Glycosylation Modulation Dictates Trafficking and Interaction of SARS-CoV-2 S1 Subunit and ACE2 in Intestinal Epithelial Caco-2 Cells
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals, Reagents, and Antibodies
2.2. Cell Culture
2.3. Extraction, Transient Transfection, and Pulldown of S1-Fc in CHO Cell Lines and COS-1
2.4. Binding Experiments of S1 to ACE2
2.5. Preparation of Brush Border Membranes
2.6. Endoglycosidase H Treatment
2.7. SDS-PAGE and Western Blotting
2.8. Statistical Analysis
3. Results
3.1. Glycosylation Modulation in Mutant CHO Cells, Lec2 and Lec8, Affects Trafficking and Secretion of S1
3.2. Glycosylation Modulation Impacts the Interaction of S1 with ACE2 in Intestinal Epithelial Cells
3.3. N-glycosylation Modulators Affect S1 Trafficking and Secretion
3.4. The Trafficking of ACE2 to the Brush Border Membrane of Caco-2 Cells Is Greatly Affected in the Presence of NB-DNJ and dMM
3.5. Altered Interaction of the Modified Glycoforms of S1 with ACE2
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- World Health Organization WHO COVID-19 Dashboard. Available online: https://data.who.int/dashboards/covid19/cases?n=c (accessed on 18 January 2024).
- Lai, C.-C.; Shih, T.-P.; Ko, W.-C.; Tang, H.-J.; Hsueh, P.-R. Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) and Coronavirus Disease-2019 (COVID-19): The Epidemic and the Challenges. Int. J. Antimicrob. Agents 2020, 55, 105924. [Google Scholar] [CrossRef]
- Gupta, A.; Madhavan, M.V.; Sehgal, K.; Nair, N.; Mahajan, S.; Sehrawat, T.S.; Bikdeli, B.; Ahluwalia, N.; Ausiello, J.C.; Wan, E.Y.; et al. Extrapulmonary Manifestations of COVID-19. Nat. Med. 2020, 26, 1017–1032. [Google Scholar] [CrossRef] [PubMed]
- Kariyawasam, J.C.; Jayarajah, U.; Riza, R.; Abeysuriya, V.; Seneviratne, S.L. Gastrointestinal Manifestations in COVID-19. Trans. R. Soc. Trop. Med. Hyg. 2021, 115, 1362–1388. [Google Scholar] [CrossRef] [PubMed]
- Jaimes, J.A.; Millet, J.K.; Whittaker, G.R. Proteolytic Cleavage of the SARS-CoV-2 Spike Protein and the Role of the Novel S1/S2 Site. iScience 2020, 23, 101212. [Google Scholar] [CrossRef]
- Hoffmann, M.; Kleine-Weber, H.; Schroeder, S.; Krüger, N.; Herrler, T.; Erichsen, S.; Schiergens, T.S.; Herrler, G.; Wu, N.-H.; Nitsche, A.; et al. SARS-CoV-2 Cell Entry Depends on ACE2 and TMPRSS2 and Is Blocked by a Clinically Proven Protease Inhibitor. Cell 2020, 181, 271–280.e8. [Google Scholar] [CrossRef]
- Zhou, P.; Yang, X.-L.; Wang, X.-G.; Hu, B.; Zhang, L.; Zhang, W.; Si, H.-R.; Zhu, Y.; Li, B.; Huang, C.-L.; et al. A Pneumonia Outbreak Associated with a New Coronavirus of Probable Bat Origin. Nature 2020, 579, 270–273. [Google Scholar] [CrossRef]
- Li, W.; Moore, M.J.; Vasilieva, N.; Sui, J.; Wong, S.K.; Berne, M.A.; Somasundaran, M.; Sullivan, J.L.; Luzuriaga, K.; Greenough, T.C.; et al. Angiotensin-Converting Enzyme 2 Is a Functional Receptor for the SARS Coronavirus. Nature 2003, 426, 450–454. [Google Scholar] [CrossRef] [PubMed]
- Hikmet, F.; Méar, L.; Edvinsson, Å.; Micke, P.; Uhlén, M.; Lindskog, C. The Protein Expression Profile of ACE2 in Human Tissues. Mol. Syst. Biol. 2020, 16, e9610. [Google Scholar] [CrossRef] [PubMed]
