.; et al. Single amino acid mutation in an ATP-binding cassette transporter gene causes resistance to Bt toxin Cry1Ab in the silkworm, Bombyx mori. Proc. Natl. Acad. Sci. USA 2012, 109, E1591–E1598. [Google Scholar] [CrossRef]
- Xiao, Y.; Zhang, T.T.; Liu, C.; Heckel, D.G.; Li, X.; Tabashnik, B.E.; Wu, K. Mis-splicing of the ABCC2 gene linked with Bt toxin resistance in Helicoverpa armigera. Sci. Rep. 2014, 4, 6184. [Google Scholar] [CrossRef] [PubMed]
- Banerjee, R.; Hasler, J.; Meagher, R.; Nagoshi, R.; Hietala, L.; Huang, F.; Narva, K.; Jurat-Fuentes, J.L. Mechanism and DNA-based detection of field-evolved resistance to transgenic Bt corn in fall armyworm (Spodoptera frugiperda). Sci. Rep. 2017, 7, 10877. [Google Scholar] [CrossRef] [PubMed]
- Flagel, L.; Lee, Y.W.; Wanjugi, H.; Swarup, S.; Brown, A.; Wang, J.; Kraft, E.; Greenplate, J.; Simmons, J.; Adams, N.; et al. Mutational disruption of the ABCC2 gene in fall armyworm, Spodoptera frugiperda, confers resistance to the Cry1Fa and Cry1A.105 insecticidal proteins. Sci. Rep. 2018, 8, 7255. [Google Scholar] [CrossRef] [PubMed]
- Jin, M.H.; Tao, J.H.; Li, Q.; Cheng, Y.; Sun, X.X.; Wu, K.M.; Xiao, Y.T. Genome editing of the SfABCC2 gene confers resistance to Cry1F toxin from Bacillus thuringiensis in Spodoptera frugiperda. J. Integr. Agric. 2021, 20, 815–820. [Google Scholar] [CrossRef]
- Wang, X.; Xu, Y.; Huang, J.; Jin, W.; Yang, Y.; Wu, Y. CRISPR-mediated knockout of the ABCC2 gene in Ostrinia furnacalis confers high-level resistance to the Bacillus thuringiensis Cry1Fa toxin. Toxins 2020, 12, 246. [Google Scholar] [CrossRef] [PubMed]
- Endo, Y.; Nishiitsutsuji-Uwo, J. Mode of action of Bacillus thuringiensis-endotoxin: Histopathological changes in the silkworm midgut. J. Insect Physiol. 1980, 36, 90–103. [Google Scholar] [CrossRef]
- Tanaka, S.; Miyamoto, K.; Noda, H.; Jurat-Fuentes, J.L.; Yoshizawa, Y.; Endo, H.; Sato, R. The ATP-binding cassette transporter subfamily C member 2 in Bombyx mori larvae Is a functional receptor for Cry toxins from Bacillus thuringiensis. FEBS J. 2013, 280, 1782–1794. [Google Scholar] [CrossRef] [PubMed]
- Bretschneider, A.; Heckel, D.G.; Vogel, H. Know Your ABCs: Characterization and gene expression dynamics of ABC transporters in the polyphagous herbivore Helicoverpa armigera. Insect Biochem. Mol. Biol. 2016, 72, 1–9. [Google Scholar] [CrossRef]
- Obata, F.; Tanaka, S.; Kashio, S.; Tsujimura, H.; Sato, R.; Miura, M. Induction of rapid and selective cell necrosis in Drosophila using Bacillus thuringiensis Cry toxin and its silkworm receptor. BMC Biol. 2015, 13, 48. [Google Scholar] [CrossRef]
- Liebig, B.; Stetson, D.L.; Dean, D.H. Quantification of the effect of Bacillus thuringiensis toxins on short-circuit current in the midgut of Bombyx mori. J. Insect Physiol. 1995, 41, 17–22. [Google Scholar] [CrossRef]
- Tanaka, S.; Endo, H.; Adegawa, S.; Kikuta, S.; Sato, R. Functional characterization of Bacillus thuringiensis Cry toxin receptors explains resistance in insects. FEBS J. 2016, 283, 4474–4490. [Google Scholar] [CrossRef]