- Sungnak, W.; Huang, N.; Bécavin, C.; Berg, M.; Queen, R.; Litvinukova, M.; Talavera-López, C.; Maatz, H.; Reichart, D.; Sampaziotis, F.; et al. SARS-CoV-2 Entry Factors Are Highly Expressed in Nasal Epithelial Cells Together with Innate Immune Genes. Nat. Med. 2020, 26, 681–687. [Google Scholar] [CrossRef]
- Radzikowska, U.; Ding, M.; Tan, G.; Zhakparov, D.; Peng, Y.; Wawrzyniak, P.; Wang, M.; Li, S.; Morita, H.; Altunbulakli, C.; et al. Distribution of ACE2, CD147, CD26, and Other SARS-CoV-2 Associated Molecules in Tissues and Immune Cells in Health and in Asthma, COPD, Obesity, Hypertension, and COVID-19 Risk Factors. Allergy 2020, 75, 2829–2845. [Google Scholar] [CrossRef]
- Ziegler, C.G.K.; Allon, S.J.; Nyquist, S.K.; Mbano, I.M.; Miao, V.N.; Tzouanas, C.N.; Cao, Y.; Yousif, A.S.; Bals, J.; Hauser, B.M.; et al. SARS-CoV-2 Receptor ACE2 Is an Interferon-Stimulated Gene in Human Airway Epithelial Cells and Is Detected in Specific Cell Subsets across Tissues. Cell 2020, 181, 1016–1035.e19. [Google Scholar] [CrossRef]
- Shajahan, A.; Archer-Hartmann, S.; Supekar, N.T.; Gleinich, A.S.; Heiss, C.; Azadi, P. Comprehensive Characterization of N- and O- Glycosylation of SARS-CoV-2 Human Receptor Angiotensin Converting Enzyme 2. Glycobiology 2021, 31, 410–424. [Google Scholar] [CrossRef]
- Zhao, P.; Praissman, J.L.; Grant, O.C.; Cai, Y.; Xiao, T.; Rosenbalm, K.E.; Aoki, K.; Kellman, B.P.; Bridger, R.; Barouch, D.H.; et al. Virus-Receptor Interactions of Glycosylated SARS-CoV-2 Spike and Human ACE2 Receptor. Cell Host Microbe 2020, 28, 586–601.e6. [Google Scholar] [CrossRef]
- Watanabe, Y.; Allen, J.D.; Wrapp, D.; McLellan, J.S.; Crispin, M. Site-Specific Glycan Analysis of the SARS-CoV-2 Spike. Science 2020, 369, 330–333. [Google Scholar] [CrossRef] [PubMed]
- Vigerust, D.J.; Shepherd, V.L. Virus Glycosylation: Role in Virulence and Immune Interactions. Trends Microbiol. 2007, 15, 211–218. [Google Scholar] [CrossRef]
- Hanna, S.L.; Pierson, T.C.; Sanchez, M.D.; Ahmed, A.A.; Murtadha, M.M.; Doms, R.W. N-Linked Glycosylation of West Nile Virus Envelope Proteins Influences Particle Assembly and Infectivity. J. Virol. 2005, 79, 13262–13274. [Google Scholar] [CrossRef]
- Alexandre, K.B.; Gray, E.S.; Pantophlet, R.; Moore, P.L.; McMahon, J.B.; Chakauya, E.; O’Keefe, B.R.; Chikwamba, R.; Morris, L. Binding of the Mannose-Specific Lectin, Griffithsin, to HIV-1 Gp120 Exposes the CD4-Binding Site. J. Virol. 2011, 85, 9039–9050. [Google Scholar] [CrossRef]
- Rajasekharan, S.; Milan Bonotto, R.; Nascimento Alves, L.; Kazungu, Y.; Poggianella, M.; Martinez-Orellana, P.; Skoko, N.; Polez, S.; Marcello, A. Inhibitors of Protein Glycosylation Are Active against the Coronavirus Severe Acute Respiratory Syndrome Coronavirus SARS-CoV-2. Viruses 2021, 13, 808. [Google Scholar] [CrossRef] [PubMed]
- Clarke, E.C.; Nofchissey, R.A.; Ye, C.; Bradfute, S.B. The Iminosugars Celgosivir, Castanospermine and UV-4 Inhibit SARS-CoV-2 Replication. Glycobiology 2021, 31, 378–384. [Google Scholar] [CrossRef]
- Mishra, N.; Tiwari, V.K.; Schmidt, R.R. Recent Trends and Challenges on Carbohydrate-Based Molecular Scaffolding: General Consideration toward Impact of Carbohydrates in Drug Discovery and Development. Carbohydr. Drug Discov. Dev. Synth. Appl. 2020, 1–69. [Google Scholar] [CrossRef]
- Platt, F.M.; Neises, G.R.; Dwek, R.A.; Butters, T.D. N-Butyldeoxynojirimycin Is a Novel Inhibitor of Glycolipid Biosynthesis. J. Biol. Chem. 1994, 269, 8362–8365. [Google Scholar] [CrossRef]
- Balzarini, J. The Alpha(1,2)-Mannosidase I Inhibitor 1-Deoxymannojirimycin Potentiates the Antiviral Activity of Carbohydrate-Binding Agents against Wild-Type and Mutant HIV-1 Strains Containing Glycan Deletions in Gp120. FEBS Lett. 2007, 581, 2060–2064. [Google Scholar] [CrossRef]
- Ogier-Denis, E.; Trugnan, G.; Sapin, C.; Aubery, M.; Codogno, P. Dual Effect of 1-Deoxymannojirimycin on the Mannose Uptake and on the N-Glycan Processing of the Human Colon Cancer Cell Line HT-29. J. Biol. Chem. 1990, 265, 5366–5369. [Google Scholar] [CrossRef]
- Deutscher, S.L.; Hirschberg, C.B. Mechanism of Galactosylation in the Golgi Apparatus. A Chinese Hamster Ovary Cell Mutant Deficient in Translocation of UDP-Galactose across Golgi Vesicle Membranes. J. Biol. Chem. 1986, 261, 96–100. [Google Scholar] [CrossRef]
- Deutscher, S.L.; Nuwayhid, N.; Stanley, P.; Briles, E.I.; Hirschberg, C.B. Translocation across Golgi Vesicle Membranes: A CHO Glycosylation Mutant Deficient in CMP-Sialic Acid Transport. Cell 1984, 39, 295–299. [Google Scholar] [CrossRef]
- Mortlock, D.; Keller, E.B.; Ziegra, C.J.; Suter, M.M. High Efficiency Transfection of Monkey Kidney COS-1 Cells. J. Tissue Cult. Methods 1993, 15, 176–180. [Google Scholar]
- Schmitz, J.; Preiser, H.; Maestracci, D.; Ghosh, B.K.; Cerda, J.J.; Crane, R.K. Purification of the Human Intestinal Brush Border Membrane. Biochim. Biophys. Acta 1973, 323, 98–112. [Google Scholar] [CrossRef]
- Sterchi, E.E.; Woodley, J.F. Peptide Hydrolases of the Human Small Intestinal Mucosa: Identification of Six Distinct Enzymes in the Brush Border Membrane. Clin. Chim. Acta 1980, 102, 57–65. [Google Scholar] [CrossRef] [PubMed]
- Naim, H.Y.; Sterchi, E.E.; Lentze, M.J. Biosynthesis and Maturation of Lactase-Phlorizin Hydrolase in the Human Small Intestinal Epithelial Cells. Biochem. J. 1987, 241, 427–434. [Google Scholar] [CrossRef]
- Laemmli, U.K. Cleavage of Structural Proteins during the Assembly of the Head of Bacteriophage T4. Nature 1970, 227, 680–685. [Google Scholar] [CrossRef]
- Stanley, P. Chinese Hamster Ovary Cell Mutants with Multiple Glycosylation Defects for Production of Glycoproteins with Minimal Carbohydrate Heterogeneity. Mol. Cell. Biol. 1989, 9, 377–383. [Google Scholar] [CrossRef]
- Krambeck, F.J.; Bennun, S.V.; Andersen, M.R.; Betenbaugh, M.J. Model-Based Analysis of N-Glycosylation in Chinese Hamster Ovary Cells. PLoS ONE 2017, 12, e0175376. [Google Scholar] [CrossRef] [PubMed]
- Meunier, V.; Bourrié, M.; Berger, Y.; Fabre, G. The Human Intestinal Epithelial Cell Line Caco-2; Pharmacological and Pharmacokinetic Applications. Cell Biol. Toxicol. 1995, 11, 187–194. [Google Scholar] [CrossRef] [PubMed]
- Crispin, M.; Doores, K.J. Targeting Host-Derived Glycans on Enveloped Viruses for Antibody-Based Vaccine Design. Curr. Opin. Virol. 2015, 11, 63–69. [Google Scholar] [CrossRef]
- Lee, Y.-K.; Chang, W.-C.; Prakash, E.; Peng, Y.-J.; Tu, Z.-J.; Lin, C.-H.; Hsu, P.-H.; Chang, C.-F. Carbohydrate Ligands for COVID-19 Spike Proteins. Viruses 2022, 14, 330. [Google Scholar] [CrossRef]