- Nagamatsu, Y.; Koike, T.; Sasaki, K.; Yoshimoto, A.; Furukawa, Y. The cadherin-like protein is essential to specificity determination and cytotoxic action of the Bacillus thuringiensis insecticidal CryIAa toxin. FEBS Lett. 1999, 460, 385–390. [Google Scholar] [CrossRef] [PubMed]
- Tsuda, Y.; Nakatani, F.; Hashimoto, K.; Ikawa, S.; Matsuura, C.; Fukada, T.; Sugimoto, K.; Himeno, M. Cytotoxic activity of Bacillus thuringiensis Cry proteins on mammalian cells transfected with cadherin-like Cry receptor gene of Bombyx mori (silkworm). Biochem. J. 2003, 369, 697–703. [Google Scholar] [CrossRef] [PubMed]
- Hara, H.; Atsumi, S.; Yaoi, K.; Nakanishi, K.; Higurashi, S.; Miura, N.; Tabunoki, H.; Sato, R. A cadherin-like protein functions as a receptor for Bacillus thuringiensis Cry1Aa and Cry1Ac toxins on midgut epithelial cells of Bombyx mori larvae. FEBS Lett. 2003, 538, 29–34. [Google Scholar] [CrossRef]
- Sato, R.; Adegawa, S.; Li, X.; Endo, H. Function and role of ATP-binding cassette transporters as receptors for 3D-Cry toxins. Toxins 2019, 11, 124. [Google Scholar] [CrossRef]
- Pauchet, Y.; Bretschneider, A.; Augustin, S.; Heckel, D.G. A P-glycoprotein is linked to resistance to the Bacillus thuringiensis Cry3Aa toxin in a leaf beetle. Toxins 2016, 8, 362. [Google Scholar] [CrossRef] [PubMed]
- Niu, X.P.; Kassa, A.; Hasler, J.; Griffin, S.; Perez-Ortega, C.; Procyk, L.; Zhang, J.; Kapka-Kitzman, D.M.; Nelson, M.E.; Lu, A. Functional validation of DvABCB1 as a receptor of Cry3 toxins in western corn rootworm, Diabrotica virgifera virgifera. Sci. Rep. 2020, 10, 15830. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Miyamoto, K.; Takasu, Y.; Wada, S.; Iizuka, T.; Adegawa, S.; Sato, R.; Watanabe, K. ATP-binding cassette subfamily A member 2 is a functional receptor for Bacillus thuringiensis Cry2A toxins in Bombyx mori, but not for Cry1A, Cry1C, Cry1D, Cry1F, or Cry9A toxins. Toxins 2020, 12, 104. [Google Scholar] [CrossRef]
- Iwabuchi, K.; Miyamoto, K.; Jouraku, A.; Takasu, Y.; Iizuka, T.; Adegawa, S.; Li, X.; Sato, R.; Watanabe, K. ABC transporter subfamily B1 as a susceptibility determinant of Bombyx mori larvae to Cry1Ba, Cry1Ia and Cry9Da toxins. Insect Biochem. Molec. Biol. 2023, 163, 104030. [Google Scholar] [CrossRef]
- Naing, Z.L.; Soe, E.T.; Zhang, C.; Niu, L.; Tang, J.; Ding, Z.; Yu, S.; Lu, J.; Fang, F.; Lianga, G. Cadherin is a binding protein but not a functional receptor of Bacillus thuringiensis Cry2Ab in Helicoverpa armigera. Appl. Environ. Microbiol. 2023, 89, e0062523. [Google Scholar] [CrossRef]
- Guo, Z.; Sun, D.; Kang, S.; Zhou, J.; Gong, L.; Qin, J.; Guo, L.; Zhu, L.; Bai, Y.; Luo, L.; et al. CRISPR/Cas9-mediated knockout of both the PxABCC2 and PxABCC3 genes confers high-level resistance to Bacillus thuringiensis Cry1Ac toxin in the diamondback moth, Plutella xylostella (L.). Insect Biochem. Mol. Biol. 2019, 107, 31–38. [Google Scholar] [CrossRef] [PubMed]
- Liu, Z.; Fu, S.; Ma, X.; Baxter, S.W.; Vasseur, L.; Xiong, L.; Huang, Y.; Yang, G.; You, S.; You, M. Resistance to Bacillus thuringiensis Cry1Ac toxin requires mutations in two Plutella xylostella ATP-binding cassette transporter paralogs. PLoS Pathog. 2020, 16, e1008697. [Google Scholar] [CrossRef]
- Zhao, S.; Jiang, D.; Wang, F.; Yang, Y.; Tabashnik, B.E.; Wu, Y. Independent and synergistic effects of knocking out two ABC transporter genes on resistance to Bacillus thuringiensis toxins Cry1Ac and Cry1Fa in diamondback moth. Toxins 2021, 13, 9. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Adegawa, S.; Miyamoto, K.; Takasu, Y.; Iizuka, T.; Wada, S.; Mang, D.; Li, X.; Kim, S.; Sato, R.; et al. ATP-binding cassette transporter subfamily C members 2, 3 and cadherin protein are susceptibility-determining factors in Bombyx mori for multiple Bacillus thuringiensis Cry1 toxins. Insect Biochem. Mol. Biol. 2021, 139, 103649. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.; Wang, Y.; Miyamoto, K.; Takasu, Y.; Wada, S.; Iizuka, T.; Sato, R.; Watanabe, K. Cadherin BtR175 and ATP-binding cassette transporter protein ABCC2 or ABCC3 facilitate Bacillus thuringiensis Cry1Aa intoxication in Bombyx mori. J. Insect Biotechnol. Sericol. 2022, 91, 1–12. [Google Scholar]
- Endo, H.; Tanaka, S.; Imamura, K.; Adegawa, S.; Ichino, F.; Tabunoki, H.; Kikuta, S.; Sato, R. Extracellular loop structures in silkworm ABCC transporters determine their specificities for Bacillus thuringiensis Cry toxins. J. Biol. Chem. 2018, 293, 8569–8577. [Google Scholar] [CrossRef] [PubMed]
- Adegawa, S.; Yamaguchi, N.; Sato, R. The base and root of domain II loops of Cry toxins contribute to binding to Bombyx mori ABC transporter C2. FEBS J. 2021, 289, 965–984. [Google Scholar] [CrossRef] [PubMed]
- Endo, H. Molecular and kinetic models for pore formation of Bacillus thuringiensis Cry toxin. Toxins 2022, 14, 433. [Google Scholar] [CrossRef] [PubMed]
- Griffitts, J.S.; Haslam, S.M.; Yang, T.; Garczynski, S.F.; Mulloy, B.; Morris, H.; Cremer, P.S.; Dell, A.; Adang, M.J.; Aroian, R.V. Glycolipids as receptors for Bacillus thuringiensis Crystal Toxin. Science 2005, 307, 922–925. [Google Scholar] [CrossRef]
- Barrows, B.D.; Griffitts, J.S.; Aroian, R.V. Resistance is non-futile: Resistance to Cry5B in the nematode Caenorhabditis elegans. J. Invertebr. Pathol. 2007, 95, 198–200. [Google Scholar] [CrossRef]
- Adegawa, S.; Wang, Y.; Waizumi, R.; Iizuka, T.; Takasu, Y.; Watanabe, K.; Sato, R. Cry Toxins use multiple ABC transporter subfamily C members as low-efficient receptors in Bombyx mori. Biomolecules 2024, 14, 271. [Google Scholar] [CrossRef]
- Endo, H.; Tanaka, S.; Imamura, K.; Adegawa, S.; Kikuta, S.; Sato, R. Cry toxin specificities of insect ABCC transporters closely related to lepidopteran ABCC2 transporters. Peptides 2017, 98, 86–92. [Google Scholar] [CrossRef]
- Adegawa, S.; Nakama, Y.; Endo, H.; Shinkawa, N.; Kikuta, S.; Sato, R. The domain II loops of Bacillus thuringiensis Cry1Aa form an overlapping interaction site for two Bombyx mori larvae functional receptors, ABC transporter C2 and cadherin-like receptor. Biochim. Biophys. Acta 2017, 1865, 220–231. [Google Scholar] [CrossRef] [PubMed]