- Griffiths, G.; Brands, R.; Burke, B.; Louvard, D.; Warren, G. Viral Membrane Proteins Acquire Galactose in Trans Golgi Cisternae during Intracellular Transport. J. Cell Biol. 1982, 95, 781–792. [Google Scholar] [CrossRef] [PubMed]
- Bieberich, E. Synthesis, Processing, and Function of N-Glycans in N-Glycoproteins. Adv. Neurobiol. 2014, 9, 47–70. [Google Scholar] [CrossRef] [PubMed]
- Xu, Y.-X.; Liu, L.; Caffaro, C.E.; Hirschberg, C.B. Inhibition of Golgi Apparatus Glycosylation Causes Endoplasmic Reticulum Stress and Decreased Protein Synthesis. J. Biol. Chem. 2010, 285, 24600–24608. [Google Scholar] [CrossRef]
- Samuelsson, E.; Mirgorodskaya, E.; Nyström, K.; Bäckström, M.; Liljeqvist, J.-Å.; Nordén, R. Sialic Acid and Fucose Residues on the SARS-CoV-2 Receptor-Binding Domain Modulate IgG Antibody Reactivity. ACS Infect. Dis. 2022, 8, 1883–1893. [Google Scholar] [CrossRef]
- De, P.; Kumar, V.; Kar, S.; Roy, K.; Leszczynski, J. Repurposing FDA Approved Drugs as Possible Anti-SARS-CoV-2 Medications Using Ligand-Based Computational Approaches: Sum of Ranking Difference-Based Model Selection. Struct. Chem. 2022, 33, 1741–1753. [Google Scholar] [CrossRef]
- Bischoff, J.; Kornfeld, R. The Effect of 1-Deoxymannojirimycin on Rat Liver α-Mannosidases. Biochem. Biophys. Res. Commun. 1984, 125, 324–331. [Google Scholar] [CrossRef] [PubMed]
- Saunier, B.; Kilker, R.D.; Tkacz, J.S.; Quaroni, A.; Herscovics, A. Inhibition of N-Linked Complex Oligosaccharide Formation by 1-Deoxynojirimycin, an Inhibitor of Processing Glucosidases. J. Biol. Chem. 1982, 257, 14155–14161. [Google Scholar] [CrossRef]
- Hebert, D.N.; Foellmer, B.; Helenius, A. Glucose Trimming and Reglucosylation Determine Glycoprotein Association with Calnexin in the Endoplasmic Reticulum. Cell 1995, 81, 425–433. [Google Scholar] [CrossRef] [PubMed]
- Araki, K.; Nagata, K. Protein Folding and Quality Control in the ER. Cold Spring Harb. Perspect. Biol. 2011, 3, a007526. [Google Scholar] [CrossRef]
- Branza-Nichita, N.; Durantel, D.; Carrouée-Durantel, S.; Dwek, R.A.; Zitzmann, N. Antiviral Effect of N-Butyldeoxynojirimycin against Bovine Viral Diarrhea Virus Correlates with Misfolding of E2 Envelope Proteins and Impairment of Their Association into E1-E2 Heterodimers. J. Virol. 2001, 75, 3527–3536. [Google Scholar] [CrossRef] [PubMed]
- Amiri, M.; Naim, H.Y. Long Term Differential Consequences of Miglustat Therapy on Intestinal Disaccharidases. J. Inherit. Metab. Dis. 2014, 37, 929–937. [Google Scholar] [CrossRef] [PubMed]
- Lubas, W.A.; Spiro, R.G. Evaluation of the Role of Rat Liver Golgi Endo-Alpha-D-Mannosidase in Processing N-Linked Oligosaccharides. J. Biol. Chem. 1988, 263, 3990–3998. [Google Scholar] [CrossRef]
- Lubas, W.A.; Spiro, R.G. Golgi Endo-Alpha-D-Mannosidase from Rat Liver, a Novel N-Linked Carbohydrate Unit Processing Enzyme. J. Biol. Chem. 1987, 262, 3775–3781. [Google Scholar] [CrossRef]
- Zuber, C.; Spiro, M.J.; Guhl, B.; Spiro, R.G.; Roth, J. Golgi Apparatus Immunolocalization of Endomannosidase Suggests Post-Endoplasmic Reticulum Glucose Trimming: Implications for Quality Control. Mol. Biol. Cell. 2000, 11, 4227–4240. [Google Scholar] [CrossRef]