- Klappe, K.; Hummel, I.; Hoekstra, D.; Kok, J.W. Lipid dependence of ABC transporter localization and function. Chem. Phys. Lipids 2009, 161, 57–64. [Google Scholar] [CrossRef]
- Zhuang, M.; Oltean, D.I.; Gómez, I.; Pullikuth, A.K.; Soberón, M.; Bravo, A.; Gill, S.S. Heliothis virescens and Manduca sexta lipid rafts are involved in Cry1A toxin binding to the midgut epithelium and subsequent pore formation. J. Biol. Chem. 2002, 277, 13863–13872. [Google Scholar] [CrossRef]
- Gómez, I.; Sánchez, J.; Miranda, R.; Bravo, A.; Soberón, M. Cadherin-like receptor binding facilitates proteolytic cleavage of helix alpha-1 in domain I and oligomer pre-pore formation of Bacillus thuringiensis Cry1Ab toxin. FEBS Lett. 2002, 513, 242–246. [Google Scholar] [CrossRef] [PubMed]
- Gómez, I.; Pardo-López, L.; Muñoz-Garay, C.; Fernandez, L.E.; Sánchez, P.J.; Soberón, M.; Bravo, A. Role of receptor interaction in the mode of action of insecticidal Cry and Cyt toxins produced by Bacillus thuringiensis. Peptides 2007, 28, 169–173. [Google Scholar] [CrossRef]
- Zhang, X.; Candas, M.; Griko, N.B.; Rose-Young, L.; Bulla, L.A. Cytotoxicity of Bacillus thuringiensis Cry1Ab toxin depends on specific binding of the toxin to the cadherin receptor BT-R1 expressed in insect cells. Cell Death Differ. 2005, 12, 1407–1416. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Candas, M.; Griko, N.B.; Taussig, R.; Bulla, L.A. A mechanism of cell death involving an adenylyl cyclase/PKA signaling pathway is induced by the Cry1Ab toxin of Bacillus thuringiensis. Proc. Natl. Acad. Sci. USA 2006, 103, 9897–9902. [Google Scholar] [CrossRef]
- Chen, Z.; He, F.; Xiao, Y.; Liu, C.; Li, J.; Yang, Y.; Ai, H.; Peng, J.; Hong, H.; Liu, K. Endogenous expression of a Bt toxin receptor in the Cry1Ac-susceptible insect cell line and its synergistic effect with cadherin on cytotoxicity of activated Cry1Ac. Insect Biochem. Mol. Biol. 2015, 59, 1–17. [Google Scholar] [CrossRef]
- Dermauw, W.; Van Leeuwen, T. The ABC gene family in arthropods: Comparative genomics and role in insecticide transport and resistance. Insect Biochem. Mol. Biol. 2014, 45, 89–110. [Google Scholar] [CrossRef] [PubMed]
- Crickmore, N.; Zeigler, D.R.; Feitelson, J.; Schnepf, E.; Van Rie, J.; Lereclus, D.; Baum, J.; Dean, D.H. Revision of the nomenclature for the Bacillus thuringiensis pesticidal crystal proteins. Microbiol. Mol. Biol. Rev. 1998, 62, 807–813. [Google Scholar] [CrossRef] [PubMed]
- de Maagd, R.A.; Bravo, A.; Crickmore, N. How Bacillus thuringiensis has evolved specific toxins to colonize the insect world. Trends Genet. 2001, 17, 193–199. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.; Teng, X.; Ma, W.; Li, F. Knockdown of two cadherin genes confers resistance to Cry2A and Cry1C in Chilo suppressalis. Sci. Rep. 2017, 7, 5992. [Google Scholar] [CrossRef] [PubMed]