- Sobala, Ł.F.; Fernandes, P.Z.; Hakki, Z.; Thompson, A.J.; Howe, J.D.; Hill, M.; Zitzmann, N.; Davies, S.; Stamataki, Z.; Butters, T.D.; et al. Structure of Human Endo-α-1,2-Mannosidase (MANEA), an Antiviral Host-Glycosylation Target. Proc. Natl. Acad. Sci. USA 2020, 117, 29595–29601. [Google Scholar] [CrossRef]
- Beimdiek, J.; Hennig, R.; Burock, R.; Puk, O.; Biskup, S.; Rapp, E.; Lesinski-Schiedat, A.; Buettner, F.F.R.; Das, A.M. Serum N-Glycomics of a Novel CDG-IIb Patient Reveals Aberrant IgG Glycosylation. Glycobiology 2022, 32, 380–390. [Google Scholar] [CrossRef] [PubMed]
- Hart, M.L.; Saifuddin, M.; Spear, G.T. Glycosylation Inhibitors and Neuraminidase Enhance Human Immunodeficiency Virus Type 1 Binding and Neutralization by Mannose-Binding Lectin. J. Gen. Virol. 2003, 84, 353–360. [Google Scholar] [CrossRef] [PubMed]
- Isobe, A.; Arai, Y.; Kuroda, D.; Okumura, N.; Ono, T.; Ushiba, S.; Nakakita, S.-I.; Daidoji, T.; Suzuki, Y.; Nakaya, T.; et al. ACE2 N-Glycosylation Modulates Interactions with SARS-CoV-2 Spike Protein in a Site-Specific Manner. Commun. Biol. 2022, 5, 1188. [Google Scholar] [CrossRef] [PubMed]
- Yang, Q.; Hughes, T.A.; Kelkar, A.; Yu, X.; Cheng, K.; Park, S.; Huang, W.-C.; Lovell, J.F.; Neelamegham, S. Inhibition of SARS-CoV-2 Viral Entry upon Blocking N- and O-Glycan Elaboration. eLife 2020, 9, e61552. [Google Scholar] [CrossRef]
- Chu, H.; Hu, B.; Huang, X.; Chai, Y.; Zhou, D.; Wang, Y.; Shuai, H.; Yang, D.; Hou, Y.; Zhang, X.; et al. Host and Viral Determinants for Efficient SARS-CoV-2 Infection of the Human Lung. Nat. Commun. 2021, 12, 134. [Google Scholar] [CrossRef]
Antibody | Concentration (μg/μL) | Dilution | Company | Cat # |
---|---|---|---|---|
Recombinant anti-ACE2 antibody [EPR4435(2)] | 0.231 | 1:5000 | Abcam (Cambridge, UK) | ab108252 |
Protein A (HRP Conjugate) | - | 1:1000 | Cell Signaling (Danvers, MA, USA) | 12291 |
Goat anti-mouse IgG (H+L) Secondary antibody HRP | 0.4 | 1:5000 | Thermo Fisher Scientific (Waltham, MA, USA) | 31430 |
Goat anti-rabbit IgG HRP | 0.4 | 1:5000 | Thermo Fisher Scientific | 31460 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
El Khoury, M.; Wanes, D.; Lynch-Miller, M.; Hoter, A.; Naim, H.Y. Glycosylation Modulation Dictates Trafficking and Interaction of SARS-CoV-2 S1 Subunit and ACE2 in Intestinal Epithelial Caco-2 Cells. Biomolecules 2024, 14, 537. https://doi.org/10.3390/biom14050537
El Khoury M, Wanes D, Lynch-Miller M, Hoter A, Naim HY. Glycosylation Modulation Dictates Trafficking and Interaction of SARS-CoV-2 S1 Subunit and ACE2 in Intestinal Epithelial Caco-2 Cells. Biomolecules. 2024; 14(5):537. https://doi.org/10.3390/biom14050537
Chicago/Turabian StyleEl Khoury, Marianne, Dalanda Wanes, Maura Lynch-Miller, Abdullah Hoter, and Hassan Y. Naim. 2024. "Glycosylation Modulation Dictates Trafficking and Interaction of SARS-CoV-2 S1 Subunit and ACE2 in Intestinal Epithelial Caco-2 Cells" Biomolecules 14, no. 5: 537. https://doi.org/10.3390/biom14050537
APA StyleEl Khoury, M., Wanes, D., Lynch-Miller, M., Hoter, A., & Naim, H. Y. (2024). Glycosylation Modulation Dictates Trafficking and Interaction of SARS-CoV-2 S1 Subunit and ACE2 in Intestinal Epithelial Caco-2 Cells. Biomolecules, 14(5), 537. https://doi.org/10.3390/biom14050537