- Jeyaprakash, A.A.; Rani, G.P.; Reddy, G.B.; Banumathi, S.; Betze, C.; Sekar, K.; Surolia, A.; Vijayan, M. Crystal structure of the jacalin-T-antigen complex and a comparative study of lectin-T-antigen complexes. J. Mol. Biol. 2002, 321, 637–645. [Google Scholar] [CrossRef] [PubMed]
- Jeyaprakash, A.A.; Katiyar, S.; Swaminathan, C.P.; Sekar, K.; Surolia, A.; Vijayan, M. Structural basis of the carbohydrate specificities of jacalin: An X-ray and modeling study. J. Mol. Biol. 2003, 332, 217–228. [Google Scholar] [CrossRef] [PubMed]
- Meagher, J.L.; Winter, H.C.; Ezell, P.; Goldstein, I.J.; Stuckey, J.A. Crystal structure of banana lectin reveals a novel second sugar binding site. Glycobiology 2005, 15, 1033–1042. [Google Scholar] [CrossRef] [PubMed]
- Gómez, I.; Miranda-Rios, J.; Rudiño-Piñera, E.; Oltean, D.I.; Gill, S.S.; Bravo, A.; Soberón, M. Hydropathic complementarity determines interaction of epitope 869HITDTNNK876 in Manduca sexta Bt-R1 receptor with loop 2 of domain II of Bacillus thuringiensis Cry1A toxins. J. Biol. Chem. 2002, 277, 30137–30143. [Google Scholar] [CrossRef] [PubMed]
- Gómez, I.; Dean, D.H.; Bravo, A.; Soberón, M. Molecular basis for Bacillus thuringiensis Cry1Ab toxin specificity: Two structural determinants in the Manduca sexta Bt-R1 receptor interact with loops alpha-8 and 2 in domain II of Cy1Ab toxin. Biochemistry 2003, 42, 10482–10489. [Google Scholar] [CrossRef]
- Xie, R.; Zhuang, M.; Ross, L.S.; Gomez, I.; Oltean, D.I.; Bravo, A.; Soberón, M.; Gill, S.S. Single amino acid mutations in the cadherin receptor from Heliothis virescens affect its toxin binding ability to Cry1A toxins. J. Biol. Chem. 2005, 280, 8416–8425. [Google Scholar] [CrossRef]
- Atsumi, S.; Inoue, Y.; Ishizaka, T.; Mizuno, E.; Yoshizawa, Y.; Kitami, M.; Sato, R. Location of the Bombyx mori 175 kDa cadherin-like protein-binding site on Bacillus thuringiensis Cry1Aa toxin. FEBS J. 2008, 275, 4913–4926. [Google Scholar] [CrossRef] [PubMed]
- Obata, F.; Kitami, M.; Inoue, Y.; Atsumi, S.; Yoshizawa, Y.; Sato, R. Analysis of the region for receptor binding and triggering of oligomerization on Bacillus thuringiensis Cry1Aa toxin. FEBS J. 2009, 276, 5949–5959. [Google Scholar] [CrossRef] [PubMed]
- Ishikawa, H.; Hoshino, Y.; Motoki, Y.; Kawahara, T.; Kitajima, M.; Kitami, M.; Watanabe, A.; Bravo, A.; Soberón, M.; Honda, A.; et al. A system for the directed evolution of the insecticidal protein from Bacillus thuringiensis. Mol. Biotechnol. 2007, 36, 90–101. [Google Scholar] [CrossRef] [PubMed]
- Endo, H.; Kobayashi, Y.; Hoshino, Y.; Tanaka, S.; Kikuta, S.; Tabunoki, H.; Sato, R. Affinity maturation of Cry1Aa toxin to the Bombyx mori cadherin-like receptor by directed evolution based on phage display and biopanning selections of domain II loop 2 mutant toxins. MicrobiologyOpen 2014, 3, 568–577. [Google Scholar] [CrossRef]
- Fujii, Y.; Tanaka, S.; Otsuki, M.; Hoshino, Y.; Endo, H.; Sato, R. Affinity maturation of Cry1Aa toxin to the Bombyx mori cadherin-like receptor by directed evolution. Mol. Biotechnol. 2013, 54, 888–899. [Google Scholar] [CrossRef] [PubMed]
- Fujii, Y.; Tanaka, S.; Otsuki, M.; Hoshino, Y.; Morimoto, C.; Kotani, T.; Harashima, Y.; Endo, H.; Yoshizawa, Y.; Sato, R. Cry1Aa binding to the cadherin receptor does not require conserved amino acid sequences in the domain II loops. Biosci. Rep. 2012, 33, 103–112. [Google Scholar] [CrossRef]
- Badran, A.H.; Guzov, V.M.; Huai, Q.; Kemp, M.M.; Vishwanath, P.; Kain, W.; Nance, A.M.; Evdokimov, A.; Moshiri, F.; Turner, K.H.; et al. Continuous evolution of Bacillus thuringiensis toxins overcomes insect resistance. Nature 2016, 533, 58–63. [Google Scholar] [CrossRef]
Function of Receptor | Receptor | Cry Toxin | KD between Receptor and Cry (M) | Swelling Starting Toxin Conc of Heterologously Receptor-Expressing Sf9 (nM) | Susceptibility of KO B. mori Larvae | Reference |
---|---|---|---|---|---|---|
Low-efficiency or inefficient | BmABCC1 | Cry1Aa | 4.61 × 10−5 | >5000 | ND | [41] |
Cry1Da | 4.15 × 10−7 | |||||
Cry8Ca | 3.48 × 10−8 | |||||
Cry9Aa | 1.89 × 10−9 | 500 | Susceptible | |||
BmABCC2 | Cry1Ca | 1.71 × 10−7 | ND 1 | ND | [36] | |
Cry1Da | 2.30 × 10−6 | |||||
Cry3Bb | 1.96 × 10−5 | |||||
BmABCC3 | Cry1Ab | 4.35 × 10−8 | 1000 | Susceptible | [34] | |
Cry1Ac | 8.13 × 10−8 | >1000 | ||||
BmABCC4 | Cry1Aa | 2.67 × 10−7 | 5000 | [41] | ||
Cry1Da | 6.37 × 10−8 | |||||
Cry8Ca | 6.17 × 10−8 | |||||
Cry9Aa | ND | >5000 | ND | |||
TcABCC4 | Cry8Ca | 4.03 × 10−8 | ND 2 | [42] | ||
Cry3Bb | 1.78 × 10−5 | ND 1 | ||||
BtR175 | Cry1Fa | 3.95 × 10−9 | >1000 | [34] | ||
Cry1Ia | 3.09 × 10−8 M | ND | [29] | |||
Susceptibility determining | BmABCC2 | Cry1Aa | 4.30 × 10−10 | 0.1 | Susceptible | [17,35,36] |
Cry1Ab | 2.57 × 10−10 | 10 | Resistant | [34] | ||
Cry1Ac | 2.34 × 10−10 | 1 | ||||
Cry1Fa | 2.02 × 10−10 | 1 | Susceptible | |||
BmABCC3 | Cry1Aa | 3.42 × 10−8 | 10 | [34,35,36] | ||
Cry1Fa | 2.85 × 10−9 | 10 | ||||
BtR175 | Cry1Aa | 7.2 × 10−10 | 1000 | Resistant | [35,43] | |
Cry1Ab | 5.49 × 10−10 | 1000 | [34] | |||
Cry1Ac | 2.97 × 10−10 | >1000 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sato, R. Utilization of Diverse Molecules as Receptors by Cry Toxin and the Promiscuous Nature of Receptor-Binding Sites Which Accounts for the Diversity. Biomolecules 2024, 14, 425. https://doi.org/10.3390/biom14040425
Sato R. Utilization of Diverse Molecules as Receptors by Cry Toxin and the Promiscuous Nature of Receptor-Binding Sites Which Accounts for the Diversity. Biomolecules. 2024; 14(4):425. https://doi.org/10.3390/biom14040425
Chicago/Turabian StyleSato, Ryoichi. 2024. "Utilization of Diverse Molecules as Receptors by Cry Toxin and the Promiscuous Nature of Receptor-Binding Sites Which Accounts for the Diversity" Biomolecules 14, no. 4: 425. https://doi.org/10.3390/biom14040425
APA StyleSato, R. (2024). Utilization of Diverse Molecules as Receptors by Cry Toxin and the Promiscuous Nature of Receptor-Binding Sites Which Accounts for the Diversity. Biomolecules, 14(4), 425. https://doi.org/10.3390/biom14040425